Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-22T07:38:09.701Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Sam Boggs, Jr
Affiliation:
University of Oregon
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, P., Egeberg, P. K., Saigal, G. C., Morad, S., and Bjørlykke, K., 1990, Diagenetic albitization of detrital K-feldspars in Jurassic, lower Cretaceous and Tertiary clastic reservoir rocks from offshore Norway, II. Formation water chemistry and kinetic considerations: J. Sediment. Petrol. 60, 575–81.CrossRefGoogle Scholar
Abbott, P. L. and Peterson, G. L., 1978, Effect of abrasion durability on conglomerate clast populations: examples from Cretaceous and Eocene conglomerates of the San Diego area, California: J. Sediment. Petrol., 48, 31–42.Google Scholar
Adams, A. E. and MacKenzie, W. S., 1998, A Color Atlas of Carbonate Sediments and Rocks under the Microscope: John Wiley and Sons, New York, NY.Google Scholar
Adams, A. E., Mackenzie, W. S., and Guilford, C., 1984, Atlas of Sedimentary Rocks Under the Microscope: John Wiley and Sons, New York, NY.Google Scholar
Adams, J. E. and Rhodes, M. L., 1960, Dolomitization by seepage refluxion: Am. Assoc. Pet. Geol. Bull., 44, 1912–1921.Google Scholar
Agrawal, Y. C., McCave, I. N., and Riley, J. B., 1991, Laser-diffraction size analysis, in Syvitski, J. P. M. (ed.), 1991, Principles, Methods, and Application of Particle Size Analysis: Cambridge University Press, Cambridge, pp. 119–128.CrossRefGoogle Scholar
Aitken, J. D., 1967, Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta: J. Sediment. Petrol., 37, 1163–1178.CrossRefGoogle Scholar
Allen, J. R. L., 1968, Current Ripples: Their Relation to Patterns of Water Motion: North Holland, Amsterdam.Google Scholar
Allen, J. R. L., 1982, Sedimentary Structures – Their Character and Physical Basis: Elsevier, Amsterdam, vol. I; vol. II.Google Scholar
Allen, P. A. and Allen, J. R., 2005, Basin Analysis: Principles and Applications, 2nd edn.: Blackwell Publishing, Malden, MA.Google Scholar
Allen, P., 1945, Sedimentary variations: some new facts and theories: J. Sediment. Petrol., 15, 75–83.Google Scholar
Alling, H. L., 1945, Use of microlithologies as illustrated by some New York sedimentary rocks: Geol. Soc. Am. Bull., 56, 737–756.CrossRefGoogle Scholar
Anbar, A. D. and Knoll, A. H., 2002, Proterozoic ocean chemistry and evolution: A bioinorganic bridge?: Science, 297, 1137–1142.CrossRefGoogle ScholarPubMed
Anderson, J. A. R., 1964, The structure and development of peat swamps of Sarawak and Brunei: J. Tropical Geog., 18, 7–16.Google Scholar
Anderson, R. Y. and Kirkland, D. W., 1966, Intrabasin varve correlation: Geol. Soc.Am. Bull., 77, 241–256.CrossRefGoogle Scholar
Anderson, T. F. and Arthur, M. A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur, M. A.Anderson, T. F., Kaplan, I. R.et al. (eds.), Stable Isotopes in Sedimentary Geology: SEPM Short Course Notes 10, pp. 1–1 to 1–151.
Archer, J. B., 1984, Clastic intrusions in deep-sea fan deposits of the Rosroe Formation, Lower Ordovician, western Ireland: J. Sediment. Petrol., 54, 1197–1205.Google Scholar
Argast, S. and Donnelly, T. W., 1987, The chemical discrimination of clastic sedimentary components: J. Sediment. Petrol., 57, 813–823.Google Scholar
Armenteros, I. and Huerta, P., 2006, The role of clastic sediment influx in the formation of calcrete and palustrine facies: A response to paleogeographic and climatic conditions in the southeastern Tertiary Duerco Basin (northern Spain), in Alonso-Zarza, A. M. and Tanner, L. H. (eds.), 2006, Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates: Geological Society of America Special Paper 416, pp. 119–132.
Arnott, R. W. C. and Hand, B. M., 1989, Bedforms, primary structures and grain fabrics in the presence of suspended sediment rain: J. Sediment. Petrol., 59, 1062–1069.Google Scholar
Arvidson, R. S. and Mackenzie, F. T., 1999, The dolomite problem: control of precipitation kinetics by temperature and saturation state: Am. J. Sci., 299, 257–288.CrossRefGoogle Scholar
Ashley, G. M. (chairperson), 1990, Classification of large-scale subaqueous bedforms: a new look at an old problem: J. Sediment. Petrol., 60, 160–172.Google Scholar
Asquith, G. and Krygowski, D., 2004, Basic Well Log Analysis, 2nd edn.: American Association of Petroleum Geology, Tulsa, OK.Google Scholar
Assaad, F., LaMoreau, P. E., and Hughes, T. H. (eds.), 2004, Field Methods for Geologists and Hydrogeologists: Springer-Verlag, Berlin.CrossRef
Aylmore, L. A. G. and Quirk, J. P., 1960, Domain or turbostratic structure of clays: Nature, 187, 1046–1048.CrossRefGoogle Scholar
Badiozamani, K., 1973, The Dorag dolomitization model – application to the Middle Ordovician of Wisconsin: J. Sediment. Petrol., 43, 965–984.Google Scholar
Bagnold, R. A. and Barndorff-Nielsen, O., 1980, The pattern of natural size distribution: Sedimentology, 27, 199–207.CrossRefGoogle Scholar
Barndorff-Nielsen, O., 1977, Exponentially decreasing distributions for the logarithm of particle size: Proc. Royal Soc. London A., 353, 401–419.CrossRefGoogle Scholar
Barndorff-Nielsen, O., Dalsgaard, K., Halgreen, C., et al., 1982, Variation in particle size distribution over a small dune: Sedimentology, 29, 53–65.CrossRefGoogle Scholar
Barrett, P. J., 1980, The shape of rock particles: a critical review: Sedimentology, 27, 291–303.CrossRefGoogle Scholar
Barron, J. A., 1987, Diatomite: Environmental and geologic factors affecting its distribution, in Hein, J. R. (ed.), Siliceous Sedimentary Rock – Hosted Ores and Petroleum: Van Nostrand Reinhold Co., New York, NY, pp. 164–178.Google Scholar
Basu, A., 1976, Petrology of Holocene fluvial sand derived from plutonic source rocks: implications to paleoclimate interpretation: J. Sediment. Petrol., 46, 694–709.Google Scholar
Basu, A., 1985, Influence of climate and relief on compositions of sand released at source areas, in Zuffa, G. G. (ed.), Provenance of Arenites: Reidel, Dordrecht, pp. 1–18.Google Scholar
Basu, A., Young, S. W., Suttner, L. J., James, W. C., and Mack, G. H., 1975, Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation: J. Sediment. Petrol., 45, 873–882.Google Scholar
Bates, R. L. and Jackson, J. A. (eds.), 1980, Glossary of Geology, 2nd edn.: American Geological Institute, Falls Church, VA.
Bathurst, R. G. C., 1966, Boring algae, micrite envelopes and lithification of molluscan biosparites: Geol. J., 5, 15–32.CrossRefGoogle Scholar
Bathurst, R. G. C., 1975, Carbonate Sediments and their Diagenesis, 2nd edn.: Elsevier, Amsterdam.Google Scholar
Bathurst, R. G. C., 1980, Lithification of carbonate sediments: Sci. Prog., 66, 451–471.Google Scholar
Bathurst, R. G. C., 1982, Genesis of stromatactis cavities between submarine crusts in Paleozoic carbonate mud buildups: J. Geol. Soc. London, 139, 165–181.CrossRefGoogle Scholar
Bathurst, R. G. C., 1983, Neomorphic spar versus cement in some Jurassic grainstones: Significance for evaluation of porosity evolution and compaction: J. Geol. Soc. London, 140, 229–237.CrossRefGoogle Scholar
Baturin, G. N., 1982, Phosphorites on the Seafloor: Origin, Composition, and Distribution: Elsevier, Amsterdam.Google Scholar
Baturin, G. N., 2000, Formation and evolution of phosphorite grains and nodules on the Namibian shelf, from Recent to Pleistocene, in Glenn, G. R. L., Prévôt-Lucas, L., and Lucas, J. (eds.), Marine Authigenesis: From Global to Microbial: SEPM Special Publication 66, pp. 185–199.
Beales, F. W. and Hardy, J. L., 1980, Criteria for the recognition of diverse dolomite types with an emphasis on studies on host rocks for Mississippi Valley-type ore deposits, in Zenger, D. H., Dunham, J. B., and Ethington, R. L. (eds.), Concepts and Models of Dolomitization: SEPM Special Publication 28, pp. 197–213.
Beard, B. L., Johnson, C. M., Cox, L.et al., 1999, Iron isotope biosignatures: Science, 285, 1889–1892.CrossRefGoogle ScholarPubMed
Bennett, R. H., O'Brien, N. R., and Hulbert, M. H., 1991a, Determinants of clay and shale microfabric signatures: Processes and mechanisms, in Bennett, R. H., O'Brien, N. R., and Hulbert, M. H. (eds,), Microstructures of Fine-Grained Sediments: Springer-Verlag, New York, NY, pp. 5–32.CrossRefGoogle Scholar
Bennett, R. H., O'Brien, N. R., and Hulbert, M. H. (eds.), 1991b, Microstructures of Fine-Grained Sediments: Springer-Verlag, New York, NY.CrossRef
Benninger, L. M. and Hein, J. R., 2000, Diagenetic evolution of seamount phosphorite, in Glenn, et al. (eds.), Marine Authigenesis: From Global to Microbial: SEPM Special Publication 66, pp. 245–256.
Bentor, Y. K. (ed.), 1980, Marine Phosphorites – Geochemistry, Occurrence, Genesis: SEPM Special Publication 29.
Berner, R. A., 1971, Principles of Chemical Sedimentology: McGraw-Hill, New York, NY.Google Scholar
Berner, R. A., 1975, The role of magnesium in crystal growth of aragonite from sea water: Geochim. Cosmochim. Acta, 39, 489–505.CrossRefGoogle Scholar
Berner, R. A., 1980, Early Diagenesis: Princeton University Press, Princeton, NJ.Google Scholar
Berner, R. A., Westrich, J. T., Graber, R., Smith, J., and Martens, C. S., 1978, Inhibition of aragonite precipitation from supersaturated seawater: A laboratory and field study: Am. J. Sci., 278, 816–837.CrossRefGoogle Scholar
Bernet, M. and Bassett, K., 2005, Provenance analysis by single quartz grain SEM-CL/optical microscopy: J. Sediment. Res, 75, 492–499.CrossRefGoogle Scholar
Bernet, M. and Spiegel, C. (eds.), 2004, Detrital Thermochronology – Provenance Analysis, Exhumation, and Landscape Evolution of Mountain Belts: Geological Society of America Special Paper 378.
Beuselinck, L., 1998, Grain-size analysis by laser diffractometry; comparison with the sieve–pipette method: Catena Giessen, 32, 193–208.CrossRefGoogle Scholar
Bhatia, M. R., 1983, Plate tectonics and geochemical composition of sandstones: J. Geol., 91, 611–627.CrossRefGoogle Scholar
Bhatia, M. R., 1985, Composition and classification of Paleozoic flysch mudrocks of eastern Australia: Implications in provenance and tectonic setting interpretation: Sed. Geol., 41, 249–268.CrossRefGoogle Scholar
Bhatia, M. R. and Crook, K. A. W., 1986, Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins: Contrib. Mineralogy Petrol., 92, 181–193.CrossRefGoogle Scholar
Bhattacharyya, A., 2000, Analysis of Sedimentary Successions: A Field Manual: A. A. Balkema, Rotterdam.Google Scholar
Bhattacharyya, D. P., 1989, Concentrated and lean oolites: Examples from the Nubia Formation at Aswan, Egypt, and significance of the oolite types in ironstone genesis, in Young, T. P. and Taylor, W. E. G. (eds.), Phanerozoic Ironstones: Geological Society Special Publication 46, pp. 93–103.
Bjørlykke, K., 1983, Diagenetic reactions in sandstones, in Parker, A. and Sellwood, B. W. (eds.), Sediment Diagenesis: Reidel, Dordrecht, pp. 169–213.CrossRefGoogle Scholar
Bjørlykke, K., 1994, Pore-water flow and mass transfer of solids in solution in sedimentary basins, in Parker, A. and Sellwood, B. W. (eds.), Quantitative Diagenesis: Recent Developments and Applications to Reservoir Geology: Kluwer Academic Publishing, Dordrecht, pp. 189–221.CrossRefGoogle Scholar
Black, M., 1933, The precipitation of calcium carbonate on the Great Bahama Bank: Geol. Mag., 70, 455–466.CrossRefGoogle Scholar
Blatt, H., 1982, Sedimentary Petrology: W. H. Freeman, San Francisco, CA.Google Scholar
Blatt, H. and Caprara, J. R., 1985, Feldspar dispersal patterns in shales of the Vanoss formation (Pennsylvanian), south-central Oklahoma: J. Sediment. Petrol., 55, 548–552.Google Scholar
Blatt, H. and Totten, M. W., 1981, Detrital quartz as an indicator of distance from shore in marine mudrocks: J. Sediment. Petrol., 51, 1259–1266.Google Scholar
Blatt, H., Middleton, G., and Murray, R., 1980, Origin of Sedimentary Rocks, 2nd edn.: Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Blatt, H., Jones, R. L., and Charles, R. G., 1982, Separation of quartz and feldspars from mudrocks: J. Sediment. Petrol., 52, 660–662.CrossRefGoogle Scholar
Blott, S. J., Croft, D. J., Pye, K., Saye, S. E., and Wilson, H. E., 2004, Particle size analysis by laser diffraction, in Pye, K. and Croft, D. J. (eds.), Forensic Geoscience: Principles, Techniques and Applications: Geological Society Special Publication 232, pp. 63–73.
