Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-06T11:43:21.228Z Has data issue: false hasContentIssue false

7 - Pro- and anti-apoptotic strategies of viruses

Published online by Cambridge University Press:  03 March 2010

Helmut Fickenscher
Affiliation:
Abteilung Virologie, Hygiene-Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Bernhard Fleckenstein
Affiliation:
Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
Armin Ensser
Affiliation:
Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
Martin Holcik
Affiliation:
University of Ottawa
Eric C. LaCasse
Affiliation:
University of Ottawa
Alex E. MacKenzie
Affiliation:
University of Ottawa
Robert G. Korneluk
Affiliation:
University of Ottawa
Get access

Summary

Introduction

Apoptosis (Kerr et al., 1972) or programmed cell death is a highly regulated and precisely coordinated program permitting the specific elimination of target cells, while neighboring cells are hardly affected. The remains of the apoptotic cells are then readily digested by phagocytes. Apoptosis is an important function in cell differentiation, embryonal development, and proliferation control. In the immune system, apoptosis is the key to the deletion of auto-reactive lymphocytes, to the regulation and restriction of immune responses, and to the elimination of cells infected by intracellular pathogens such as viruses. Consequently, defects in apoptotic pathways are associated with tumor development, autoimmune disease, immunodeficiency, and severe infections. The efficient and cautious elimination of virus-infected cells by apoptosis also degrades viral nucleic acids, even of genomically integrated proviruses. Thus, non-infectious fragments are produced, preventing the uptake of functional viral genomes by neighboring cells or phagocytes. Simultaneously, apoptotic protein material can be processed by phagocytes and other antigen-presenting cells for the presentation to helper and effector immune cells. While pro-apoptotic mechanisms are utilized by some viruses in their life cycle – e.g. for the efficient release of infectious particles – many viruses have developed anti-apoptotic functions for preventing the premature termination of their replicative cycle and for establishing latent persistence (Hay and Kannourakis, 2002). Some viruses even induce apoptosis for attacking immune cells which are directed against the virus-infected cells. Viruses utilize proteins with functional and often structural homology to cellular factors involved in apoptosis.

Type
Chapter
Information
Apoptosis in Health and Disease
Clinical and Therapeutic Aspects
, pp. 219 - 245
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. M. and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science, 281, 1322–6CrossRefGoogle ScholarPubMed
Afonso, C. L., Neilan, J. G., Kutish, G. F., and Rock, D. L. (1996). An African swine fever virus Bcl-2 homolog, 5-HL, suppresses apoptotic cell death. J. Virol., 70, 4858–63Google ScholarPubMed
Ameisen, J. C. and Capron, A. (1991). Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol. Today, 12, 102–5CrossRefGoogle ScholarPubMed
Aubert, M. and Blaho, J. A. (1999). The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J. Virol., 73, 2803–13Google ScholarPubMed
Banda, N. K., Bernier, J., Kurahara, D. K.et al. (1992). Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. J. Exp. Med., 176, 1099–106CrossRefGoogle ScholarPubMed
Banks, D. P., Plescia, J., Altieri, D. C.et al. (2000). Survivin does not inhibit caspase-3 activity. Blood, 96, 4002–3Google Scholar
Barry, M., Hnatiuk, S., Mossman, K., Lee, S. F., Boshkov, L., and McFadden, G. (1997). The myxoma virus M-T4 gene encodes a novel RDEL-containing protein that is retained within the endoplasmic reticulum and is important for the productive infection of lymphocytes. Virology, 239, 360–77CrossRefGoogle ScholarPubMed
Basile, J. R., Zacny, V., and Munger, K. (2001). The cytokines tumor necrosis factor-alpha (TNF-alpha) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein. J. Biol. Chem., 276, 22522–8CrossRefGoogle ScholarPubMed
Bellows, D. S., Chau, B. N., Lee, P., Lazebnik, Y., Burns, W. H., and Hardwick, J. M. (2000). Antiapoptotic herpesvirus Bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins. J. Virol., 74, 5024–31CrossRefGoogle ScholarPubMed
