Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-16T09:45:33.812Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  07 September 2010

Jean-Marc Vanden-Broeck
Affiliation:
University College London
Get access

Summary

Free-surface problems occur in many aspects of science and everyday life. They can be defined as problems whose mathematical formulation involves surfaces that have to be found as part of the solution. Such surfaces are called free surfaces. Examples of free-surface problems are waves on a beach, bubbles rising in a glass of champagne, melting ice, flows pouring from a container and sails blowing in the wind. In these examples the free surface is the surface of the sea, the interface between the gas and the champagne, the surface of the ice, the boundary of the pouring flow and the surface of the sail.

In this book we concentrate on applications arising in fluid mechanics. We hope to convince the reader of the beauty of such problems and to present the challenges faced when one attempts to describe these flows mathematically. Many of these challenges are resolved in the book but others are still open questions. We will always attempt to present fully nonlinear solutions without restricting assumptions on the smallness of some parameters. Our techniques are often numerical. However, it is the belief of the author that a deep understanding of the structure of the solutions cannot be gained by brute-force numerical approaches. It is crucial to combine numerical methods with analytical techniques, especially when singularities are present.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Jean-Marc Vanden-Broeck, University College London
  • Book: Gravity–Capillary Free-Surface Flows
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511730276.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Jean-Marc Vanden-Broeck, University College London
  • Book: Gravity–Capillary Free-Surface Flows
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511730276.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Jean-Marc Vanden-Broeck, University College London
  • Book: Gravity–Capillary Free-Surface Flows
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511730276.002
Available formats
×