Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-10T23:27:44.035Z Has data issue: false hasContentIssue false

8 - Tropic of cancers: gene transfer in resource-poor settings

Published online by Cambridge University Press:  28 January 2010

Jonathan Kimmelman
Affiliation:
McGill University, Montréal
Get access

Summary

Introduction

Adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID) is a parent's nightmare. The disease is caused by a deficiency in an enzyme responsible for breaking down toxic metabolites that would otherwise kill lymphocytes. Untreated, infants develop recurrent infections and fail to put on weight; they rarely live past two.

But to scientists trying to establish proof of principle for gene transfer, ADA-SCID is a dream: only small amounts of gene correction are needed to restore immune function, tissues are easy to procure for genetic modification, and theoretically, treated cells should have a survival advantage over those that are not corrected. The attractiveness of ADA-SCID is so high, and its incidence so low (approximately one case per 100 000 births) that researcher Stuart Orkin once commented “more [gene transfer researchers would soon be] working on ADA deficiency than there are patients who have it.”

But there's a catch. Since the late 1980s, a relatively safe and effective enzyme replacement therapy – PEG-ADA – has been available for ADA-SCID patients. Denying PEG-ADA to children in gene-transfer trials would be unethical, because it would expose them to the risk of relapse. Yet concurrent treatment with PEG-ADA would have scientific costs: it would confound interpretation of the subjects' responses (if volunteers improved, how would investigators be able to tell whether this was owing to the gene transfer or the enzyme replacement?)and it would sustain uncorrected cells (thus dampening the potential therapeutic effects of gene transfer).

Throughout the 1990s, several teams attempted ADA-SCID gene transfer. Each, however, used concurrent enzyme replacement therapy and none produced clear therapeutic successes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×