Bellows, D. S., Howell, M., Pearson, C., Hazlewood, S. A., and Hardwick, J. M. (2002). Epstein-Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J. Virol., 76, 2469–79CrossRefGoogle ScholarPubMed
Benedict, C. A., Norris, P. S., Prigozy, T. I.et al. (2001). Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2. J. Biol. Chem., 276, 3270–8CrossRefGoogle ScholarPubMed
Bergmann, M., Garcia-Sastre, A., Carnero, E.et al. (2000). Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J. Virol., 74, 6203–6CrossRefGoogle ScholarPubMed
Bertin, J., Armstrong, R. C., Ottilie, S.et al. (1997). Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc. Natl. Acad. Sci. USA, 94, 1172–6CrossRefGoogle ScholarPubMed
Bitzer, M., Armeanu, S., Prinz, F.et al. (2002). Caspase-8 and Apaf-1-independent caspase-9 activation in Sendai virus-infected cells. J. Biol. Chem., 277, 29817–24CrossRefGoogle ScholarPubMed
Bitzer, M., Prinz, F., Bauer, M.et al. (1999). Sendai virus infection induces apoptosis through activation of caspase-8 (FLICE) and caspase-3 (CPP32). J. Virol., 73, 702–8Google Scholar
Boya, P., Roques, B., and Kroemer, G. (2001). Viral and bacterial proteins regulating apoptosis at the mitochondrial level. EMBO J., 20, 4325–31CrossRefGoogle ScholarPubMed
Brand, S. R., Kobayashi, R., and Mathews, M. B. (1997). The Tat protein of human immunodeficiency virus type 1 is a substrate and inhibitor of the interferon-induced, virally activated protein kinase, PKR. J. Biol. Chem., 272, 8388–95CrossRefGoogle ScholarPubMed
Bröker, B. M., Kraft, M. S., Klauenberg, U.et al. (1997). Activation induces apoptosis in herpesvirus saimiri-transformed T cells independent of CD95 (Fas, APO-1). Eur. J. Immunol., 27, 2774–80CrossRefGoogle Scholar
Brown, J., Higo, H., McKalip, A., and Herman, B. (1997). Human papillomavirus (HPV) 16 E6 sensitizes cells to atractyloside-induced apoptosis: role of p53, ICE-like proteases and the mitochondrial permeability transition. J. Cell Biochem., 66, 245–553.0.CO;2-G>CrossRefGoogle ScholarPubMed
Burgert, H. G., Ruzsics, Z., Obermeier, S., Hilgendorf, A., Windheim, M., and Elsing, A. (2002). Subversion of host defense mechanisms by adenoviruses. Curr. Top. Microbiol. Immunol., 269, 273–318Google ScholarPubMed
Castedo, M., Roumier, T., Blanco, J.et al. (2002). Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO J., 21, 4070–80CrossRefGoogle ScholarPubMed
Chacon, M. R., Almazan, F., Nogal, M. L., Vinuela, E., and Rodriguez, J. F. (1995). The African swine fever virus IAP homolog is a late structural polypeptide. Virology, 214, 670–4CrossRefGoogle ScholarPubMed
Chaudhary, P. M., Eby, M. T., Jasmin, A., Kumar, A., Liu, L., and Hood, L. (2000). Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene, 19, 4451–60CrossRefGoogle ScholarPubMed
Chaudhary, P. M., Jasmin, A., Eby, M. T., and Hood, L. (1999). Modulation of the NF-kappa B pathway by virally encoded death effector domains-containing proteins. Oncogene, 18, 5738–46CrossRefGoogle ScholarPubMed
Chen, W., Calvo, P. A., Malide, D.et al. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med., 7, 1306–12CrossRefGoogle ScholarPubMed
Cheng, E. H., Nicholas, J., Bellows, D. S.et al. (1997). A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl. Acad. Sci. USA, 94, 690–4CrossRefGoogle ScholarPubMed
Chou, J. and Roizman, B. (1992). The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programmed cell death in neuronal cells. Proc. Natl. Acad. Sci. USA, 89, 3266–70CrossRefGoogle Scholar
Ciminale, V., Zotti, L., D'Agostino, D. M.et al. (1999). Mitochondrial targeting of the p13II protein coded by the ⅹ-II ORF of human T-cell leukemia/lymphotropic virus type I (HTLV-I). Oncogene, 18, 4505–14CrossRefGoogle Scholar
Clarke, P., Meintzer, S. M., Gibson, S.et al. (2000). Reovirus-induced apoptosis is mediated by TRAIL. J. Virol., 74, 8135–9CrossRefGoogle ScholarPubMed
Clem, R. J., Fechheimer, M., and Miller, L. K. (1991). Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science, 254, 1388–90CrossRefGoogle ScholarPubMed
Crook, N. E., Clem, R. J., and Miller, L. K. (1993). An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol., 67, 2168–74Google ScholarPubMed
