Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-28T16:28:11.440Z Has data issue: false hasContentIssue false

5 - Isomerism

Published online by Cambridge University Press:  01 June 2010

Tom E. Peck
Affiliation:
Royal Hampshire County Hospital, Winchester
Sue Hill
Affiliation:
Southampton University Hospital
Tom Peck
Affiliation:
Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester
Mark Williams
Affiliation:
Consultant Anaesthetist, Royal Perth Hospital, Australia
Get access

Summary

Isomerism is the phenomenon by which molecules with the same atomic formulae have different structural arrangements – the component atoms of the molecule are the same, but they are arranged in a different configuration. There are two broad classes of isomerism:

  • Structural isomerism

  • Stereoisomerism

Structural isomerism

Molecules that are structural isomers have identical chemical formulae, but the order of atomic bonds differs. Depending on the degree of structural similarity between the isomers, comparative pharmacological effects may range from identical to markedly different. Isoflurane and enflurane are both volatile anaesthetic agents; prednisolone and aldosterone have significantly different activities, with the former having glucocorticoid and mineralocorticoid actions but the latter being predominantly a mineralocorticoid. Isoprenaline and methoxamine have different cardiovascular effects, with methoxamine acting predominantly via α-adrenoceptors and isoprenaline acting via β-adrenoceptors. Dihydrocodeine and dobutamine are structural isomers with very different pharmacological effects; it is little more than coincidence that their chemical formulae are identical (Figure 5.1).

Tautomerism

Tautomerism refers to the dynamic interchange between two forms of a molecular structure, often precipitated by a change in the physical environment. For example, midazolam, which is ionized in solution at pH 4, changes structure by forming a seven-membered unionized ring at physiological pH 7.4, rendering it lipid-soluble, which favours passage through the blood–brain barrier and increases speed of access to its active sites in the central nervous system (see Figure 17.1). Another common form of isomerism is the keto-enol transformation seen in both morphine and thiopental.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Isomerism
    • By Tom Peck, Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester, Mark Williams, Consultant Anaesthetist, Royal Perth Hospital, Australia
  • Tom E. Peck, Sue Hill
  • Book: Pharmacology for Anaesthesia and Intensive Care
  • Online publication: 01 June 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511722172.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Isomerism
    • By Tom Peck, Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester, Mark Williams, Consultant Anaesthetist, Royal Perth Hospital, Australia
  • Tom E. Peck, Sue Hill
  • Book: Pharmacology for Anaesthesia and Intensive Care
  • Online publication: 01 June 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511722172.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Isomerism
    • By Tom Peck, Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester, Mark Williams, Consultant Anaesthetist, Royal Perth Hospital, Australia
  • Tom E. Peck, Sue Hill
  • Book: Pharmacology for Anaesthesia and Intensive Care
  • Online publication: 01 June 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511722172.007
Available formats
×