Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T15:44:01.276Z Has data issue: false hasContentIssue false

2 - Basic Description Logics

Published online by Cambridge University Press:  06 July 2010

Franz Baader
Affiliation:
Technische Universität, Dresden
Diego Calvanese
Affiliation:
Freie Universität Bozen, Bolzano
Deborah L. McGuinness
Affiliation:
Rensselaer Polytechnic Institute, New York
Daniele Nardi
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Peter F. Patel-Schneider
Affiliation:
AT&T Bell Laboratories, New Jersey
Get access

Summary

Abstract

This chapter provides an introduction to Description Logics as a formal language for representing knowledge and reasoning about it. It first gives a short overview of the ideas underlying Description Logics. Then it introduces syntax and semantics, covering the basic constructors that are used in systems or have been introduced in the literature, and the way these constructors can be used to build knowledge bases. Finally, it defines the typical inference problems, shows how they are interrelated, and describes different approaches for effectively solving these problems. Some of the topics that are only briefly mentioned in this chapter will be treated in more detail in subsequent chapters.

Introduction

As sketched in the previous chapter, Description Logics is the most recent name for a family of knowledge representation (KR) formalisms that represent the knowledge of an application domain (the “world”) by first defining the relevant concepts of the domain (its terminology), and then using these concepts to specify properties of objects and individuals occurring in the domain (the world description). As the name Description Logics indicates, one of the characteristics of these languages is that, unlike some of their predecessors, they are equipped with a formal, logic-based semantics. Another distinguished feature is the emphasis on reasoning as a central service: reasoning allows one to infer implicitly represented knowledge from the knowledge that is explicitly contained in the knowledge base.

Type
Chapter
Information
The Description Logic Handbook
Theory, Implementation and Applications
, pp. 47 - 104
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×