D'Agostino, D. M., Ranzato, L., Arrigoni, G.et al. (2002). Mitochondrial alterations induced by the p13II protein of human T-cell leukemia virus type 1. Critical role of arginine residues. J. Biol. Chem., 277, 34424–33CrossRefGoogle ScholarPubMed
Danen-Van Oorschot, A. A., Fischer, D. F., Grimbergen, J. M.et al. (1997). Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc. Natl. Acad. Sci. USA, 94, 5843–7CrossRefGoogle ScholarPubMed
Davis, M. A., Stürzl, M. A., Blasig, C.et al. (1997). Expression of human herpesvirus 8-encoded cyclin D in Kaposi's sarcoma spindle cells. J. Natl. Cancer Inst., 89, 1868–74CrossRefGoogle ScholarPubMed
Debbas, M. and White, E. (1993). Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev., 7, 546–54CrossRefGoogle ScholarPubMed
Delhem, N., Sabile, A., Gajardo, R.et al. (2001). Activation of the interferon-inducible protein kinase PKR by hepatocellular carcinoma derived-hepatitis C virus core protein. Oncogene, 20, 5836–45CrossRefGoogle ScholarPubMed
Derfuss, T. and Meinl, E. (2002). Herpesviral proteins regulating apoptosis. Curr. Top. Microbiol. Immunol., 269, 7–72Google ScholarPubMed
Derfuss, T., Fickenscher, H., Kraft, M. S.et al. (1998). Antiapoptotic activity of the herpesvirus saimiri-encoded Bcl-2 homolog: stabilization of mitochondria and inhibition of caspase-3-like activity. J. Virol., 72, 5897–904Google ScholarPubMed
Diao, J., Khine, A. A., Sarangi, F.et al. (2001). X protein of hepatitis B virus inhibits Fas-mediated apoptosis and is associated with up-regulation of the SAPK/JNK pathway. J. Biol. Chem., 276, 8328–40CrossRefGoogle ScholarPubMed
Djerbi, M., Screpanti, V., Catrina, A. I., Bogen, B., Biberfeld, P., and Grandien, A. (1999). The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J. Exp. Med., 190, 1025–32CrossRefGoogle ScholarPubMed
Dobbelstein, M. and Shenk, T. (1996). Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product. J. Virol., 70, 6479–85Google ScholarPubMed
Dumont, A., Hehner, S. P., Hofmann, T. G., Ueffing, M., Droge, W., and Schmitz, M. L. (1999). Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene, 18, 747–57CrossRefGoogle ScholarPubMed
Ensser, A., Pflanz, R., and Fleckenstein, B. (1997). Primary structure of the alcelaphine herpes virus 1 genome. J. Virol., 71, 6517–25Google Scholar
Eskes, R., Desagher, S., Antonsson, B., and Martinou, J. C. (2000). Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell Biol., 20, 929–35CrossRefGoogle ScholarPubMed
Everett, H., Barry, M., Lee, S. F.et al. (2000). M11L: a novel mitochondria-localized protein of myxoma virus that blocks apoptosis of infected leukocytes. J. Exp. Med., 191, 1487–98CrossRefGoogle ScholarPubMed
Fackler, O. T. and Baur, A. S. (2002). Live and let die: Nef functions beyond HIV replication. Immunity, 16, 493–7CrossRefGoogle ScholarPubMed
Friborg, J. Jr., Kong, W., Hottiger, M. O., and Nabel, G. J. (1999). p53 inhibition by the LANA protein of KSHV protects against cell death. Nature, 402, 889–94CrossRefGoogle ScholarPubMed
Friedman, J. M. and Horwitz, M. S. (2002). Inhibition of tumor necrosis factor alpha-induced NF-kappa B activation by the adenovirus E3–10.4/14.5K complex. J. Virol., 76, 5515–21CrossRefGoogle ScholarPubMed
Gale, M. Jr., Blakely, C. M., Kwieciszewski, B.et al. (1998). Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol. Cell Biol., 18, 5208–18CrossRefGoogle ScholarPubMed
Gale, M. Jr., Korth, M. J., Tang, N. M.et al. (1997). Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology, 230, 217–27CrossRefGoogle ScholarPubMed
Gale, M. Jr., Kwieciszewski, B., Dossett, M., Nakao, H., and Katze, M. G. (1999). Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase. J. Virol., 73, 6506–16Google ScholarPubMed
Galvan, V. and Roizman, B. (1998). Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc. Natl. Acad. Sci. USA, 95, 3931–6CrossRefGoogle Scholar
Galvan, V., Brandimarti, R., and Roizman, B. (1999). Herpes simplex virus 1 blocks caspase-3-independent and caspase-dependent pathways to cell death. J. Virol., 73, 3219–26Google ScholarPubMed
Gangappa, S., Dyk, L. F., Jewett, T. J., Speck, S. H., and Virgin, H. W., 4th (2002). Identification of the in vivo role of a viral bcl-2. J. Exp. Med., 195, 931–40CrossRefGoogle ScholarPubMed