Boggs, S., 1969, Relationship of size and composition in pebble counts: J. Sediment. Petrol., 39, 1243–1246.CrossRefGoogle Scholar
Boggs, S., 1972, Petrography and geochemistry of rhombic calcite pseudomorphs from mid-Tertiary mudstones of the Pacific Northwest, USA: Sedimentology, 19, 219–235.CrossRefGoogle Scholar
Boggs, S., 1975, Seabed resources of the Taiwan continental shelf: Acta Oceanographica Taiwanica, 5, 1–18.Google Scholar
Boggs, S., 1992, Petrology of Sedimentary Rocks: Macmillan Publishing Co., New York, NY.Google Scholar
Boggs, S.., 2006, Principles of Sedimentology and Stratigraphy, 4th edn.: Prentice Hall, Upper Saddle River, NJ.Google Scholar
Boggs, S. and Krinsley, D., 2006, Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks: Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Boggs, S. and Seyedolali, A., 1992, Diagenetic albitization, zeolitization, and replacement in Miocene sandstones, Sites 796, 797, and 799, Japan Sea, in Pisciotto, K. A., Ingle, Jr. J. C., Breymann, M. T., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results: ODP, College Station, TX, vol. 127/128, part 1, pp. 131–151.Google Scholar
Boggs, S., Kwon, Y.-I., Goles, G. G.et al. 2002, Is quartz cathodoluminescence color a reliable provenance tool? A quantitative examination: J. Sediment. Res., 72, 408–415.CrossRefGoogle Scholar
Boles, J. R., 1982, Albitization of plagioclase, Gulf Coast Tertiary: Am. J. Sci., 282, 165–180.CrossRefGoogle Scholar
Boles, J. R. and Franks, S. G., 1979, Clay diagenesis in Wilcox Sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation: J. Sediment. Petrol., 49, 55–70.Google Scholar
Bond, G. C. and Devay, J. C., 1980, Pre-upper Devonian quartzose sandstones in the Shoo Fly formation northern California – Petrology, provenance and implications for regional tectonics: J. Geol., 88, 285–308.CrossRefGoogle Scholar
Bouma, A. H., 1962, Sedimentology of Some Flysch Deposits: Elsevier, Amsterdam.Google Scholar
Braithwaite, C. J. R., 1989, Displacive calcite and grain breakage in sandstones: J. Sediment. Petrol., 59, 258–266.Google Scholar
Braithwaite, C. J. R., 1991, Dolomites, a review of origins, geometry and textures: Trans. Royal Soc. Edinburgh, Earth Sciences, 82, 99–112.CrossRefGoogle Scholar
Braitsch, O., 1971, Salt Deposits: Their Origin and Composition: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Brand, J., 1989, Aragonite–calcite transformation based on Pennsylvanian molluscs: Geol. Soc. Am. Bull., 101, 377–390.2.3.CO;2>CrossRefGoogle Scholar
Bricker, O. P. (ed.), 1971, Carbonate Cements: Johns Hopkins Press, Baltimore, MD.
Briggs, R. M., Middleton, M. P., and Nelson, C. S., 2004, Provenance history of a Late Triassic–Jurassic Gondwana margin forearc basin, Murihiku Terrane, North Island, New Zealand: Petrographic and geochemical constraints: New Zealand J. Geol. Geophys., 47, 589–602.CrossRefGoogle Scholar
Bromley, R. G., 1996, Trace Fossils: Biology, Taphonomy, and Applications, 2nd edn.: Chapman and Hall, London.CrossRefGoogle Scholar
Brown, D. A., 2006, Microbial mediation of iron mobilization and deposition in iron formations since the early Precambrian, in Kesler, S. E. and Ohmoto, H. (eds.), Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere – Constraints from Ore Deposits: Geological Society of America Memoir 198, pp. 239–256.
Brügel, A., Dunkl, I., Frisch, W., Kuhlemann, J., and Balogh, K., 2004, Geochemistry and geochronology of gneiss pebbles from foreland molasse conglomerates: Geodynamic and paleogeographic implications for the Oligo-Miocene evolution of the Eastern Alps: J. Geol., 111, 543–563.CrossRefGoogle Scholar
Budd, D. A., 1997, Cenozoic dolomites of carbonate islands: Their attributes and origin: Earth Sci. Rev., 42, 1–47.CrossRefGoogle Scholar
Budd, D. A., Saller, A. H., and Harris, P. M. (eds.), 1995, Unconformities and Porosity in Carbonate Strata: AAPG Memoir 63.
Buekes, N. J. and Klein, C., 1992, Models for iron-formation deposition, in Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: Cambridge University Press, Cambridge.Google Scholar
Buekes, N. J. and Lowe, D. R., 1989, Environmental control on diverse stromatolite morphologies in the 3000 My Pongola Supergroup, South Africa: Sedimentology, 36, 383–397.CrossRefGoogle Scholar
Burger, H. and Skala, W., 1976, Comparison of sieve and thin-section technique by a Monte-Carlo model: Comput. Geosci., 2, 123–139.CrossRefGoogle Scholar
Burley, S. D., Kantorowicz, J. D., and Waugh, B., 1985, Clastic diagenesis, in Brenchley, P. J. and Williams, B. P. J. (eds.), Sedimentology, Recent Developments and Applied Aspects: Blackwell Scientific Publishing, Oxford, pp. 189–226.Google Scholar
Burnett, W. C. and Froelich, P. N. (eds., special issue), 1988, The origin of marine phosphorites: The results of the R. V. Robert D. Conrad Cruise 23–06 to the Peru shelf: Mar. Geol., 80, 181–346.
Burnett, W. C. and Riggs, S. R. (eds.), 1990, Phosphate Deposits of the World, 3: Neogene to Modern Phosphorites: Cambridge University Press, Cambridge.
Burst, J. F., 1965, Subaqueously formed shrinkage cracks in clay: J. Sediment. Petrol., 35, 348–353.CrossRefGoogle Scholar
Busby, C. J. and Ingersoll, R. V. (eds.), 1995, Tectonics of Sedimentary Basins: Blackwell Science, Cambridge, MA.
Busenberg, E. and Plummer, L. N., 1986, A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite, in Mumpton, F. A. (ed.), Studies in Diagenesis: US Geological Survey Bulletin 1578, pp. 139–168.
Bustin, R. M., Cameron, A. R., Grieve, D. A., and Kalkreuth, W. D., 1985, Coal Petrology, its Principles, Methods, and Applications: Geological Association of Canada Short Course Notes V. 3.
Button, A., Brock, T. D., Cook, P. J.et al., 1982, Sedimentary iron deposits, evaporites, and phosphorites, in Holland, H. D. and Schidlowski, M. (eds.), Mineral Deposits and Evolution of the Biosphere: Springer-Verlag, New York, NY, pp. 259–273.CrossRefGoogle Scholar
Buxton, T. M. and Sibley, D. F., 1981, Pressure solution features in shallow buried limestones: J. Sediment. Petrol., 51, 19–26.CrossRefGoogle Scholar
Byers, C. W., 1974, Shale fissility: relation to bioturbation: Sedimentology, 21, 479–484.CrossRefGoogle Scholar
Calvert, S. E., 1974, Deposition and diagenesis of silica in marine waters, in Hsü, K. J. and Jenkyns, H. C. (eds.), Pelagic Sediments: on Land and Under the Sea: International Association of Sedimentologists, Special Publication 1 pp. 273–299.
Calvert, S. E., 1983, Sedimentary geochemistry of silicon, in Aston, R. R. (ed.), Silicon Geochemistry and Biogeochemistry: Academic Press, London, pp. 143–186.Google Scholar
Cameron, E. M. and Garrels, R. M., 1980, Geochemical composition of some Precambrian shales from the Canadian Shield: Chem. Geol., 28, 181–197.CrossRefGoogle Scholar
Campbell, C. V., 1966, Truncated wave-ripple laminae: J. Sediment. Petrol., 36, 820–828.CrossRefGoogle Scholar
Campbell, C. V., 1967, Lamina, laminaset, bed and bedset: Sedimentology, 8, 7–26.CrossRefGoogle Scholar
Carballo, J. D. and Land, L. S., 1984, Holocene dolomitization of supratidal sediments by active tidal pumping, Sugarloaf Key, Florida (abs.): Am. Assoc. Pet. Geol. Bull., 68, 459.Google Scholar
Carballo, J. D., Land, L. S., and Miser, D. E., 1987, Holocene dolomitization of supratidal sediments by active tidal pumping, Sugarloaf Key, Florida: J. Sediment. Petrol., 57, 153–165.Google Scholar
Carlson, W. D., 1983, The polymorphs of CaCO3 and the aragonite–calcite transformation, in Reeder, R. J. (ed.), Carbonates: Mineralogy and Chemistry: Mineralogical Society of America Reviews in Mineralogy 11, pp. 191–225.
Caroll, A. R. and Wartes, M. A., 2003, Organic carbon burial by large Permian lakes, northwest China, in Chan, M. S. and Archer, A. W. (eds.), Extreme Depositional Environments: Mega End Members in Geologic Time: Geological Society of America Special Paper 370, pp. 91–104.
Carothers, W. W. and Kharaka, Y. K., 1979, Aliphatic acid anions in oil-field waters – implications for origin of natural gas: Am. Assoc. Pet. Geol. Bull., 62, 2441–2453.Google Scholar
Carozzi, A. V., 1960, Microscopic Sedimentary Petrography: John Wiley and Sons, New York, NY.Google Scholar
Carozzi, A. V., 1989, Carbonate Rock Depositional Models – A Microfacies Approach: Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Carstens, H., 1985, Early diagenetic cone-in-cone structures in pyrite concretions: J. Sediment. Petrol., 55, 105–108.CrossRefGoogle Scholar
Carver, R. E., 1971, Procedures in Sedimentary Petrology: John Wiley and Sons, New York, NY.Google Scholar
Cas, R. A. F. and Wright, J. V., 1987, Volcanic Successions: Modern and Ancient: Allen and Unwin, London.CrossRefGoogle Scholar
Casas, E. and Lowenstein, T. K., 1989, Diagenesis of saline pan halites: Comparison of petrographic features of modern, Quaternary, and Permian halites: J. Sediment. Petrol., 59, 724–739.Google Scholar
Cathcart, J. B., 1989, The phosphate deposits of Florida with a note on the deposits in Georgia and South Caroline, USA, in Northolt, A. J. G., Sheldon, R. P., and Davidson, D. F. (eds.), Phosphorite Deposits of the World, 2: Phosphate Rock Resources: Cambridge University Press, Cambridge, pp. 62–70.Google Scholar
Cayeux, L., 1935, Les Roches Sédimentaires de France: Roches Carbonatées: Masson et Cie, Paris.Google Scholar
Chafetz, H. S. and Folk, R. L., 1984, Travertines: Depositional morphology and the bacterially constructed constituents: J. Sediment. Petrol., 54, 289–316.Google Scholar
Chamley, H., 1989, Clay Sedimentology: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Cheel, R. and Leckie, D. A., 1993, Hummocky cross-stratification, in Wright, P. V. (ed.), Sedimentology Review 1, Blackwell Scientific Publications, Oxford, pp. 103–122.CrossRefGoogle Scholar
Choquette, P. W. and James, N. P., 1987, Diagenesis in limestones – 3. The deep burial environment: Geosci. Can., 14, 3–35.Google Scholar
Choquette, P. W. and Pray, L. C., 1970, Geologic nomenclature and classification of porosity in sedimentary carbonates: Am. Assoc. Pet. Geol. Bull., 54, 207–250.Google Scholar
Chowns, T. M. and Elkins, J. E., 1974, The origin of quartz geodes and cauliflower cherts through the silicification of anhydrite nodules: J. Sediment. Petrol., 44, 885–903.Google Scholar
Christiansen, C., 1984, A Comparison of Sediment. Parameters from Log Probability Plots and Log–Log Plots of the Same Sediments: Geoskrifter 20.
Christiansen, C. and Hartmann, D., 1991, The hyperbolic distribution, in Syvitski, J. P. M. (ed.), 1991, Principles, Methods, and Application of Particle Size Analysis: Cambridge University Press, Cambridge, pp. 237–248.CrossRefGoogle Scholar
Clark, F. W., 1924, The Data of Geochemistry, 5th edn.: US Geological Survey Bulletin 770.
