Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T23:28:34.106Z Has data issue: false hasContentIssue false

401. The Theory of the Helmholtz Resonator

Published online by Cambridge University Press:  05 July 2011

Get access

Summary

The ideal form of Helmholtz resonator is a cavernous space, almost enclosed by a thin, immovable wall, in which there is a small perforation establishing a communication between the interior and exterior gas. An approximate theory, based upon the supposition that the perforation is small, and consequently that the wave-length of the aërial vibration is great, is due to Helmholtz, who arrived at definite results for perforations whose outline is circular or elliptic. A simplified, and in some respects generalised, treatment was given in my paper on “Resonance.” In the extreme case of a wavelength sufficiently great, the kinetic energy of the vibration is that of the gas near the mouth as it moves in and out, much as an incompressible fluid might do, and the potential energy is that of the almost uniform compressions and rarefactions of the gas in the interior. The latter is a question merely of the volume S of the cavity and of the quantity of gas which has passed, but the calculation of the kinetic energy presents difficulties which have been only partially overcome. In the case of simple apertures in the thin wall (regarded as plane), only circular and elliptic forms admit of complete treatment. The mathematical problem is the same as that of finding the electrostatic capacity of a thin conducting plate having the form of the aperture, and supposed to be situated in the open.

The project of a stricter treatment of the problem, in the case of a spherical wall and an aperture of circular outline, has been in my mind more than 40 years, partly with the hope of reaching a closer approximation, and partly because some mathematicians have found the former method unsatisfactory, or, at any rate, difficult to follow.

Type
Chapter
Information
Scientific Papers , pp. 365 - 375
Publisher: Cambridge University Press
Print publication year: 2009
First published in: 1920

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×