Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T23:21:53.686Z Has data issue: false hasContentIssue false

ART. 308 - On the Influence of Collisions and of the Motion of Molecules in the Line of Sight, upon the Constitution of a Spectrum Line

Published online by Cambridge University Press:  05 December 2011

Get access

Summary

Apart from the above and other causes of disturbance, a line in the spectrum of a radiating gas would be infinitely narrow. A good many years ago, in connection with some estimates by Ebert, I investigated the widening of a line in consequence of the motion of molecules in the line of sight, taking as a basis Maxwell's well-known law respecting the distribution of velocities among colliding molecules, and I calculated the number of interference-bands to be expected, upon a certain supposition as to the degree of contrast between dark and bright parts necessary for visibility. In this investigation no regard was paid to the collisions; the vibrations issuing from each molecule being supposed to be maintained with complete regularity for an indefinite time.

Although little is known with certainty respecting the genesis of radiation, it has long been thought that collisions act as another source of disturbance. The vibrations of a molecule are supposed to remain undisturbed while a free path is described, but to be liable to sudden and arbitrary alteration of phase and amplitude when another molecule is encountered. A limitation in the number of vibrations executed with regularity necessarily implies a certain indeterminateness in the frequency, that is a dilatation of the spectrum line. In its nature this effect is independent of the Doppler effect—for example, it will be diminished relatively to the latter if the molecules are smaller; but the problem naturally arises of calculating the conjoint action of both causes upon the constitution of a spectrum line.

Type
Chapter
Information
Scientific Papers , pp. 257 - 261
Publisher: Cambridge University Press
Print publication year: 2009
First published in: 1912

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×