Clark, M. W., 1981, Quantitative shape analysis: a review: J. Math. Geol., 13, 303–320.CrossRefGoogle Scholar
Clark, M. W., 1987, Image analysis of clastic particles, in Marshall, J. R. (ed.), Clastic Particles: Van Nostrand Reinhold, New York, NY, pp. 256–266.Google Scholar
Clayton, C. J., 1994, Microbial and organic processes, in Parker, A. and Sellwood, B. W. (eds.), Quantitative Diagenesis: Recent Developments and Applications to Reservoir Geology: Kluwer, Dordrecht, pp. 125–160.CrossRefGoogle Scholar
Cloud, P. E., 1973, Paleocological significance of banded iron formations: Econ. Geol., 68, 1135–1143.CrossRefGoogle Scholar
Coakley, J. P. and Syvitski, J. P. M., 1991, SediGraph technique, in Syvitski, J. P. M. (ed.), 1991, Principles, Methods, and Application of Particle Size Analysis: Cambridge University Press, Cambridge, pp. 129–142.CrossRefGoogle Scholar
Cobb, J. C. and Cecil, C. B., 1993, Modern and Ancient Coal-Forming Environments: Geological Society of America Special Paper 286.
Collinson, J. D., 1970, Bedforms of the Tana River, Norway: Geogr. Ann., 52A, 31–55.CrossRefGoogle Scholar
Collinson, J. D. and Thompson, D. B., 1989, Sedimentary Structures, 2nd edn.: Chapman and Hall, London.Google Scholar
Coogan, A. H. and Manus, R. W., 1975, Compaction and diagenesis of carbonate sands, in Chilingarian, G. V. and Wolf, K. H. (eds.), Compaction of Coarse-Grained Sediments I. Developments in Sedimentology 18A: Elsevier, New York, NY, pp. 79–166.CrossRefGoogle Scholar
Cook, P. J., 1976, Sedimentary phosphate deposits, in Wolf, K. H. (ed.), Handbook of Strata-Bound and Stratiform Ore Deposits: Elsevier, Amsterdam, vol. 7, pp. 506–536.Google Scholar
Cook, P. J. and Shergold, J. H., 1986, Proterozoic and Cambrian phosphorites – Nature and origin, in Cook, P. J. and Shergold, J. H. (eds.), Phosphate Deposits of the World, 1: Proterozoic and Cambrian Phosphorites: Cambridge University Press, Cambridge, pp. 369–386.Google Scholar
Crelling, J. C. and Dutcher, R. R., 1980, Principles and Applications of Coal Petrology: SEPM Short Course Notes 8.
Cressman, E. R., 1962, Nondetrital Siliceous Sediments: US Geological Survey Professional Paper 440-T.
Crimes, T. P., 1975, The stratigraphal significance of trace fossils, in Crimes, T. P. and Harper, J. C. (eds.), The Study of Trace Fossils: Springer-Verlag, Berlin.Google Scholar
Crook, K. A. W., 1960, Petrology of Parry Group, Upper Devonian–Lower Carboniferous, Tamworth–Nundel District, New South Wales: J. Sediment. Petrol., 30, 538–552.Google Scholar
Crook, K. A. W., 1970, Graywackes, in Encyclopaedia Britannica 10: Encyclopaedia Britannica, Chicago.Google Scholar
Crook, K. A. W., 1974, Lithogenesis and geotectonics: The significance of compositional variation in flysch arenites (graywackes), in Dott, R. H. and Shaver, R. H. (eds.), Modern and Ancient Geosynclinal Sedimentation: SEPM Special Publication 19, pp. 304–310.
Crowell, J. C., 1957, Origin of pebbly mudstones: Geol. Soc. Am. Bull., 68, 993–1009.CrossRefGoogle Scholar
Cullen, D. J., Challis, G. A., and Drummond, G. W., 1990, Late Holocene estuarine phosphogenesis in Raglan Harbour, New Zealand: Sedimentology, 37, 847–857.CrossRefGoogle Scholar
Curtis, C. D., 1980, Diagenetic alteration in black shales: J. Geol. Soc. London, 137, 189–194.CrossRefGoogle Scholar
Curtis, C. D., Lipshie, S. R., Oertel, G., and Pearson, M. J., 1980, Clay orientation in some Upper Carboniferous mudrocks, its relationship to quartz content and some inferences about fissility, porosity and compaction history: Sedimentology, 17, 333–339.CrossRefGoogle Scholar
Daniels, E. J., Altaner, S. P., Marshak, S., and Eggleson, J. R., 1990, Hydrothermal alteration in anthracite in eastern Pennsylvania: Implications for the mechanisms of anthracite formation: Geology, 18, 247–250.2.3.CO;2>CrossRefGoogle Scholar
Dapples, E. C., 1979, Diagenesis of sandstones, in Larsen, G. and Chilingar, G. V. (eds.), Diagenesis in Sediments and Sedimentary Rocks: Elsevier, Amsterdam, pp. 31–97.CrossRefGoogle Scholar
Dauphas, N., Cates, N. L., Mojzsis, S. J., and Busigny, V., 2007, Identification of chemical sedimentary protoliths using iron isotopes in the > 3750 Ma Nuvvuagittuq supracrustal belt, Canada: Earth Planet. Sci. Lett., 254, 358–376.CrossRefGoogle Scholar
Dean, W. E., 1982, Theoretical versus observed successions from evaporation of seawater, in Dean, W. E. and Schreiber, B. C. (eds.), Marine Evaporites: SEPM Short Course Notes 4, pp. 74–85.
Dean, W. E. and Fouch, T. D., 1983, Lacustrine environment, in Scholle, P. A., Bebout, D. G., and Moore, C. H., 1983, Carbonate Depositional Environments: AAPG Memoir 33, pp. 97–130.
Dean, W. E., Davies, G. R., and Anderson, R. Y., 1975, Sedimentological significance of nodular and laminated anhydrite: Geology, 3, 367–372.2.0.CO;2>CrossRefGoogle Scholar
Decelles, P. G., 1988, Lithologic provenance modeling applied to the Late Cretaceous synorogenic Echo Canyon Conglomerate, Utah: A case of multiple source areas: Geology, 16, 1039–1043.2.3.CO;2>CrossRefGoogle Scholar
Deer, W. A., Howie, R. A., and Zussman, J., 1963, Rock-Forming Minerals, Framework Silicates: John Wiley and Sons, New York, vol. 4.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J., 1966, An Introduction to the Rock-Forming Minerals: Longman, London.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J., 1992, An Introduction to the Rock-Forming Minerals, 2nd edn.: Longman, London, John Wiley and Sons, New York, NY.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J., 1997, Rock-Forming Minerals, 2nd edn., Geological Society London, London, vols. 3A, 4A, and 4B.Google Scholar
Degens, E. T., 1965, Geochemistry of Sediments: Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Demicco, R. V. and Hardie, L. A., 1994, Sedimentary Structures and Early Diagenetic Features of Shallow Marine Carbonate Deposits: SEPM Atlas Series 1.
Dickinson, W. R., 1970, Interpreting detrital modes of graywacke and arkose: J. Sediment. Petrol., 40, 695–707.Google Scholar
Dickinson, W. R., 1974, Plate tectonics and sedimentation, in Dickinson, W. R. (ed.), Tectonics and Sedimentation: Society of Economic Paleontologists and Minerologists Special Publication 22, pp. 1–27.CrossRefGoogle Scholar
Dickinson, W. R., 1976, Plate Tectonic Evolution of Sedimentary Basins: American Association of Petroleum Geologists Continuing Education Course Notes, Series 1.
Dickinson, W. R., 1985, Interpreting provenance relations from detrital modes of sandstones, in Zuffa, G. G. (ed.), Provenance of Arenites: Reidel, Dordrecht, pp. 333–361.CrossRefGoogle Scholar
Dickinson, W. R., 1988, Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins, in Kleinspehn, K. L. and Paola, C. (eds.), New Perspectives in Basin Analysis: Springer-Verlag, New York, NY, pp. 3–25.CrossRefGoogle Scholar
Dickinson, W. R. and Ingersoll, R. V., 1990, Physiographic controls on the composition of sediments derived from volcanic and sedimentary terrains on Barro Colorado Island, Panama – Discussion: J. Sediment. Petrol., 60, 797–798.CrossRefGoogle Scholar
Dickinson, W. R. and Rich, E. I., 1972, Petrologic intervals and petrofacies in the Great Valley Sequence, Sacramento Valley, California: Geol. Soc. Am. Bull., 83, 3007–3024.CrossRefGoogle Scholar
Dickinson, W. R. and Suczek, C., 1979, Plate tectonics and sandstone compositions: Am. Assoc. Pet. Geol. Bull., 63, 2164–2182.Google Scholar
Dickinson, W. R. and Valloni, R., 1980, Plate settings and provenance of sands in modern ocean basins: Geology, 8, 82–86.2.0.CO;2>CrossRefGoogle Scholar
Dickinson, W. R., Beard, L. S., Brakenridge, G. R., et al., 1983, Provenance of North American Phanerozoic sandstones in relation to tectonic setting: Geol. Soc. Am. Bull., 94, 222–235.2.0.CO;2>CrossRefGoogle Scholar
Diepenbroek, M., Bartholomä, A., and Ibbken, H., 1992, How round is round? A new approach to the topic ‘roundness’ by Fourier grain shape analysis: Sedimentology, 39, 411–422.CrossRefGoogle Scholar
Dimroth, E., 1979, Models of physical sedimentation of iron formations, in Walker, R. G. (ed.), Facies Models: Geoscience Canada Reprint Series 1, pp. 159–174.
Dobkins, J. E. and Folk, R. L., 1970, Shape development on Tahati-Nui: J. Sediment. Petrol., 40, 1167–1203.Google Scholar
Donovan, S. K., 1994, The Palaeobiology of Trace Fossils: John Hopkins Press, Baltimore, MD.Google Scholar
Dove, P. M. and Rimstidt, J. D., 1994, Silica–water interactions, in Heaney, P. J., Prewitt, C. T., and Gibbs, G. V. (eds.), Silica: Physical Behavior, Geochemistry and Materials Applications: Mineralogical Society of America Reviews in Mineralogy 29.Google Scholar
Doyle, L. J. and Roberts, H. H., 1988, Carbonate–Clastic Transitions: Elsevier, Amsterdam.Google Scholar
Doyle, L. J., Carder, K. L., and Stewart, R. G., 1983, The hydraulic equivalence of micas: J. Sediment. Petrol., 53, 643–648.Google Scholar
Dryden, L. and Dryden, C., 1946, Comparative rates of weathering of some common heavy minerals: J. Sediment. Petrol., 16, 91–96.Google Scholar
Duke, W. L., Arnott, R. W. C., and Cheel, R. J., 1991, Shelf sandstone and hummocky cross-stratification: New insights on a stormy debate: Geology, 19, 625–628.2.3.CO;2>CrossRefGoogle Scholar
Duncan, D. C., 1976, Geologic setting of oil-shale deposits and world prospects, in Yen, T. F. and Chilingarian, G. V. (eds.), Oil Shale: Elsevier, Amsterdam, pp. 13–26.CrossRefGoogle Scholar
Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture, in Ham, W. E. (ed.), Classification of Carbonate Rocks: AAPG Memoir 1, pp. 108–121.
Dunham, R. J., 1971, Meniscus cement, in Bricker, O. P. (ed.), Carbonate Cements: Johns Hopkins University Studies in Geology 19, pp. 297–300.Google Scholar
Dunkl, I., Frisch, W., Kuhlemann, J., and Brügel, A., 1998, Pebble-population-dating: A new method for provenance analysis: Terra Nostra, 98, 45.Google Scholar
Dunn, T. L., 1992, Infiltrated material in Cretaceous, volcanic sandstones, San Jorge Basin, Argentina, in Houseknecht, D. W., Pittman, E. D., and Lidz, B. H. (eds.), Origin, Diagenesis, and Clay Minerals in Sandstones: Society for Sedimentary Geology Special Publication 47, pp. 159–174.
Dunoyer de Segonzac, G., 1970, The transformation of clay minerals during diagenesis and low-grade metamorphism: A review: Sedimentology, 15, 281–346.CrossRefGoogle Scholar
Durand, B. (ed.), 1980, Kerogen: Editions Technip, Paris.
Dutta, P. K. and Wheat, R. W., 1993, Climatic and tectonic controls on sandstone composition in the Permo-Triassic Sydney Foreland Basin, Eastern Australia, in Johnson, M. J. and Basu, A. (eds.), Processes Controlling the Composition of Clastic Sediments: Geological Society of America Special Paper 284, pp. 187–202.
Dutton, S. P. and Diggs, T. N., 1990, History of quartz cementation in the Lower Cretaceous Travis Peak Formation, east Texas: J. Sediment. Petrol., 60, 191–202.Google Scholar
Dzevanshir, R. D., Buryakovskiy, L. A., and Chilingarian, G. V., 1986, Simple quantitative evaluation of porosity of argillaceous sediments at various depths of burial: Sediment. Geol., 46, 169–175.CrossRefGoogle Scholar
Dzulnyski, S. and Walton, E. K., 1965, Sedimentary Features of Flysch and Graywacke: Developments in Sedimentology 7.
