Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T13:32:16.175Z Has data issue: false hasContentIssue false

4 - Cable theory and dendrites

Published online by Cambridge University Press:  03 May 2010

Sergiy Mikhailovich Korogod
Affiliation:
Dniepropetrovsk National University, Ukraine
Suzanne Tyč-Dumont
Affiliation:
CNRS, Marseille
Get access

Summary

A relevant mathematical tool to describe the bioelectricity in the neuronal dendrites is cable theory, which is based on application of the so-called cable equation to the core conductor model (Kernleitermodel) of the dendritic structure conducting currents and voltages. Exhaustive description of the cable theory and its application to analysis of electrical phenomena in the dendrites is provided in several excellent works (Taylor, 1963; Jack et al., 1975; Rall, 1977; Rall and Agmon-Snir, 1999; Koch, 1999). In this chapter, the basics of this theory are given with accentuation of the issues important for understanding the material in the following chapters.

Cable theory requires space in which electrical parameters are distributed. The dendritic space is shaped by the membrane into a tube-like branching structure. The tube diameter ranges from several micrometres (or even a fraction of a micrometre) to several tens of micrometers in diameter and the tube length can read hundreds or even thousands of micrometres. These dimensions of the dendritic space are much greater than the thickness of the membrane across which the charges are spatially separated to create the electric field. What happens in the space along and over the membrane tubes? This depends on spatial properties of the electrical field in this larger domain. If the charge separation and the electric field produced by molecular machines is different at different locations in the cable, then electrical voltage occurs and the corresponding current flows between these locations. The routes in the space along which the current flows are shaped by the dendritic structure. We focus on the electrical events in the dendritic cables.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jack, J. J. B., Noble, D. and Tsien, R. W. (1975). Electric Current Flow in Excitable Cells, Oxford: Oxford University Press.Google Scholar
Koch, C. (1999). Biophysics of Computation: Information Processing in Single Neurons, New York, Oxford: Oxford University Press.
Rall, W. (1977). Core conductor theory and cable properties of neurons. In Kandel, E. R., Brookhardt, J. M. and Mountcastle, V. B. (eds.), The Handbook of Physiology. The Nervous System. Cellular Biology of Neurons, Vol. 1, p. 39–97, Bethesda: American Physiological Society.
Rall, W. and Agmon-Snir, H. (1999). Cable theory for dendritic neurons. In Koch, C. and Segev, I. (eds.), Methods in Neuronal Modeling. From Ions to Networks, 2nd edn., p. 27–92, Cambridge, London: MIT Press.
Taylor, R. E. (1963). Cable theory. In Nastuk, W. L. (ed.), Physical Techniques in Biological Research, Vol. 6, p. 219–262, New York: Academic Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×