Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T09:11:21.992Z Has data issue: false hasContentIssue false

2 - Martensitic transformation in TiNi alloys

Published online by Cambridge University Press:  23 February 2010

Shuichi Miyazaki
Affiliation:
University of Tsukuba, Japan
Yong Qing Fu
Affiliation:
Heriot-Watt University, Edinburgh
Wei Min Huang
Affiliation:
Nanyang Technological University, Singapore
Get access

Summary

Abstract

The basic characteristics of the martensitic transformation of TiNi shape memory alloys are described. They include the crystal structures of the parent and martensite phases, the recoverable strain associated with the martensitic transformation, the transformation temperatures, the temperature and orientation dependence of deformation behaviour, etc. Shape memory and superelasticity related to the martensitic transformation are also explained.

Introduction

The shape memory effect (SME) and superelasticity (SE) are associated with the crystallographically reversible nature of the martensitic transformation which appears in shape memory alloys (SMAs). Such a crystallographically reversible martensitic transformation has been named “thermoelastic martensitic transformation”. The name originates from the characteristic of the martensitic transformation in shape memory alloys, i.e., the total free energy change associated with the thermoelastic martensitic transformation mainly consists of two thermoelastic terms, chemical free energy and elastic energy, while the total free energy change associated with the conventional martensitic transformation, which appears in steels for instance, consists of the energy of interfaces and plastic deformation in addition to the two thermoelastic terms. Therefore, the interface between transformed and untransformed regions moves smoothly according to the temperature variation so that the transformation temperature hysteresis is small, from several to several tens of degrees K, compared with those of steels that are several hundreds of degrees K. The characteristic that plastic deformation does not occur in the thermoelastic martensitic transformation is one of the necessary factors for the perfect shape recovery upon the reverse transformation in shape memory alloys.

The martensitic transformation itself is not a new phenomenon.

Type
Chapter
Information
Thin Film Shape Memory Alloys
Fundamentals and Device Applications
, pp. 73 - 87
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×