Ehrlich, R. and Chin, M., 1980, Fourier grain-shape analysis: a new tool for sourcing and tracking abyssal silts: Mar. Geol., 38, 219–231.CrossRefGoogle Scholar
Ehrlich, R. and Weinberg, B., 1970, An exact method for characterization of grain shape: J. Sediment. Petrol., 40, 205–212.Google Scholar
Ehrlich, R., Brown, P. J., Yarus, J. M., and Przygocki, R. S., 1980, The origin of shape frequency distributions and the relationship between size and shape: J. Sediment. Petrol., 50, 475–484.Google Scholar
Ehrlich, R., Crabtree, S. J., Kennedy, S. K., and Cannon, R. L., 1984, Petrographic image analysis, I. Analysis of reservoir pore complexes: J. Sediment. Petrol., 54, 1365–1378.Google Scholar
Ehrlich, R., Kennedy, S. K, and Brotherhood, C. D., 1987, Respective roles of Fourier and SEM techniques in analyzing sedimentary quartz, in Marshall, J. R. (ed.), Clastic Particles, Van Nostrand Reinhold, New York, NY, pp. 292–301.Google Scholar
Elliott, M. A. and Yohe, G. R., 1981, The coal industry and coal research and development in perspective, in Elliott, M. A. (ed.), Chemistry of Coal Utilization, Second Supplementary Volume: Wiley Interscience, New York, NY, pp. 1–54.Google Scholar
Embry, A. F. and Klovan, J. E., 1971, A late Devonian reef tract on the northeastern Banks Island, N. W. T.: Canada Pet. Geol. Bull., 19, 730–781.Google Scholar
Embry, A. F. and Kloven, J. E., 1972, Absolute water depth limits of late Devonian paleoecological zones: Geol. Rundsch., 61, 672–686.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C., 1953, Revised carbonate–water isotopic temperature scale: Geol. Soc. Am. Bull., 64, 1315–1326.CrossRefGoogle Scholar
Eslinger, E. and Pevear, D., 1988, Clay Minerals for Petroleum Geologists and Engineers: SEPM Short Course Notes 22.
Esteban, M. and Klappa, C. F., 1983, Subaerial exposure environment, in Scholle, P. A., Bebout, D. G., and Moore, C. H. (1983), Carbonate Depositional Environments: AAPG Memoir 33, pp. 1–54.
Evamy, B. D., 1969, The precipitational environment and correlation of some calcite cements deduced from artificial staining: J. Sediment. Petrol., 39, 787–821.CrossRefGoogle Scholar
Fairbridge, R. W., 1983, Syndiagenesis–anadiagenesis–epidiagenesis: phases in lithogenesis, in Larsen, G. and Chilingar, G. V. (eds.), Diagenesis in Sediments and Sedimentary Rocks, 2: Elsevier, Amsterdam, pp. 17–113.Google Scholar
Faure, G. and Mensing, T. M., 2005, Isotopes: Principles and Applications, 3rd edn.: John Wiley and Sons, Hoboken, NJ.
Feazel, C. T. and Schatzinger, R. A., 1985, Prevention of carbonate cementation in petroleum reservoirs, in Schneidermann, N. and Harris, P. M. (eds.), Carbonate Cements: SEPM Special Publication 36, pp. 97–106.
Ferree, R. A., Jordan, D. W., Kertes, R. S., Savage, K. M., and Potter, P. M., 1988, Comparative petrographic maturity of river and beach sand, and origin of quartz arenites: J. Geol. Educ., 36, 79–87.Google Scholar
Fieller, N. R. J., Gilbertson, D. D., and Olbricht, W., 1984, A new method for environmental analysis of particle size distribution data from shoreline sediments: Nature, 311, 648–651.CrossRefGoogle Scholar
Fisher, R. V. and Schmincke, H. -U., 1984, Pyroclastic Rocks: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Flint, R. F., 1971, Glacial and Quaternary Geology: John Wiley and Sons, New York, NY.Google Scholar
Flint, R. F., Sanders, J. E., and Rodgers, J., 1960, Diamictite, a substitute term for symmictite: Geol. Soc. Am. Bull., 71, 1809–1810.CrossRefGoogle Scholar
Flügel, E., 1982, Microfacies Analysis of Limestones: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Flügel, E., 2004, Microfacies of Carbonate Rocks: Analysis, Interpretation and Applications: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Folk, R. L., 1951, Stages of textural maturity in sedimentary rocks: J. Sediment. Petrol., 21, 127–130.CrossRefGoogle Scholar
Folk, R. L., 1959, Practical petrographic classification of limestones: Am Assoc. Pet. Geol. Bull., 43, 1–38.Google Scholar
Folk, R. L., 1962, Spectral subdivision of limestone types, in Ham, W. E. (ed.), Classification of Carbonate Rocks: AAPG Memoir 1, pp. 62–84.
Folk, R. L., 1965, Some aspects of recrystallization in ancient limestones, in Pray, L. C. and Murray, R. C. (eds.), Dolomitization and Limestone Diagenesis: SEPM Special Publication 13, pp. 14–48.
Folk, R. L., 1968, Bimodal supermature sandstones. Product of the desert floor. XXIII Internat. Geol. Cong. Proc. 8, 9–32.Google Scholar
Folk, R. L., 1974, Petrology of Sedimentary Rocks: Hemphill Publishing Co., Austin, TX.Google Scholar
Folk, R. L. and Land, L. S., 1975, Mg/Ca ratio and salinity: Two controls over crystallization of dolomite: Am. Assoc. Pet. Geol. Bull., 59, 60–68.Google Scholar
Folk, R. L. and Pittman, J. S., 1971, Length-slow chalcedony: A new testament for vanished evaporites: J. Sediment. Petrol., 41, 1045–1058.Google Scholar
Folk, R. L. and Ward, W. C., 1957, Brazos River bar: A study in the significance of grain-size parameters: J. Sediment. Petrol., 27, 3–26.CrossRefGoogle Scholar
Forrest, J. and Clark, N. R., 1989, Characterizing grain size distributions: evaluation of a new approach using multivariate extension of entropy analysis: Sedimentology, 36, 711–722.CrossRefGoogle Scholar
Fountain, K. B. and McClellan, G. H., 2000, Mineralogical and geochemical evidence for the origin of phosphorite nodules on the upper West Florida slope, in Glenn, C. R., Prévôt-Lucas, L., and Lucas, J. (eds.), Marine Authigenesis: From Global to Microbial: SEPM Special Publication, 66 pp. 201–220.
Fournier, R. D and Rowe, J. J., 1962, The solubility of cristobalite along the three-phase curve, gas plus liquid plus cristobalite: Am Mineral., 47, 897–902.Google Scholar
Fournier, R. O., 1983, A method of calculating quartz solubility in aqueous sodium chloride solutions: Geochim. Cosmochim. Acta, 47, 579–586.CrossRefGoogle Scholar
Francus, P., 1998, An image-analysis technique to measure grain-size variation in thin sections of soft clastic sediment: Sediment. Geol., 121, 289–298.CrossRefGoogle Scholar
Franks, P. C., 1969, Nature, origin, and significance of cone-in-cone structures in the Kiowa Formation (Early Cretaceous), North-Central Kansas: J. Sediment. Petrol., 39, 1438–1454.Google Scholar
Franks, P. C. and Swineford, A., 1959, Character and genesis of massive opal in Kimball Member, Ogallala Formation, Scott County, Kansas: J. Sediment. Petrol., 29, 186–196.Google Scholar
Frey, R. W. and Seilacher, A., 1980, Uniformity in marine invertebrate ichnology: Lethaea, 13, 183–207.CrossRefGoogle Scholar
Frey, R. W., Pemberton, S. G., and Fagerstrom, J. A., 1984, Morphological, ethological and environmental significance of the ichnogenera Scoyenia and Ancorichnus: J. Paleontol., 58, 511–528.Google Scholar
Friedman, G. M., 1962, Comparison of moment measures for sieving and thin-section data in sedimentary petrological studies: J. Sediment. Petrol., 32, 15–25.Google Scholar
Friedman, G. M., 1967, Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands: J. Sediment. Petrol., 37, 327–354.Google Scholar
Friedman, G. M., 1979, Address of the retiring president of the International Association of Sedimentologists: Differences in size distributions of populations of particles among sands of various origins: Sedimentology, 26, 3–32.CrossRefGoogle Scholar
Friedman, G. M. and Sanders, J. E., 1978, Principles of Sedimentology: John Wiley and Sons, New York, NY.Google Scholar
Friedman, G. M., Gebelein, C. D., and Sanders, J. E., 1971, Micrite envelopes of carbonate grains are not exclusively of photosynthetic algal origin: Sedimentology, 16, 89–96.CrossRefGoogle Scholar
Froelich, P. N., Arthur, M. A., Burnett, W. C., et al., 1988, Early diagenesis of organic matter in Peru continental margin sediments: Phosphorite precipitation: Mar. Geol., 80, 309–343.CrossRefGoogle Scholar
Frye, K., 1981, Encyclopedia of Mineralogy: Hutchinson Ross Publishing, Stroudsburg.Google Scholar
Full, W. E., Ehrlich, R., and Kennedy, S. K., 1984, Optimal configuration and information content of sets of frequency distributions: J. Sediment. Petrol., 54, 117–126.Google Scholar
Galehouse, J. S., 1971, Sedimentation analysis, in Carver, R. E. (ed.), Procedures in Sedimentary Petrology: John Wiley and Sons, New York, NY, pp. 69–94.Google Scholar
Gao, G. and Land, L. S., 1991, Nodular cherts from the Arbuckle Group, Slick Hills, SW Oklahoma: A combined field, petrographic and isotopic study: Sedimentology, 38, 857–870.CrossRefGoogle Scholar
Garrels, R. M. and Christ, C. L., 1965, Solutions, Minerals, and Equilibria: Harper and Row, New York, NY.Google Scholar
Garrels, R. M. and Mackenzie, F. T., 1971, Evolution of Sedimentary Rocks: W. W. Norton, New York, NY.Google Scholar
Garrison, R. E. and Kennedy, W. J., 1977, Origin of solution seams and flaser structure in Upper Cretaceous chalks of southern England: Sediment. Geol., 19, 107–137.CrossRefGoogle Scholar
Garrison, R. E., Douglass, R. B., Pisciotto, K. E., Isaacs, C. M., and Ingle, J. C. (eds.), 1981, The Monterey Formation and Related Siliceous Rocks of California: SEPM, Pacific Section, Los Angeles, CA.
Garven, G. and Freeze, R. A., 1984, Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits: Am. J. Sci., 284, 1085–1174.CrossRefGoogle Scholar
Genger, D. and Sethi, P., 1998, A geochemical and sedimentological investigation of high-resolution environmental changes within the Late Pennsylvanian (Missourian) Eudora Core Black Shale of the Mid-Continent region, U.S.A., in Schieber, J., Zimmerle, W., and Sethi, P. S. (eds.), 1998, Shales and Mudstones I and II: E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, pp. 271–293.Google Scholar
Gieskes, J. M., 1983, The chemistry of interstitial waters of deep sea sediments: Interpretations of deep sea drilling data, in Riley, J. P. and Chester, R. (eds.), Chemical Oceanography 8: Academic Press, New York, pp. 221–269.CrossRefGoogle Scholar
Gieskes, J. M., Elderfield, H., and Nevsky, B., 1983, Interstitial water studies, Leg 65, Deep Sea Drilling Project, in, Lewis, B. R. R., Robison, P.et al. (eds.), Initial Reports, DSDP 65, US Government Printing Office, Washington, DC, pp. 441–449.Google Scholar
Giles, M. R., 1997, Diagenesis: A Quantitative Perspective – Implications for Basin Modelling and Rock Property Prediction: Kluwer Academic, Dordrecht.Google Scholar
Giles, M. R. and Boer, R. B., 1990, Origin and significance of redistributional secondary porosity: Mar Pet. Geol., 7, 378–397.CrossRefGoogle Scholar
Gilligan, A., 1919, The petrography of the Millstone Grit of Yorkshire: Geol. Soc. London Q. J., 75, 251–292.CrossRefGoogle Scholar
Ginsburg, R. N., 1956, Environmental relationships of grain size and constituent particles in some south Florida carbonate environments: Am. Assoc. Pet. Geol. Bull., 40, 2384–2387.Google Scholar
Girard, J.-P., Savin, S. M., and Aronson, J. L., 1989, Diagenesis of the Lower Cretaceous arkoses of the Angola Margin: Petrologic, K/Ar dating and 18O/16O evidence: J. Sediment. Petrol., 59, 519–538.Google Scholar
Girty, G. H., Mossman, B. J., and Pincus, S. D., 1988, Petrology of Holocene sand, Peninsular Ranges, California and Baja Norte, Mexico: Implications for provenance-discrimination models: J. Sediment. Petrol., 58, 881–887.Google Scholar
Given, R. K. and Wilkinson, B. H., 1985, Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates: J. Sediment. Petrol., 55, 109–119.Google Scholar
Given, R. K. and Wilkinson, B. H., 1987, Dolomite abundance and stratigraphic age: Constraints on rates and mechanisms of Phanerozoic dolostone formation: J. Sediment. Petrol., 57, 1068–1078.CrossRefGoogle Scholar
Glenn, C. R., Prévôt-Lucas, L., and Lucas, J. (eds.), 2000, Marine Authigenesis: From Global to Microbial: Society for Sedimentary Geology. Special Publication 66. (Contains numerous papers devoted to phosphorites.)