Garvey, T. L., Bertin, J., Siegel, R. M., Wang, G. H., Lenardo, M. J., and Cohen, J. I. (2002). Binding of FADD and caspase-8 to molluscum contagiosum virus MC159 v-FLIP is not sufficient for its antiapoptotic function. J. Virol., 76, 697–706CrossRefGoogle Scholar
Geleziunas, R., Xu, W., Takeda, K., Ichijo, H., and Greene, W. C. (2001). HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature, 410, 834–8CrossRefGoogle ScholarPubMed
Gil, J., Rullas, J., Alcami, J., and Esteban, M. (2001). MC159L protein from the poxvirus molluscum contagiosum virus inhibits NF-kappaB activation and apoptosis induced by PKR. J. Gen. Virol., 82, 3027–34CrossRefGoogle ScholarPubMed
Glykofrydes, D., Niphuis, H., Kuhn, E. M.et al. (2000). Herpesvirus saimiri vFLIP provides an antiapoptotic function but is not essential for viral replication, transformation, or pathogenicity. J. Virol., 74, 11919–27CrossRefGoogle ScholarPubMed
Goldmacher, V. S., Bartle, L. M., Skaletskaya, A.et al. (1999). A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl. Acad. Sci. USA, 96, 12536–41CrossRefGoogle Scholar
Gooding, L. R., Ranheim, T. S., Tollefson, A. E.et al. (1991). The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J. Virol., 65, 4114–23Google Scholar
Han, J., Modha, D., and White, E. (1998). Interaction of E1B 19K with Bax is required to block Bax-induced loss of mitochondrial membrane potential and apoptosis. Oncogene, 17, 2993–3005CrossRefGoogle ScholarPubMed
Hay, S. and Kannourakis, G. (2002). A time to kill: viral manipulation of the cell death program. J. Gen. Virol., 83, 1547–64CrossRefGoogle ScholarPubMed
Henderson, S., Huen, D., Rowe, M., Dawson, C., Johnson, G., and Rickinson, A. (1993). Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc. Natl. Acad. Sci. USA, 90, 8479–83CrossRefGoogle Scholar
Hnatiuk, S., Barry, M., Zeng, W.et al. (1999). Role of the C-terminal RDEL motif of the myxoma virus M-T4 protein in terms of apoptosis regulation and viral pathogenesis. Virology, 263, 290–306CrossRefGoogle ScholarPubMed
Hu, S., Vincenz, C., Buller, M., and Dixit, V. M. (1997). A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis. J. Biol. Chem., 272, 9621–4CrossRefGoogle ScholarPubMed
Imani, F. and Jacobs, B. L. (1988). Inhibitory activity for the interferon-induced protein kinase is associated with the reovirus serotype 1 sigma 3 protein. Proc. Natl. Acad. Sci. USA, 85, 7887–91CrossRefGoogle ScholarPubMed
Inoue, Y., Yasukawa, M., and Fujita, S. (1997). Induction of T-cell apoptosis by human herpesvirus 6. J. Virol., 71, 3751–9Google ScholarPubMed
Iseni, F., Garcin, D., Nishio, M., Kedersha, N., Anderson, P., and Kolakofsky, D. (2002). Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis. EMBO J., 21, 5141–50CrossRefGoogle ScholarPubMed
Jackson, S., Harwood, C., Thomas, M., Banks, L., and Storey, A. (2000). Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev., 14, 3065–73CrossRefGoogle Scholar
Jacotot, E., Ravagnan, L., Loeffler, M.et al. (2000). The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med., 191, 33–46CrossRefGoogle Scholar
Kaufmann, S. H. and Hengartner, M. O. (2001). Programmed cell death: alive and well in the new millennium. Trends Cell Biol., 11, 526–34CrossRefGoogle ScholarPubMed
Keller, S. A., Schattner, E. J., and Cesarman, E. (2000). Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood, 96, 2537–42Google ScholarPubMed
Kenney, J. L., Guinness, M. E., Curiel, T., and Lacy, J. (1998). Antisense to the Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) suppresses LMP-1 and bcl-2 expression and promotes apoptosis in EBV-immortalized B cells. Blood, 92, 1721–7Google ScholarPubMed
Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 26, 239–57CrossRefGoogle ScholarPubMed
Kolesnitchenko, V., Wahl, L. M., Tian, H.et al. (1995). Human immunodeficiency virus 1 envelope-initiated G2-phase programmed cell death. Proc. Natl. Acad. Sci. USA, 92, 11889–93CrossRefGoogle ScholarPubMed
Koseki, T., Inohara, N., Chen, S.et al. (1999). CIPER, a novel NF kappaB-activating protein containing a caspase recruitment domain with homology to herpesvirus-2 protein E10. J. Biol. Chem., 274, 9955–61CrossRefGoogle ScholarPubMed
Kraft, M. S., Henning, G., Fickenscher, H.et al. (1998). Herpesvirus saimiri transforms human T-cell clones to stable growth without inducing resistance to apoptosis. J. Virol., 72, 3138–45Google ScholarPubMed
