Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T01:31:17.637Z Has data issue: false hasContentIssue false

16 - Attention, association and configuration: causal learning and inferential reasoning

from Part IV - Attentional, associative, configural and timing mechanisms

Published online by Cambridge University Press:  23 May 2010

Nestor Schmajuk
Affiliation:
Duke University, North Carolina
Get access

Summary

In this chapter, we apply the attentional–configural form of the SLG neural network model (see Chapter 15), which combines attentional, configural and associative mechanisms to the description of causal learning and inferential reasoning.

Causal learning

As described in Chapter 8, and according to associative theories (e.g. Rescorla & Wagner, 1972; the SLG model; and the SD/SLH model), blocking is the consequence of stimulus A winning the competition with X to predict the US, because the US is already predicted by A at the time of AX–US presentations. In contrast, according to the inferential process view (see Beckers et al., 2006), blocking is the consequence of an inferential process based on the assumptions of additivity and maximality. Maximality refers to the evidence that the Outcome produced by each potential cause has not reached the maximal possible value. Additivity denotes the fact that two causes, each one independently producing a given Outcome, produce a stronger Outcome when presented together.

Supporting the inferential explanation, recent experimental results have shown that, both in humans (Lovibond et al., 2003; Beckers et al., 2005) and rats (Beckers et al., 2006), blocking was stronger if the maximal premise (the outcome of each cause does not reach the maximum possible value) and the additivity premise (the outcomes of effective causes can be added) are satisfied. In contrast, Beckers et al. (2005) showed that the Rescorla–Wagner (1972) model incorrectly predicts more blocking with an intense (maximal) than with a moderate (submaximal) outcome.

Type
Chapter
Information
Mechanisms in Classical Conditioning
A Computational Approach
, pp. 403 - 414
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×