Glenn, C. R. and Arthur, M. A., 1988, Petrology and major element geochemistry of Peru margin phosphorites and associated diagenetic minerals: authigenesis in modern organic-rich sediments: Mar. Geol., 80, 231–267.CrossRefGoogle Scholar
Glenn, C. R. and Arthur, M. A., 1990, Anatomy and Origin of a Cretaceous phosphorite-greensand giant, Egypt: Sedimentology, 37, 123–154.CrossRefGoogle Scholar
Goldich, S. S., 1938, A study in rock weathering: J. Geol., 46, 17–58.CrossRefGoogle Scholar
Goldstein, J. I., Newbury, D. E., Echlin, P.et al., 2003, Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn., Kluwer Academic/Plenum, New York, NY.CrossRefGoogle Scholar
Gole, M. J. and Klein, C., 1981, Banded iron-formations through much of Precambrian time: J. Geol., 89, 169–183.CrossRefGoogle Scholar
Gorai, M., 1951, Petrological studies on plagioclase twins: Am Mineral., 36, 884–901.Google Scholar
Götte, T. and Richter, D. K., 2006, Cathodoluminescence characterization of quartz particles in mature arenites: Sedimentology, 53, 1347–1359.CrossRefGoogle Scholar
Götte, T., Neuser, R. D. and Richter, D. K., 2001, New parameters of quartz in sandstone-petrography: Cathodoluminescence (CL) – investigation of mature sands and sandstones of north-western Germany. Conference Abstracts, Cathodoluminescence in Geosciences: New insights from CL in combination with other techniques, Freiburg, September 6–8, pp. 38–39.
Götze, J. and Zimmerle, W., 2000, Quartz and Silica as Guide to Provenance in Sediments and Sedimentary Rocks: Contributions to Sedimentary Geology 21, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Graham, S. A., Tolson, R. B., Decelles, P. G., et al., 1986, Provenance modeling as a technique for analysing source terrane evolution and controls on foreland sedimentation, in Allen, P. A. and Homewood, P. (eds.), Foreland Basins: Blackwell Scientific, Oxford, pp. 425–436.CrossRefGoogle Scholar
Grantham, J. H. and Velbel, M. A., 1988, The influence of climate and topography on rock-fragment abundance in modern fluvial sands of the southern Blue Ridge Mountains, North Carolina: J. Sediment. Petrol., 58, 219–227.CrossRefGoogle Scholar
Graton, L. C. and Fraser, H. J., 1935, Systematic packing of spheres with particular relation to porosity and permeability: J. Geol., 43, 785–909.CrossRefGoogle Scholar
Greensmith, T. J., 1989, Petrology of the Sedimentary Rocks, 7th edn.: Unwin Hyman, London.Google Scholar
Greenwood, B. and Sherman, D. J., 1986, Hummocky cross-stratification in the surf zone: flow parameters and bedding genesis: Sedimentology, 33, 33–45.CrossRefGoogle Scholar
Gregg, J. M., 1985, Regional epigenetic dolomitization in the Bonneterre Dolomite (Cambrian), southeastern Missouri: Geology, 13, 503–506.2.0.CO;2>CrossRefGoogle Scholar
Gregg, J. M., 2004, Basin fluid flow, base-metal sulphide mineralization and the development of dolomite petroleum reservoirs, in Braithwaite, C. J. R., Rizzi, G., and Darke, G. (eds.), The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs: Geological Society of London, Special Publication 235, pp. 157–175.Google Scholar
Gregg, J. M. and Shelton, K. L., 1990, Dolomitization and dolomite neomorphism in the backreef facies of the Bonneterre and Davis formations (Cambrian), southeastern Missouri: J. Sediment. Petrol., 60, 549–562.Google Scholar
Gregg, J. M. and Sibley, D. F., 1984, Epigenetic dolomitization and the origin of xenotopic dolomite texture: J. Sediment. Petrol., 54, 908–931.Google Scholar
Grewal, K. S., Buchan, G. D., Clayton, J. J., and Mcpherson, R. J., 1991, A Comparison of the Sedigraph and Pipette Methods for Soil Particle Size Analysis: Geological Society of New Zealand Miscellaneous Publication, Lower Hutt, New Zealand.Google Scholar
Griffith, J. C., 1967, Scientific Methods in Analysis of Sediments: McGraw-Hill, New York, NY.Google Scholar
Griffiths, J. C., 1971, Problems of sampling in geoscience: Trans. Inst. Min. Metall., 80, B346–B356.Google Scholar
Grigsby, J. D., 1990, Detrital magnetite as a provenance indicator: J. Sediment. Petrol., 60, 940–951.Google Scholar
Gromet, L. P., Dymek, R. F., Haskin, L. A., and Korotev, R. L., 1984, The “North American shale composite”: Its compilation and major and trace element characteristics: Geochim. Cosmochim. Acta, 48, 2469–2482.CrossRefGoogle Scholar
Gross, G. A., 1965, Geology of Iron Deposits in Canada I: General Geology and Evaluation of Iron Deposits: Geological Survey of Canada, Economic Geology Report 22.
Gulbrandsen, R. A. and Roberson, C. E., 1973, Inorganic phosphorites in seawaterGriffith, E. J.et al. (eds.), Environmental Phosphorus Handbook: John Wiley and Sons, New York, NY, ch. 5, pp. 117–140.Google Scholar
Gulbrandsen, R. A., Roberson, C. E., and Neil, S. T., 1984, Time and crystallization of apatite in seawater: Geochim. Cosmochim. Acta, 48, 213–218.CrossRefGoogle Scholar
Gunnarsson, I. and Arnórsson, S., 2000, Amorphous silica solubility and the thermodynamic properties of H4SiO4 in the range of 0o to 350℃ at Psat: Geochim. Cosmochim. Acta, 64, 2295–2307.CrossRefGoogle Scholar
Hails, J. R., 1976, Placer deposits, in Wolf, K. H. (ed.), Handbook of Strata-Bound and Stratiform Ore Deposits, Elsevier, New York, NY, pp. 213–244.Google Scholar
Hallam, A., 1981, Facies Interpretation and the Stratigraphic Record: W. H. Freeman, San Francisco, CA.Google Scholar
Ham, W. E., 1952, Algal origin of the “Birdseye” limestones in the McLish Formation: Okla. Acad. Sci., Proc. 33, 200–203.Google Scholar
Haney, W. D. and Briggs, L. I., 1964, Cyclicity of textures in evaporite rocks of the Lucas Formation, in Merriam, D. F. (ed.), Symposium on Cyclic Sedimentation: Kansas Geological Survey Bulletin 169, vol. 1, pp. 191–197.
Hanford, C. R., 1981, A process-sedimentary framework for characterizing recent and ancient sabkhas: Sediment. Geol., 30, 255–265.CrossRefGoogle Scholar
Hanshaw, B. B., Back, W. E., and Deike, R. G., 1971, A geochemical hypothesis for dolomitization of groundwater: Econ. Geol., 66, 710–724.CrossRefGoogle Scholar
Harder, H., 1989, Mineral genesis in ironstones: a model based upon laboratory experiments and petrographic observations, in Young, T. P. and Taylor, W. E. G. (eds.), Phanerozoic Ironstones: The Geological Society, London, pp. 9–18.Google Scholar
Hardie, L. A., 1984, Evaporites: marine or non-marine: Am. J. Sci., 284, 193–240.CrossRefGoogle Scholar
Hardie, L. A., 1987, Dolomitization: A critical view of some current views: J. Sediment. Petrol., 57, 166–183.CrossRefGoogle Scholar
Harmon, R. S. and Wicks, C. M. (eds.), 2006, Perspectives on Karst Geomorphology, Hydrology, and Geochemistry – A Tribute Volume to Derek C. Ford and William B. White: Geological Society of America Special Paper 404.
Harms, J. C., Southard, J. B., and Walker, R. G., 1982, Structures and Sequences in Clastic Rocks: SEPM Short Course 9.
Harms, J. C., Southard, J. B., Spearing, D. R., and Walker, R. G., 1975, Depositional Environments as Interpreted From Primary Sedimentary Structures and Stratification Sequences: SEPM Short Course 2.
Harvie, C. E., Euster, H. P., and Weare, J. M., 1982, Mineral equilibria in the six-component seawater system, Na–K–Mg–Ca–SO4–Cl–H2O at 250 ℃, II: Composition of the saturated solutions: Geochim. Cosmochim. Acta, 46, 1603–1618.CrossRefGoogle Scholar
Hasiotis, S. T., Wagoner, J. C., Demko, T. M., et al., 2002, Continental Trace Fossils: SEPM. Short Course Notes 52.
Hattori, I., 1989, Length-slow chalcedony in sedimentary rocks of the Mesozoic allochthonous terrane in central Japan and its use for tectonic synthesis, in Hein, J. R. and Obradović, J. (eds.), Siliceous Deposits of the Tethys and Pacific Regions: Springer-Verlag, New York, NY, pp. 201–215.CrossRefGoogle Scholar
Hay, R. L., 1981, Geology of zeolites in sedimentary rocks, in Mumpton, F. A. (ed.), Mineralogy and Geology of Natural Zeolites: Mineralogical Society of America, Reviews in Mineralogy 4, pp. 53–64.Google Scholar
Heaney, P. J., Prewitt, C. T., and Gibbs, G. V. (eds.), 1994, Silica: Physical Behavior, Geochemistry and Materials Applications: Mineralogical Society of America, Reviews in Mineralogy 29.
Heath, G. R., 1974, Dissolved silica and deep-sea sediments, in Hay, W. W. (ed.), Studies in Paleo-Oceanography: SEPM Special Publication 20, pp. 77–93.
Hecht, C. A., 2004, Geomechanical models for clastic grain packing: Pure Appl Geophys., 161, 331–349.CrossRefGoogle Scholar
Heimann, A. and Sass, E., 1989, Travertines in the northern Hula Valley, Israel: Sedimentology, 36, 95–108.CrossRefGoogle Scholar
Hein, J. R. and Karl, S. M., 1983, Comparisons between open-ocean and continental margin chert sequences, in Iijima, A., Hein, J. R., and Siever, R. (eds.), Siliceous Deposits in the Pacific Region: Elsevier, Amsterdam, pp. 25–43.CrossRefGoogle Scholar
Hein, J. R. and Obradović, J. (eds.), 1989, Siliceous Deposits of the Tethys and Pacific Regions: Springer-Verlag, New York, NY.CrossRef
Hein, J. R. and Parrish, J. T., 1987, Distribution of siliceous deposits in space and time, in Hein, J. R. (ed.), Siliceous Sedimentary Rock – Hosted Ores and Petroleum: Van Nostrand Reinhold, New York, NY, pp. 10–57.Google Scholar
Hein, J. R., Kuijers, E. P., Denyer, P., and Sliney, R. E., 1983, Petrology and geochemistry of Cretaceous and Paleogene cherts from western Costa Rica, in Iijima, A., Hein, J. R., and Siever, R. (eds.), Siliceous Deposits in the Pacific Region: Elsevier, Amsterdam, pp. 143–174.CrossRefGoogle Scholar
Hein, J. R., Yeh, H.-W., and Barron, J. A., 1990, Eocene diatom chert from Adak Island, Alaska: J. Sediment. Petrol., 60, 250–257.Google Scholar
Helmold, K. P., 1985, Provenance of feldspathic sandstones – the effect of diagenesis on provenance interpretations: a review, in Zuffa, G. G. (ed.), Provenance of Arenites: Reidel, Dordrecht, pp. 139–163.CrossRefGoogle Scholar
Herbig, H-G. and Stattegger, K., 1989, Late Paleozoic heavy mineral and clast modes from the Betic Cordillera (southern Spain): transition from a passive to an active continental margin: Sediment. Geol., 63, 93–108.CrossRefGoogle Scholar
Herring, J. R., 1995, Permian phosphorites: A paradox of phosphogenesis, in Scholle, P. A., Peryt, T. M., and Ulmer-Scholle, D. S. (eds.), The Permian of Northern Pangea. Sedimentary Basins and Economic Resources: Springer-Verlag, Berlin, pp. 292–312.CrossRefGoogle Scholar
Hesse, R. and Chough, S. K., 1980, The Northwest Atlantic mid-ocean channel of the Labrador Sea: II. Deposition of parallel laminated levee-muds from the viscous sublayer of low density turbidity currents: Sedimentology, 27, 697–711.CrossRefGoogle Scholar
Heydari, E. and Moore, C. H., 1988, Oxygen isotope evolution of the Smackover pore waters, southeast Mississippi salt basin: Geol. Soc. Am. Abst. Program, 20: A261.Google Scholar
Hiatt, E. E. and Budd, D. A., 2003, Extreme paleoceanographic conditions in a Paleozoic oceanic upwelling system: Organic productivity and widespread phosphogenesis in the Permian Phosphoria Sea, in Chan, M. S. and Archer, A. W. (eds.), Extreme Depositional Environments: Mega End Members in Geologic Time: Geological Society of America Special Paper 370, pp. 245–264.