Krueger, A., Baumann, S., Krammer, P. H., and Kirchhoff, S. (2001). FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol. Cell Biol., 21, 8247–54CrossRefGoogle ScholarPubMed
Kruman, I. I., Nath, A., and Mattson, M. P. (1998). HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp. Neurol., 154, 276–88CrossRefGoogle ScholarPubMed
Lan, K. H., Sheu, M. L., Hwang, S. J.et al. (2002). HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene, 21, 4801–11CrossRefGoogle ScholarPubMed
Lee, J. M., Lee, K. H., Weidner, M., Osborne, B. A., and Hayward, S. D. (2002). Epstein-Barr virus EBNA2 blocks Nur77-mediated apoptosis. Proc. Natl. Acad. Sci. USA, 99, 11878–83CrossRefGoogle ScholarPubMed
Lee, M. A. and Yates, J. L. (1992). BHRF1 of Epstein-Barr virus, which is homologous to human proto-oncogene bcl2, is not essential for transformation of B cells or for virus replication in vitro. J. Virol., 66, 1899–906Google ScholarPubMed
Lee, S. B. and Esteban, M. (1994). The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology, 199, 491–6CrossRefGoogle ScholarPubMed
Leopardi, R. and Roizman, B. (1996). The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc. Natl. Acad. Sci. USA, 93, 9583–7CrossRefGoogle ScholarPubMed
Leopardi, R., Sant, C., and Roizman, B. (1997). The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc. Natl. Acad. Sci. USA, 94, 7891–6CrossRefGoogle ScholarPubMed
Levine, B., Goldman, J. E., Jiang, H. H., Griffin, D. E., and Hardwick, J. M. (1996). Bcl-2 protects mice against fatal alphavirus encephalitis. Proc. Natl. Acad. Sci. USA, 93, 4810–15CrossRefGoogle ScholarPubMed
Levine, B., Huang, Q., Isaacs, J. T., Reed, J. C., Griffin, D. E., and Hardwick, J. M. (1993). Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature, 361, 739–42CrossRefGoogle ScholarPubMed
Livne, A., Shtrichman, R., and Kleinberger, T. (2001). Caspase activation by adenovirus e4orf4 protein is cell line specific and is mediated by the death receptor pathway. J. Virol., 75, 789–98CrossRefGoogle ScholarPubMed
Liu, L., Eby, M. T., Rathore, N., Sinha, S. K., Kumar, A., and Chaudhary, P. M. (2002). The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the Ikappa B kinase complex. J. Biol. Chem., 277, 13745–51CrossRefGoogle ScholarPubMed
Macho, A., Calzado, M. A., Jimenez-Reina, L., Ceballos, E., Leon, J., and Munoz, E. (1999). Susceptibility of HIV-1-TAT transfected cells to undergo apoptosis: biochemical mechanisms. Oncogene, 18, 7543–51CrossRefGoogle ScholarPubMed
Marchini, A., Tomkinson, B., Cohen, J. I., and Kieff, E. (1991). BHRF1, the Epstein-Barr virus gene with homology to Bcl2, is dispensable for B-lymphocyte transformation and virus replication. J. Virol., 65, 5991–6000Google Scholar
Marshall, W. L., Yim, C., Gustafson, E.et al. (1999). Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. J. Virol., 73, 5181–5Google ScholarPubMed
Marusawa, H., Hijikata, M., Chiba, T., and Shimotohno, K. (1999). Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor alpha-mediated apoptosis via NF-kappaB activation. J. Virol., 73, 4713–20Google ScholarPubMed
McNees, A. and Gooding, L. (2002). Adenoviral inhibitors of apoptotic cell death. Virus Res., 88, 87–101CrossRefGoogle ScholarPubMed
McNees, A. L., Garnett, C. T., and Gooding, L. R. (2002). The adenovirus E3 RID complex protects some cultured human T and B lymphocytes from Fas-induced apoptosis. J. Virol., 76, 9716–23CrossRefGoogle Scholar
Meinl, E., Fickenscher, H., Thome, M., Tschopp, J., and Fleckenstein, B. (1998). Anti-apoptotic strategies of lymphotropic viruses. Immunol. Today, 19, 474–9CrossRefGoogle ScholarPubMed
Meyaard, L., Otto, S. A., Jonker, R. R., Mijnster, M. J., Keet, R. P., and Miedema, F. (1992). Programmed death of T cells in HIV-1 infection. Science, 257, 217–19CrossRefGoogle ScholarPubMed
Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K., and Tschopp, J. (2001). NF-kappaB signals induce the expression of c-FLIP. Mol. Cell Biol., 21, 5299–305CrossRefGoogle ScholarPubMed
Moffatt, S., Yaegashi, N., Tada, K., Tanaka, N., and Sugamura, K. (1998). Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. J. Virol., 72, 3018–28Google ScholarPubMed