Hoefs, J., 2004, Stable Isotope Geochemistry: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Holbrook, P., 2002, The primary controls over sediment compaction, in Huffman, A. R. and Bowers, G. L. (eds.), Pressure Regimes in Sedimentary Basins and their Prediction: AAPG Memoir 76, pp. 21–32.
Horsfield, B., 1997, The bulk composition of first-formed petroleum in source rocks, in Welte, D. H., Horsfield, B., and Baker, D. R. (eds.) Petroleum and Basin Evolution: Springer-Verlag, Berlin, pp. 337–402.Google Scholar
Horton, A., Ivimey-Cook, H. C., Harrison, R. K., and Young, B. R., 1980, Phosphatic ooids in the Upper Lias (Lower Jurassic) of central England: J. Geol. Soc. London, 137, 731–740.CrossRefGoogle Scholar
Houghton, H. F., 1980, Refined technique for staining plagioclase and alkali feldspars in thin section: J. Sediment. Petrol., 50, 629–631.CrossRefGoogle Scholar
Houseknecht, D. W., 1984, Influence of grain size and temperature on intergranular pressure solution, quartz cementation, and porosity in a quartzose sandstone: J. Sediment. Petrol., 54, 348–361.Google Scholar
Houseknecht, D. W. and Pittman, E. D. (eds.), 1992, Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones: SEPM Special Publication 47.
Howell, D. G. and Normark, W. R., 1982, Sedimentology of submarine fans, in Scholle, P. A. and Spearing, D. (eds.), Sandstone Depositional Environments: AAPG Memoir 31, pp. 365–404.
Hsü, K. J., 1989, Physical Principles of Sedimentology: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Hsü, K. J. and Siegenthaler, C., 1969, Preliminary experiments and hydrodynamic movement induced by evaporation and their bearing on the dolomite problem: Sedimentology, 12, 11–25.CrossRefGoogle Scholar
Hubert, J. F., 1962, A zircon–tourmaline–rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones: J. Sediment. Petrol., 32, 440–450.Google Scholar
Hunt, J. M., 1979, Petroleum Geochemistry and Geology: W.H. Freeman, San Francisco, CA.Google Scholar
Hunt, J. M., 1996, Petroleum Geochemistry and Geology, 2nd edn.: W. H. Freeman, New York, NY.Google Scholar
Hunter, R. E., 1967, The petrography of some Illinois Pleistocene and Recent sands: Sediment. Geol., 1, 57–75.CrossRefGoogle Scholar
Hussain, M. and Warren, J. K., 1989, Nodular and enterolithic gypsum: the “sabkatization” of Salt Flat Playa, west Texas: Sediment. Geol., 64, 13–24.CrossRefGoogle Scholar
Hutton, A. C., 1995, Organic petrography of oil shales, in Snape, C. (ed.), Composition, Geochemistry and Conversion of Oil Shales: Kluwer, Dordrecht, pp. 17–33.CrossRefGoogle Scholar
Iijima, A., Inagaki, H., and Kakuwa, Y., 1979, Nature and origin of the Paleogene cherts in the Setogawa Terrain, Shnizuoka, central Japan: J. Fac. Sci., Univ. Tokyo, 20, 1–30.Google Scholar
Iijima, A., Hein, J. R., and Siever, R. (eds.), 1983, Siliceous Deposits in the Pacific Region: Developments in Sedimentology 36.
Illenberger, W. K., 1991, Pebble shape (and size?): J. Sediment. Petrol., 61, 756–767.Google Scholar
Illing, L. V., 1954, Bahaman calcareous sands: Am. Assoc. Pet. Geol. Bull., 38, 1–95.Google Scholar
Ingersoll, R. V., 1988, Tectonics of sedimentary basins: Geol. Soc. Am. Bull., 100, 1704–1719.2.3.CO;2>CrossRefGoogle Scholar
Ingersoll, R. V., 1990, Actualistic sandstone petrofacies: discriminating modern and ancient source rocks: Geology, 18, 733–736.2.3.CO;2>CrossRefGoogle Scholar
Ingersoll, R. V., Bullard, T. D., Ford, R. L., et al., 1984, The effect of grain size on detrital modes: A test of the Gazzi–Dickinson point counting method: J. Sediment. Petrol., 54, 103–116.Google Scholar
Ingram, R. L., 1954, Terminology for thickness of stratification and parting units in sedimentary rocks: Geol. Soc. Am. Bull., 65, 937–938.CrossRefGoogle Scholar
Ingram, R. L., 1971, Sieve analysis, in Carver, R. E. (ed.), Procedures in Sedimentary Petrology: John Wiley and Sons, New York, NY, pp. 49–67.Google Scholar
,International Committee for Coal Petrology, 1971, International Handbook of Coal Petrography, lst Supplement to 2nd Edition: Centre National de la Recherche Scientifique, Paris.Google Scholar
,International Committee for Coal Petrology, 1975, Analysis Subcommission, Fluorescence Microscopy and Fluorescence Photometry, in International Handbook of Coal Petrography, 2nd Supplement to 2nd Edition: Centre National de la Recherche Scientifique, Paris.Google Scholar
Isley, A. E., 1995, Hydrothermal plumes and the delivery of iron to banded iron formations: J. Geol., 103, 169–185.CrossRefGoogle Scholar
James, H. L., 1966, Chemistry of Iron-Rich Sedimentary Rocks: Data of Geochemistry, 6th edn.: US Geological Survey Professional Paper 440-W.
James, H. L., 1992, Precambrian iron-formations: Nature, origin, and mineralogic evolution from sedimentation to metamorphism, in Wolf, K. H. and Chilingarian, G. V. (eds.), Diagenesis III: Developments in Sedimentology 47, pp. 543–589.
James, H. L. and Trendall, A. F., 1982, Banded iron formation: Distribution in time and paleoenvironmental significance, in Holland, H. D. and Schidlowski, M. (eds.), Mineral Deposits and the Evolution of the Biosphere: Springer-Verlag, Berlin, pp. 199–218.CrossRefGoogle Scholar
James, N. P., 1983, Reef environment, in Scholle, P. A., Bebout, D. G., and Moore, C. H. (eds.), Carbonate Depositional Environments: AAPG Memoir 33, pp. 345–440.
James, N. P. and Bone, Y., 1989, Petrogenesis of Cenozoic, temperate water calcarenites, south Australia: A model for meteoric shallow burial diagenesis of shallow water calcite sediments: J. Sediment. Petrol., 59, 191–203.Google Scholar
James, N. P. and Choquette, P. W., 1983a, Diagenesis 5. Limestones: Introduction: Geosci. Can., 10, 159–161.Google Scholar
James, N. P. and Choquette, P. W., 1983b, Diagenesis 6. Limestones – The sea floor diagenetic environment: Geosci. Can., 10, 162–179.Google Scholar
James, N. P. and Choquette, P. W., 1984, Diagenesis 9. Limestones – The meteoric diagenetic environment: Geosci. Can., 11, 161–194.Google Scholar
James, N. P. and Ginsburg, R. N., 1979, The Seaward Margin of Belize Barrier and Atoll Reefs: International Association of Sedimentologists Special Publication 3.
James, N. P. and Kendall, A. C., 1992, Introduction to carbonate and evaporite facies models, in Walker, R. G. and James, N. P. (eds.), Facies Models – Response to Sea Level Change: Geological Association of Canada, St. Jouns, Newfoundland, pp. 265–276.Google Scholar
James, W. C. and OaksJr., R. Q. 1977, Petrology of the Kinnikinic Quartzite (Middle Ordovician), east-central Idaho: J. Sediment. Petrol., 47, 1491–1511.Google Scholar
Jerram, D. A., 2001, Visual comparators for degree of grain-size sorting in two and three dimensions: Comput. Geosci., 27, 485–492.CrossRefGoogle Scholar
Ji, S. and Mainprice, D., 1990, Recrystallization and fabric development in plagioclase: J. Geol., 98, 65–79.CrossRefGoogle Scholar
Johnson, M. R., 1994, Thin section grain size analysis revisited: Sedimentology, 41, 985–999.CrossRefGoogle Scholar
Johnsson, M. J., 1993, The system controlling composition of clastic sediments, in Johnsson, M. J. and Basu, A. (eds.), Processes Controlling the Composition of Clastic Sediments: Geological Society of America Special Paper 284, pp. 1–19.
Johnsson, M. J. and Basu, A., 1993, Processes Controlling the Composition of Clastic Sediments: Geological Society of America Special Paper 284.
Johnsson, M. J. and Stallard, R. F., 1990, Physiographic controls on the composition of sediments derived from volcanic and sedimentary terrains on Barro Colorado Island, Panama – Reply: J. Sediment. Petrol., 60, 799–801.Google Scholar
Johnsson, M. J., Stallard, R. F., and Meade, R. H., 1988, First-cycle quartz arenites in the Orinoco River basin, Venezuela and Colombia: J. Geol., 96, 263–277.CrossRefGoogle Scholar
Jones, B. and MacDonald, R. W., 1989, Micro-organisms and crystal fabrics in cave pisoliths from Grand Cayman, British West Indies: J. Sediment. Petrol., 59, 387–396.Google Scholar
Jones, D. L. and Murchey, B., 1986, Geologic significance of Paleozoic and Mesozoic radiolarian chert: Ann. Rev. Earth Planet. Sci. Lett., 14, 455–492.CrossRefGoogle Scholar
Jones, G. D. and Rostron, B. J., 2000, Analysis of flow constraints in regional-scale reflux dolomitization: Constant versus variable-flux hydrological models: Bull. Can. Pet. Geol., 48, 230–245.CrossRefGoogle Scholar
Jones, G. D., Whitaker, F. F., Smart, P. L., and Sanford, W. E., 2002, Fate of reflux brines in carbonate platforms: Geology, 30, 371–374.2.0.CO;2>CrossRefGoogle Scholar
Jones, G. D., Smart, P. L., Whitaker, F. F., Rostron, B. J., and Machel, H. G., 2003, Numerical modeling of reflux dolomitization in the Grosmont platform complex (Upper Devonian), Western Canada Sedimentary Basin: Am. Assoc. Pet. Geol. Bull., 87, 1273–1298.Google Scholar
Jones, G. D., Whitaker, F. F., Smart, P. L., and Sanford, W. E., 2004, Numerical analysis of seawater circulation in carbonate platforms: II. The dynamic interaction between geothermal and brine reflux circulation: Am. J. Sci., 304, 250–284.CrossRefGoogle Scholar
Jones, J. B. and Segnit, E. R., 1971, The nature of opal I. Nomenclature and constituent phases. J. Geol. Soc. Aust., 18, 57–68.CrossRefGoogle Scholar
Jones, N. W. and Bloss, F. D., 1980, Laboratory Manual for Optical Mineralogy: Alpha Editions (Burgess International Group, Inc.), Edina, MI, variously paginated.
Jones, R. L. and Blatt, H., 1984, Mineral dispersal patterns in the Pierre Shale: J. Sediment. Petrol., 54, 17–28.Google Scholar
Julia, R., 1983, Travertines, in Scholle, P. A., Bebout, D. G., and Moore, C. H. (eds.), Carbonate Depositional Environments: AAPG Memoir, pp. 64–72.Google Scholar
Kahn, J. S., 1956, The analysis and distribution of the properties of packing in sand-size sediments 1. On the measurement of packing in sandstones: J. Geol., 64, 385–395.CrossRefGoogle Scholar
Kairo, S., Suttner, L. J., and Dutta, P. K., 1993, Variability in sandstone composition as a function of depositional environments in coarse-grained delta systems, in Johnson, M. J. and Basu, A. (eds.), Processes Controlling the Composition of Clastic Sediments: Geological Society of America Special Paper 284, pp. 263–284.
Kastner, M. and Gieskes, J. M., 1983, Opal-A to opal-CT transformation: A kinetic study, in Iijima, A., Hein, J. R., and Siever, R. (eds.), Siliceous Deposits in the Pacific Region: Developments in Sedimentology 36, pp. 211–228.
Kastner, M. and Siever, R., 1979, Low temperature feldspars in sedimentary rocks: Am. J. Sci., 279, 435–479.CrossRefGoogle Scholar
Kastner, M., Keene, J. B., and Gieskes, J. M., 1977, Diagenesis of siliceous oozes – I. Chemical controls on the rate of opal-A to opal-CT transformation – an experimental study: Geochim. Cosmochim. Acta, 41, 1041–1059.CrossRefGoogle Scholar
Kendall, A. C., 1984, Evaporites, in Walker, R. G. (ed.), Facies Models, 2nd edn., Geoscience Canada Reprint Series 1, pp. 259–296.