Moore, M., Horikoshi, N., and Shenk, T. (1996). Oncogenic potential of the adenovirus E4orf6 protein. Proc. Natl. Acad. Sci. USA, 93, 11295–301CrossRefGoogle ScholarPubMed
Mori, N., Yamada, Y., Ikeda, S.et al. (2002). Bay11–7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood, 100, 1828–34Google ScholarPubMed
Munger, J. and Roizman, B. (2001). The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc. Natl. Acad. Sci. USA, 98, 10410–15CrossRefGoogle ScholarPubMed
Nanbo, A., Inoue, K., Adachi-Takasawa, K., and Takada, K. (2002). Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt's lymphoma. EMBO J., 21, 954–65CrossRefGoogle ScholarPubMed
Nauenburg, S., Zwerschke, W., and Jansen-Dürr, P. (2001). Induction of apoptosis in cervical carcinoma cells by peptide aptamers that bind to the HPV-16 E7 oncoprotein. FASEB J., 15, 592–4CrossRefGoogle ScholarPubMed
Nava, V. E., Cheng, E. H., Veliuona, M.et al. (1997). Herpesvirus saimiri encodes a functional homolog of the human bcl-2 oncogene. J. Virol., 71, 4118–22Google ScholarPubMed
Neilan, J. G., Lu, Z., Afonso, C. L., Kutish, G. F., Sussman, M. D., and Rock, D. L. (1993). An African swine fever virus gene with similarity to the proto-oncogene bcl-2 and the Epstein-Barr virus gene BHRF1. J. Virol., 67, 4391–4Google ScholarPubMed
Neilan, J. G., Lu, Z., Kutish, G. F.et al. (1997). A BIR motif containing gene of African swine fever virus, 4CL, is nonessential for growth in vitro and viral virulence. Virology, 230, 252–64CrossRefGoogle ScholarPubMed
Nogal, M. L., Gonzalez de Buitrago, G., Rodriguez, C.et al. (2001). African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J. Virol., 75, 2535–43CrossRefGoogle ScholarPubMed
Ohyama, T., Tsukumo, S., Yajima, N., Sakamaki, K., and Yonehara, S. (2000). Reduction of thymocyte numbers in transgenic mice expressing viral FLICE-inhibitory protein in a Fas-independent manner. Microbiol. Immunol., 44, 289–97CrossRefGoogle Scholar
Perez, D. and White, E. (2000). TNF-alpha signals apoptosis through a bid-dependent conformational change in Bax that is inhibited by E1B 19K. Mol. Cell, 6, 53–63CrossRefGoogle ScholarPubMed
Poyet, J. L., Srinivasula, S. M., and Alnemri, E. S. (2001). vCLAP, a caspase-recruitment domain-containing protein of equine herpesvirus-2, persistently activates the I kappa B kinases through oligomerization of IKKgamma. J. Biol. Chem., 276, 3183–7CrossRefGoogle ScholarPubMed
Rahmani, Z., Huh, K. W., Lasher, R., and Siddiqui, A. (2000). Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J. Virol., 74, 2840–6CrossRefGoogle ScholarPubMed
Rasola, A., Gramaglia, D., Boccaccio, C., and Comoglio, P. M. (2001). Apoptosis enhancement by the HIV-1 Nef protein. J. Immunol., 166, 81–8CrossRefGoogle ScholarPubMed
Reading, P. C., Khanna, A., and Smith, G. L. (2002). Vaccinia virus CrmE encodes a soluble and cell surface tumor necrosis factor receptor that contributes to virus virulence. Virology, 292, 285–98CrossRefGoogle ScholarPubMed
Rivas, C., Thlick, A. E., Parravicini, C., Moore, P. S., and Chang, Y. (2001). Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol., 75, 429–38CrossRefGoogle ScholarPubMed
Rothe, M., Pan, M. G., Henzel, W. J., Ayres, T. M., and Goeddel, D. V. (1995). The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell, 83, 1243–52CrossRefGoogle ScholarPubMed
Sabbatini, P., Lin, J., Levine, A. J., and White, E. (1995). Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev., 9, 2184–92CrossRefGoogle ScholarPubMed
Sadzot-Delvaux, C., Thonard, P., Schoonbroodt, S., Piette, J., and Rentier, B. (1995). Varicella-zoster virus induces apoptosis in cell culture. J. Gen. Virol., 76, 2875–9CrossRefGoogle ScholarPubMed
Salvesen, G. S. and Duckett, C. S. (2002). IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol., 3, 401–10CrossRefGoogle ScholarPubMed
Sarid, R., Ben-Moshe, T., Kazimirsky, G.et al. (2001). vFLIP protects PC-12 cells from apoptosis induced by Sindbis virus: implications for the role of TNF-alpha. Cell Death Differ., 8, 1224–31CrossRefGoogle ScholarPubMed
Scaffidi, C., Fulda, S., Srinivasan, A.et al. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J., 17, 1675–87CrossRefGoogle ScholarPubMed
Scheffner, M., Huibregtse, J. M., Vierstra, R. D., and Howley, P. M. (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell, 75, 495–505CrossRefGoogle ScholarPubMed