Kendall, C. G.St, C. and Warren, J., 1987, A review of the origin and setting of tepees and their associated fabrics: Sedimentology, 34, 1007–1027.CrossRefGoogle Scholar
Kennard, J. M. and James, N. P., 1986, Thrombolites and stromatolites: two distinct types of microbial structures: Palaios, 1, 492–503.CrossRefGoogle Scholar
Kennedy, S. K. and Mazzullo, J., 1991, Image analysis method of grain size measurement, in Syvitski, J. P. M. (ed.), 1991, Principles, Methods, and Application of Particle Size Analysis: Cambridge University Press, Cambridge, pp. 76–87.CrossRefGoogle Scholar
Kennedy, W. J. and Garrison, R. E., 1975, Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England: Sedimentology, 22, 311–386.CrossRefGoogle Scholar
Khalaf, F. I., 1990, Occurrence of phreatic dolocrete within Tertiary clastic deposits of Kuwait, Arabian Gulf: Sediment. Geol., 68, 223–239.CrossRefGoogle Scholar
Kim, S.-T. and O'Neil, J. R., 1997, Equilibrium and nonequilibrium oxygen isotope effect in synthetic carbonates: Geochim. Cosmochim. Acta, 61, 3461–3475.CrossRefGoogle Scholar
Kimberley, M. M., 1994, Debate about ironstones: has solute supply been surficial weathering, hydrothermal convection, or exhalation of deep fluids: Terra Nova, 6, 116–132.CrossRefGoogle Scholar
Kirkham, A., 2004, Patterned dolomites: microbial origin and clues to vanished evaporites in the Arab Formation, Upper Jurassic, Arabian Gulf, in Braithwaite, C. J. R., Rizzi, G., and Darke, G. (eds.), The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs: Geological Society of London Special Publication 235, pp. 301–308.
Klein, C. and HurlbutJr., C. S. 2002, The 22nd Edition of the Manual of Mineral Science (after James D. Dana): John Wiley and Sons, New York, NY.Google Scholar
Klein, G. de. V. and Willard, D. A., 1989, Origin of Pennsylvanian coal-bearing cyclothems of North America: Geology, 17, 152–155.2.3.CO;2>CrossRefGoogle Scholar
Klimchouk, A. B., Ford, D. C., Palmer, A. N., and Dreybrodt, W. (eds.), 2000, Speleogenesis: Evolution of Karst Aquifers: National Speleological Society, Huntsville, AL.
Knauth, L. P., 1979, A model for the origin of chert in limestone: Geology, 7, 274–277.2.0.CO;2>CrossRefGoogle Scholar
Knudsen, A. C. and Gunter, M. E., 2002, Sedimentary phosphorites – An example: Phosphoria Formation, Southeastern Idaho, U. S. A., in Kohn, M. L., Rakavan, J., Hughes, J. M.et al. (eds.), Phosphates – Geochemical, Geobiological, and Materials Importance: Mineralogical Society of America Reviews in Mineralogy and Geochemistry 48, pp. 363–389.Google Scholar
Koepnick, R. B., 1984, Distribution and vertical permeability of stylolites within a Lower Cretaceous carbonate reservoir, Abu Dhabi, U.A.E.. in Stylolites and Associated Phenomena – Relevance to Hydrocarbon Reservoirs: Abu Dhabi Reservoir Research Foundation Special Publication, Abu Dhabi, pp. 261–278.Google Scholar
Kohout, F. A., 1967, Ground water flow and the geothermal regime of the Floridan Plateau: Trans. Gulf Coast Assoc. Geol. Soc., 17, 339–354.Google Scholar
Kolodny, Y., 1980, The origin of phosphorite deposits in light of occurrences of Recent sea-floor phosphorites, in Bentor, Y. K. (ed.), Marine Phosphorites: SEPM Special Publication 29, p. 249.
Kolodny, Y., 1981, Phosphorites, in Emiliani, C. (ed.), The Ocean Lithosphere: the Sea. John Wiley and Sons, New York, NY, vol. 7, pp. 981–1023.Google Scholar
Kolodny, Y. and Kaplan, I. R., 1970, Uranium isotopes in sea floor phosphorites: Geochim. Cosmochim. Acta, 34, 3–24.CrossRefGoogle Scholar
Konert, M., 1997, Comparison of laser grain size analysis with pipette and sieve analysis: A solution for underestimation of the clay fraction: Sedimentology, 44, 523–35.CrossRefGoogle Scholar
Kraus, M. J., 1984, Sedimentology and tectonic setting of early Tertiary quartzite conglomerates, northwest Wyoming, in Koster, E. H. and Steel, R. J. (eds.), Sedimentology of Gravels and Conglomerates: Canadian Society of Petroleum Geology Memoir 10, pp. 203–216.
Krauskopf, K. B., 1979, Introduction to Geochemistry, 2nd edn.: McGraw-Hill, New York, NY.Google Scholar
Krinsley, D. and Dornkamp, J., 1973, Atlas of Quartz Sand Surface Textures: Cambridge University Press, Cambridge.Google Scholar
Krinsley, D. and Tovey, N. K., 1978, Cathodoluminescence in quartz sand grains: Scan. Electron Micros., 1, 887–894.Google Scholar
Krinsley, D. and Trusty, P., 1986, Sand grain surface textures, in Sieveking, G. De C. and Hart, M. B. (eds.), The Scientific Study of Flint and Chert: Cambridge University Press, Cambridge, pp. 201–207.Google Scholar
Krinsley, D. H., Pye, K., Boggs, S., and Tovey, N. K., 1998, Backscattered Scanning Electron Microscopy and Image Analysis of Sediments and Sedimentary Rocks: Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Kroopnick, P., 1980, The distribution of 13C in the Atlantic Ocean: Earth Planet. Sci. Lett., 49, 469–484.CrossRefGoogle Scholar
Krug, H.-J., Brandstädter, H., and Jacob, K. H., 1996, Morphological instabilities in pattern formation by precipitation and crystallization processes: Geol. Rundsch., 85, 19–28.CrossRefGoogle Scholar
Krumbein, W. C., 1941, Measurement and geological significance of shape and roundness of sedimentary particles: J. Sediment. Petrol., 11, 64–72.CrossRefGoogle Scholar
Krynine, P. D., 1940, Petrology and Genesis of the Third Bradford Sand: Pennsylvania State College Mineral Industries Experimental Station, Bulletin 27.
Krynine, P. D., 1943, Diastrophism and the Evolution of Sedimentary Rocks: Pennsylvania Mineral Industries Tech Paper 84-A.
Krynine, P. D., 1946, The tourmaline group in sediments: J. Geol., 54, 65–87.CrossRefGoogle Scholar
Kuehl, S. A., Hairu, T. M., Sanford, M. W., Nittrouer, C. A., and DeMaster, D. J., 1991, Millimeter-scale sedimentary structure of fine-grained sediments: Examples from continental margin environments, in Bennett, R. H., O'Brien, N. R., and Hulbert, M. H. (eds.), Microstructures of Fine-Grained Sediments: Springer-Verlag, New York, pp. 33–45.CrossRefGoogle Scholar
Kuenen, Ph. H., 1958, Experiments in geology: Glasgow Geol. Soc. Trans., 23, 1–28.CrossRefGoogle Scholar
Kuenen, Ph. H., 1959, Experimental abrasion, part 3, Fluviatile action on sand: Am J. Sci., 257, 172–190.CrossRefGoogle Scholar
Kuenen, Ph. H., 1960, Experimental abrasion, part 4, Eolian action: J. Geol., 68, 427–449.CrossRefGoogle Scholar
LaBerge, G. L., 1973, Possible biological origin of Precambrian iron-formations: Econ. Geol., 68, 1098–1109.CrossRefGoogle Scholar
LaBerge, G. L., Robbins, E. I., and Han, T. -M., 1987, A model for the biological precipitation of Precambrian iron-formations – A: Geological evidence, in Appel, P. W. U. and LaBerge, G. L. (eds.), Precambrian Iron-Formations: Theophrastus Publicatons, Athens, pp. 69–96.Google Scholar
Lamboy, M., 1990, Microbial mediation in phosphatogenesis: New data from the Cretaceous phosphatic chalks of northern France, in Northolt, A. J. G., and Jarvis, I. (eds.), 1990, Phosphorite Research and Development, Geological Society Special Publication 52, pp. 157–167.
Land, L. S., 1973, Holocene meteoric dolomitization of Pleistocene limestones, North Jamaica: Sedimentology, 20, 411–424.CrossRefGoogle Scholar
Land, L. S., 1985, The origin of massive dolomite: J. Geol. Educ., 33, 112–125.CrossRefGoogle Scholar
Land, L. S., 1986, Limestone diagenesis – some geochemical considerations, in Mumpton, F. A. (ed.), Studies in Diagenesis: US Geological Survey Bulletin 1578, pp. 129–137.
Land, L. S., 1998, Failure to precipitate dolomite at 25 ℃ from dilute solutions despite 1000-fold over-saturation after 32 years: Aquat. Geochem., 4, 361–368.CrossRefGoogle Scholar
Last, W. M., 1990, Lacustrine dolomite – an overview of modern, Holocene, and Pleistocene occurrences: Earth Sci. Rev., 27, 221–263.CrossRefGoogle Scholar
Laznicka, P., 1988, Breccias and Coarse Fragmentites: Petrology, Environments, Associations, Ores: Elsevier, Amsterdam.Google Scholar
Lease, R. O., Burbank, D. W., Gehrels, G. E., Wang, Z., and Yuan, D., 2007, Signature of mountain building: Detrital zircon U/Pb ages from northeastern Tibet: Geology, 35, 239–242.CrossRefGoogle Scholar
Leder, F. and Park, W. C., 1986, Porosity reduction in sandstones by quartz overgrowths: Am. Assoc. Pet. Geol. Bull., 70, 1713–1728.Google Scholar
Ledesma-Våzquez, J., Berry, R. W., Johnson, M. E., and Gutiérrez-Sanchez, S., 1997, El Mono Chert: A shallow-water chert from the Pliocene Infierno Formation, Baja California Sur, Mexico, in Johnson, M. E. and Ledesma-Vázquez, J. (eds.), Pliocene Carbonates and Related Facies Flanking the Gulf of California, Baja California, Mexico: Geological Society of America Special Paper 318, pp. 73–81.
Lee, M., Aronson, J. L., and Savin, S. M., 1989, Timing and condition of Permian Rotliegende sandstone diagenesis, southern North Sea: K/Ar and oxygen isotopic data: Am. Assoc. Pet. Geol. Bull., 73, 195–215.Google Scholar
Lepp, H., 1987, Chemistry and origin of Precambrian iron-formations, in Appel, P. W. U. and LaBerge, G. L. (eds.), Precambrian Iron-Formations: Theophrastus Publications, Athens, pp. 3–30.Google Scholar
Lepp, H. and Goldich, S. S., 1964, Origin of Precambrian iron-formation: Econ. Geol., 58, 1025–1061.CrossRefGoogle Scholar
Roux, J. P., 2004, A hydrodynamic classification of grain shapes: J. Sediment. Res., 74, 135–143.CrossRefGoogle Scholar
Lewis, D. W. and McConchie, D., 1994, Analytical Sedimentology: Chapman and Hall, New York, NY.CrossRefGoogle Scholar
Leyrit, H. and Montenat, C., 2000, Volcaniclastic Rocks, From Magmas to Sediments: Gordon and Beach Science Publishers, Amsterdam.Google Scholar
Lindholm, R. C., 1987, A Practical Approach to Sedimentology: Allen and Unwin, London.CrossRefGoogle Scholar
Lloyd, R. M., 1977, Porosity reduction by chemical compaction – stable isotope model: Am. Assoc. Pet. Geol. Bull., 61, 809.Google Scholar
Logan, B. R. and Semeniuk, V., 1976, Dynamic Metamorphism: Processes and Products in Devonian Carbonate Rocks, Canning Basin, Western Australia: Geological Society of Australia Special Publication 16.
Logan, B. W., Rezak, R., and Ginsburg, R. N., 1964, Classification and environmental significance of algal stromatolites: J. Geol., 72, 68–83.CrossRefGoogle Scholar
Longman, M. W., 1980, Carbonate diagenetic textures from nearsurface diagenetic carbonates: Am. Assoc. Pet. Geol. Bull., 64, 461–487.Google Scholar
Longman, M. W., 1981, A process approach to recognizing facies of reef complexes, in Toomey, D. F. (ed.), European Fossil Reef Models: SEPM Special Publication 30, pp. 9–40.
Lowe, D. R., 1982, Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents: J. Sediment. Petrol., 52, 279–297.Google Scholar
Lowe, D. R., 1999, Petrology and sedimentology of cherts and related silicified sedimentary rocks in the Swaziland Supergroup, in Lowe, D. R. and Byerly, G. R. (eds.), Geologic Evolution of the Barberton Greenschist Belt, South Africa: Geological Society of America Special Paper 329, pp. 83–114.
Lowe, D. R. and LoPiccolo, R. D., 1974, The characteristics and origin of dish and pillar structures: J. Sediment. Petrol., 44, 484–501.Google Scholar
Lucia, F. J., 1999, Carbonate Reservoir Characterization: Springer-Verlag, New York, NY.CrossRefGoogle Scholar
Lumsden, D. N., 1988, Characteristics of deep-marine dolomites: J. Sediment. Res., 58, 1023–1031.Google Scholar
Lundegard, P. D., 1989, Temporal reconstruction of sandstone diagenetic histories, in Hutcheon, I. E. (ed.), Burial Diagenesis: Mineralogical Association of Canada Short Course Handbook 15, pp. 161–200.