Schreiber, M., Sedger, L., and McFadden, G. (1997). Distinct domains of M-T2, the myxoma virus tumor necrosis factor (TNF) receptor homolog, mediate extracellular TNF binding and intracellular apoptosis inhibition. J. Virol., 71, 2171–81Google ScholarPubMed
Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S., and Peter, M. E. (1998). Apoptosis signaling by death receptors. Eur. J. Biochem., 254, 439–59CrossRefGoogle ScholarPubMed
Sciortino, M. T., Perri, D., Medici, M. A., Foti, M., Orlandella, B. M., and Mastino, A. (2000). The gamma-2-herpesvirus bovine herpesvirus 4 causes apoptotic infection in permissive cell lines. Virology, 277, 27–39CrossRefGoogle ScholarPubMed
Secchiero, P., Flamand, L., Gibellini, D.et al. (1997). Human herpesvirus 7 induces CD4(+) T-cell death by two distinct mechanisms: necrotic lysis in productively infected cells and apoptosis in uninfected or nonproductively infected cells. Blood, 90, 4502–12Google ScholarPubMed
Shisler, J. L. and Moss, B. (2001). Molluscum contagiosum virus inhibitors of apoptosis: the MC159 v-FLIP protein blocks Fas-induced activation of procaspases and degradation of the related MC160 protein. Virology, 282, 14–25CrossRefGoogle ScholarPubMed
Shisler, J., Yang, C., Walter, B., Ware, C. F., and Gooding, L. R. (1997). The adenovirus E3–10.4K/14.5K complex mediates loss of cell surface Fas (CD95) and resistance to Fas-induced apoptosis. J. Virol., 71, 8299–306Google ScholarPubMed
Skaletskaya, A., Bartle, L. M., Chittenden, T., McCormick, A. L., Mocarski, E. S., and Goldmacher, V. S. (2001). A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc. Natl. Acad. Sci. USA, 98, 7829–34CrossRefGoogle ScholarPubMed
Somasundaran, M., Sharkey, M., Brichacek, B.et al. (2002). Evidence for a cytopathogenicity determinant in HIV-1 Vpr. Proc. Natl. Acad. Sci. USA, 99, 9503–8CrossRefGoogle ScholarPubMed
Srinivasula, S. M., Ahmad, M., Lin, J. H.et al. (1999). CLAP, a novel caspase recruitment domain-containing protein in the tumor necrosis factor receptor pathway, regulates NF-kappaB activation and apoptosis. J. Biol. Chem., 274, 17946–54CrossRefGoogle ScholarPubMed
Stehlik, C., Martin, R., Kumabashiri, I., Schmid, J. A., Binder, B. R., and Lipp, J. (1998). Nuclear factor (NF)-kappaB-regulated X-chromosome-linked IAP gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J. Exp. Med., 188, 211–16CrossRefGoogle ScholarPubMed
Strasser, A., Harris, A. W., Huang, D. C., Krammer, P. H., and Cory, S. (1995). Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J., 14, 6136–47Google ScholarPubMed
Stürzl, M., Hohenadl, C., Zietz, C.et al. (1999). Expression of K13/v-FLIP gene of human herpesvirus 8 and apoptosis in Kaposi's sarcoma spindle cells. J. Natl. Cancer Inst., 91, 1725–33CrossRefGoogle ScholarPubMed
Su, F. and Schneider, R. J. (1997). Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc. Natl. Acad. Sci. USA, 94, 8744–9CrossRefGoogle ScholarPubMed
Tarodi, B., Subramanian, T., and Chinnadurai, G. (1994). Epstein-Barr virus BHRF1 protein protects against cell death induced by DNA-damaging agents and heterologous viral infection. Virology, 201, 404–7CrossRefGoogle ScholarPubMed
Tepper, C. G. and Seldin, M. F. (1999). Modulation of caspase-8 and FLICE-inhibitory protein expression as a potential mechanism of Epstein-Barr virus tumorigenesis in Burkitt's lymphoma. Blood, 94, 1727–37Google ScholarPubMed
Tewari, M., Telford, W. G., Miller, R. A., and Dixit, V. M. (1995). CrmA, a poxvirus-encoded serpin, inhibits cytotoxic T-lymphocyte-mediated apoptosis. J. Biol. Chem., 270, 22705–8CrossRefGoogle ScholarPubMed
Thomas, M., Matlashewski, G., Pim, D., and Banks, L. (1996). Induction of apoptosis by p53 is independent of its oligomeric state and can be abolished by HPV-18 E6 through ubiquitin mediated degradation. Oncogene, 13, 265–73Google ScholarPubMed
Thome, M., Gaide, O., Micheau, O.et al. (2001). Equine herpesvirus protein E10 induces membrane recruitment and phosphorylation of its cellular homologue, bcl-10. J. Cell Biol., 152, 1115–22CrossRefGoogle ScholarPubMed
Thome, M., Martinon, F., Hofmann, K.et al. (1999). Equine herpesvirus-2 E10 gene product, but not its cellular homologue, activates NF-kappaB transcription factor and c-Jun N-terminal kinase. J. Biol. Chem., 274, 9962–8CrossRefGoogle Scholar
Thome, M., Schneider, P., Hofmann, K.et al. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 386, 517–21CrossRefGoogle ScholarPubMed
Thompson, D. A., Zacny, V., Belinsky, G. S.et al. (2001). The HPV E7 oncoprotein inhibits tumor necrosis factor alpha-mediated apoptosis in normal human fibroblasts. Oncogene, 20, 3629–40CrossRefGoogle ScholarPubMed
Tollefson, A. E., Toth, K., Doronin, K.et al. (2001). Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins. J. Virol., 75, 8875–87CrossRefGoogle ScholarPubMed
Tyler, K. L., Squier, M. K., Rodgers, S. E.et al. (1995). Differences in the capacity of reovirus strains to induce apoptosis are determined by the viral attachment protein sigma 1. J. Virol., 69, 6972–9Google ScholarPubMed
Ubol, S., Tucker, P. C., Griffin, D. E., and Hardwick, J. M. (1994). Neurovirulent strains of alphavirus induce apoptosis in bcl-2-expressing cells: role of a single amino acid change in the E2 glycoprotein. Proc. Natl. Acad. Sci. USA, 91, 5202–6CrossRefGoogle ScholarPubMed
Dyk, L. F., Virgin, H. W., 4th, and Speck, S. H. (2000). The murine gammaherpesvirus 68 v-cyclin is a critical regulator of reactivation from latency. J. Virol., 74, 7451–61Google ScholarPubMed
Wang, G. H., Bertin, J., Wang, Y.et al. (1997). Bovine herpesvirus 4 BORFE2 protein inhibits Fas- and tumor necrosis factor receptor 1-induced apoptosis and contains death effector domains shared with other gamma-2 herpesviruses. J. Virol., 71, 8928–32Google ScholarPubMed
Wang, G. H., Garvey, T. L., and Cohen, J. I. (1999). The murine gammaherpesvirus-68 M11 protein inhibits Fas- and TNF-induced apoptosis. J. Gen. Virol., 80, 2737–40CrossRefGoogle ScholarPubMed
Wang, H. W., Sharp, T. V., Koumi, A., Koentges, G., and Boshoff, C. (2002). Characterization of an anti-apoptotic glycoprotein encoded by Kaposi's sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J., 21, 2602–15CrossRefGoogle ScholarPubMed
Webster, K., Parish, J., Pandya, M., Stern, P. L., Clarke, A. R., and Gaston, K. (2000). The human papillomavirus (HPV)16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J. Biol. Chem., 275, 87–94CrossRefGoogle Scholar
Wei, M. C., Lindsten, T., Mootha, V. K.et al. (2000). tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev., 14, 2060–71Google ScholarPubMed
Yaegashi, N., Niinuma, T., Chisaka, H.et al. (1999). Parvovirus B19 infection induces apoptosis of erythroid cells in vitro and in vivo. J. Infect., 39, 68–76CrossRefGoogle ScholarPubMed
Yan, M., Lee, J., Schilbach, S., Goddard, A., and Dixit, V. (1999). mE10, a novel caspase recruitment domain-containing proapoptotic molecule. J. Biol. Chem., 274, 10287–92CrossRefGoogle ScholarPubMed
Yanai, N. and Obinata, M. (1994). Apoptosis is induced at nonpermissive temperature by a transient increase in p53 in cell lines immortalized with temperature-sensitive SV40 large T-antigen gene. Exp. Cell Res., 211, 296–300CrossRefGoogle ScholarPubMed
Yasukawa, M., Inoue, Y., Ohminami, H., Terada, K., and Fujita, S. (1998). Apoptosis of CD4+ T lymphocytes in human herpesvirus-6 infection. J. Gen. Virol., 79, 143–7CrossRefGoogle ScholarPubMed
Zamzami, N. and Kroemer, G. (2001). The mitochondrion in apoptosis: how Pandora's box opens. Nat. Rev. Mol. Cell Biol., 2, 67–71CrossRefGoogle ScholarPubMed
Zhirnov, O. P., Konakova, T. E., Wolff, T., and Klenk, H. D. (2002). NS1 protein of influenza A virus down-regulates apoptosis. J. Virol., 76, 1617–25CrossRefGoogle ScholarPubMed
Zhou, G. and Roizman, B. (2000). Wild-type herpes simplex virus 1 blocks programmed cell death and release of cytochrome c but not the translocation of mitochondrial apoptosis-inducing factor to the nuclei of human embryonic lung fibroblasts. J. Virol., 74, 9048–53CrossRefGoogle Scholar
Zhou, G., Galvan, V., Campadelli-Fiume, G., and Roizman, B. (2000). Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins. J. Virol., 74, 11782–91CrossRefGoogle ScholarPubMed
Zhu, H., Shen, Y., and Shenk, T. (1995). Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J. Virol., 69, 7960–70Google ScholarPubMed
Zhu, N., Khoshnan, A., Schneider, R.et al. (1998). Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis. J. Virol., 72, 3691–7Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×