Lundegard, P. D. and Samuels, N. D., 1980, Field classification of fine-grained sedimentary rocks: J. Sediment. Petrol., 50, 781–786.Google Scholar
Machel, H. G., 2000, Application of cathodoluminescence to carbonate diagenesis, in Pagel, M., Barbin, V., Blanc, P., and Ohnestetter, D. (eds.): Cathodoluminescence in Geosciences, Springer-Verlag, Berlin, pp. 271–301.CrossRefGoogle Scholar
Machel, H. G., 2003, Dolomites and dolomitization, in Middleton, G. M., Church, M. J., Conglio, M., Hardie, L. A., and Longstaffe, F. S. (eds.), Encyclopedia of Sediments and Sedimentary Rocks: Kluwer, Dordrecht, pp. 234–243.Google Scholar
Machel, H. G., 2004, Concepts and models of dolomitization: a critical reappraisal, in Braithwaite, C. J. R., Rizzi, G., and Darke, G. (eds.), The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs: Geological Society of London Special Publication 235, pp. 6–63.
Machel, H. G. and Mountjoy, E. W., 1986, Chemistry and environments of dolomitization – A reappraisal: Earth Sci. Rev., 23, 175–222.CrossRefGoogle Scholar
Machel, H. G. and Mountjoy, E. W., 1990, Coastal mixing-zone dolomite, forward modeling, and massive dolomitization of platform-margin carbonates – Discussion: J. Sediment. Petrol., 60, 1008–1012.CrossRefGoogle Scholar
Macintyre, I. G. and Reid, R. P., 1995, Crystal alteration in a living calcareous alga (Halimeda): Implications for studies in skeletal diagenesis: J. Sediment. Petrol., A65, 143–153.Google Scholar
Mack, G. H., 1984, Exceptions to the relationship between plate tectonics and sandstone compositions: J. Sediment. Petrol., 54, 212–220.Google Scholar
Mack, G. H. and Jerzykiewicz, T., 1989, Detrital modes of sand and sandstone derived from andesitic rocks as a paleoclimate indicator: Sediment. Geol., 65, 35–44.CrossRefGoogle Scholar
MacKenzie, W. S. and Adams, A. E., 1994, A Colour Atlas of Rocks and Minerals in Thin Section: Manson Publishing, London.Google Scholar
Mackenzie, W. S. and Guilford, C., 1980, Atlas of Rock-Forming Minerals in Thin Section: John Wiley and Sons, New York, NY.Google Scholar
Mackie, W., 1896, The sands and sandstones of eastern Moray: Edinburgh Geol. Soc. Trans., 7, 148–172.CrossRefGoogle Scholar
Macquaker, J. H. S. and Adams, A. E., 2003, Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones: J. Sediment. Res., 73, 735–744.CrossRefGoogle Scholar
MacRae, N. D., 1995, Secondary-ion mass spectrometry and geology: Can. Mineral., 33, 219–236.Google Scholar
Magwood, J. P. A., 1992, Ichnotaxonomy: A burrow by any other name?, in Maples, C. G. and West, R. W. (eds.), Trace Fossils: The Paleontological Society Short Courses in Paleontology 5, pp. 15–33.
Mahaney, W. C., 2002, Atlas of Sand Grain Surface Textures and Applications: Oxford University Press, New York, NY.Google Scholar
Mahaney, W. C., Stewart, A., and Kalm, V., 2001, Quantification of SEM microtextures useful in sedimentary environmental discrimination: Boreas, 30, 165–171.CrossRefGoogle Scholar
Maiklem, W. R., Bebolt, D. G., and Glaister, R. P., 1969, Classification of anhydrite – A practical approach: Can. Pet. Geol. Bull., 17, 194–233.Google Scholar
Maliva, R. G., 1989, Displacive syntaxial overgrowths in open marine limestones: J. Sediment. Petrol., 59, 397–403.Google Scholar
Maliva, R. G. and Siever, R., 1988a, Diagenetic replacement controlled by force of crystallization: Geology, 16, 688–69l.2.3.CO;2>CrossRefGoogle Scholar
Maliva, R. G. and Siever, R., 1988b, Mechanisms and controls of silicification of fossils in limestone: J. Geol., 96, 387–398.CrossRefGoogle Scholar
Maliva, R. G. and Siever, R., 1988c, Pre-Cenozoic nodular cherts: evidence for opal–CT precursors and direct quartz replacement: Am. J. Sci., 288, 798–809.CrossRefGoogle Scholar
Maliva, R. G. and Siever, R., 1989a, Nodular chert formation in carbonate rocks: J. Geol., 97, 421–433.CrossRefGoogle Scholar
Maliva, R. G. and Siever, R., 1989b, Chertification histories of some Late Mesozoic and Middle Paleozoic platform carbonates: Sedimentology, 36, 907–926.CrossRefGoogle Scholar
Maliva, R. G., Knoll, A. H., and Siever, R., 1989, Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle: Palaios, 4, 519–532.CrossRefGoogle ScholarPubMed
Maliva, R. G., Knoll, A. H., and Simonson, B. M., 2005, Secular changes in the Precambrian silica cycle: Insights from chert petrology: Geol. Soc. Am. Bull., 117, 835–845.CrossRefGoogle Scholar
Maples, C. G. and West, R. W. (eds.), 1992, Trace Fossils: The Paleontological Society Short Courses in Paleontology 5.
Martens, C. S. and Harris, R. C., 1970, Inhibition of apatite precipitation in marine environment by magnesium ions: Geochim. Cosmochim. Acta, 34, 621–625.CrossRefGoogle Scholar
Matlack, K. S., Houseknecht, D. W. and Applin, K. R., 1989, Emplacement of clay into sand by infiltration: J. Sediment. Petrol., 59, 77–87.Google Scholar
Maynard, J. B., Valloni, R., and Yu, H.-S., 1982, Composition of modern deep-sea sands from arc-related basins, in Leggett, J. E. (ed.), Trench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins: Geological Society of London Special Publication 10, pp. 551–561.
Mazzullo, J. and Magenheimer, S. 1987, The original shapes of quartz sand grains: J. Sediment. Petrol., 57, 479–487.Google Scholar
Mazzullo, J. M. and Ehrlich, R., 1983, Grain-shape variation in the St. Peter Sandstone: A record of eolian and fluvial sedimentation of an Early Paleozoic cratonic sheet sand: J. Sediment. Petrol., 53, 105–120.Google Scholar
Mazzullo, J., Sims, D., and Cunningham, D., 1986, The effects of shape sorting and abrasion upon the shapes of fine quartz sand grains: J. Sediment. Petrol., 56, 45–56.Google Scholar
Mazzullo, J., Alexander, A., Tieh, T., and Menglin, D., 1992, The effects of wind transport on the shapes of quartz silt grains: J. Sediment. Petrol., 62, 961–971.Google Scholar
Mazzullo, S. J., 2000, Organogenic dolomitization in peritidal to deep sea sediments: J. Sediment. Res., 70, 10–23.CrossRefGoogle Scholar
Mazzullo, S. J., Ehrlich, R., and Pilkey, O. H., 1982, Local and distal origin of sands in the Hatteras abyssal plain: Mar. Geol., 48, 75–88.CrossRefGoogle Scholar
McBride, E. F., 1984, Diagenetic processes that affect provenance determinations in sandstone, in Zuffa, G. G. (ed.), Provenance of Arenites: Reidel, Dordrecht, pp. 95–113.Google Scholar
McBride, E. F., Diggs, T. N., and Wilson, J. C., 1991, Compaction of Wilcox and Carrizo sandstones (Paleocene–Eocene) to 4420 M, Texas Gulf Coast: J. Sediment. Petrol., 61, 73–85.Google Scholar
McCabe, P. J., 1984, Depositional environments of coal and coal-bearing strata, in Rahmani, R. A. and Flores, R. M. (eds.), Sedimentology of Coal and Coal-Bearing Sequences: International Association of Sedimentologists Special Publication 7, pp. 13–42.
McCaffrey, M. A., Lazar, B., and Holland, H. D., 1987, The evaporation path of seawater and the coprecipitation of Br− and K+ with halite: J. Sediment. Petrol., 57, 928–937.Google Scholar
McCave, I. N., Bryant, R. J., Cook, H. F., and Coughanowr, C. A., 1986, Evaluation of a laser-diffraction size analyzer for use with natural sediments: J. Sediment. Petrol., 56, 561–564.CrossRefGoogle Scholar
McClellan, G. H. and Kauwenbergh, S. J., 1990, Mineralogy of sedimentary apatites, in Northolt, A. J. G. and Jarvis, I (eds.), Phosphorite Research and Development: Geological Society Special Publication 52, pp. 23–31.
McIlroy, D., 2004, The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis: Geological Society of London, London.Google Scholar
McKee, E. D. and Weir, G. W., 1953, Terminology for stratification and cross-stratification in sedimentary rocks: Geol. Soc. Am. Bull., 64, 381–390.CrossRefGoogle Scholar
McKelvey, V. E., 1973, Abundance and distribution of phosphorus in the lithosphere: in Environmental Phosphorus Handbook: Wiley, New York, pp. 13–31.Google Scholar
McKelvey, V. E., Williams, J. S., Sheldon, R. P., Cressman, E. R., and Channey, T. M., 1959, The Phosphoria, Park City, and Shedhorn Formations in the Western Phosphate Field: US Geological Survey Professional Paper 313-A.
McLennan, S. M., Taylor, S. R., McCulloch, M. T., and Maynard, J. B., 1990, Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations: Geochim. Cosmochim. Acta, 54, 2015–2050.CrossRefGoogle Scholar
McLennan, S. M., Hemming, S., McDaniel, D. K., and Hanson, G. N., 1993, Geochemical approaches to sedimentation, provenance, and tectonics, in Johnsson, M. J. and Basu, A. (eds.), Processes Controlling the Composition of Clastic Sediments: Geological Society of America Special Paper 284, pp. 21–40.
McLennan, S. M., Bock, B., Hemming, S. R., et al., 2003, The role of provenance and sedimentary process in the geochemistry of sedimentary rocks, in Lentz, D. R. (ed.), Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments: Geological Association of Canada, GeoText 4, pp. 7–38.Google Scholar
McTainsh, G. H., 1997, Particle size analysis of aeolian dusts, soils and sediments in very small quantities using a Coulter Multisizer: Earth Surf. Proc. Land., 22, 1207–1216.3.0.CO;2-K>CrossRefGoogle Scholar
Melim, L. A., Swart, P. K., and Eberli, G. P., 2004, Mixing-zone diagenesis in the subsurface of Florida and the Bahamas: J. Sediment. Res., 74, 904–913.CrossRefGoogle Scholar
Melson, W. G., Haynes, J. T., O'Hearn, T., et al., 1998, K-shales of the central Appalachian Paleozoic: Properties and origin, in Schieber, J., Zimmerle, W., and Sethi, P. S. (eds.), 1998, Shales and Mudstones II: E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, pp. 143–159.Google Scholar
Mero, J. L., 1965, The Mineral Resources of the Sea: Elsevier, New York NY.Google Scholar
Meunier, A., 2005, Clays: Springer-Verlag, Berlin.Google Scholar
Meyer, R. F., Attanasi, E. D., and Freeman, P. A., 2007, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World: US Geological Survey Open-File Report 2007–1084.
Meyers, W. J., 1974, Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico: J. Sediment. Petrol., 44, 837–861.Google Scholar
Mezzadri, G. and Saccani, E., 1989, Heavy mineral distribution in Late Quaternary sediments of the southern Aegean Sea: Implications for provenance and sediment dispersal in sedimentary basins at active margins: J. Sediment. Petrol., 59, 412–422.Google Scholar
Miall, A. D., 1990, Principles of Sedimentary Basin Analysis, 2nd edn.: Springer-Verlag, New York, NY.CrossRefGoogle Scholar
Miall, A. D., 2000, Principles of Sedimentary Basin Analysis, 3rd edn.: Springer-Verlag, New York, NY.CrossRefGoogle Scholar
Miller, J., 1988, Microscopial techniques: I. Slices, slides, stains and peels, in Tucker, M. (ed.), Techniques in Sedimentology: Blackwell Scientific, Oxford, pp. 86–107.Google Scholar
Miller, W. (ed.), 2006, Trace Fossils, Problems, Prospects: Elsevier, Amsterdam.
Milligan, T. G. and Kranck, K., 1991, Electroresistance particle size analyzers, in Syvitski, J. P. M. (ed.), 1991, Principles, Methods, and Application of Particle Size Analysis: Cambridge University Press, Cambridge, pp. 109–118.CrossRefGoogle Scholar
Milliken, K. L., 1989, Petrography and composition of authigenic feldspars, Oligocene Frio Formation, south Texas: J. Sediment. Petrol., 59, 361–374.CrossRefGoogle Scholar
Milliken, K. L., 1994, Cathodoluminescence textures and the origin of quartz silt in Oligocene mudrocks, south Texas: J. Sediment. Res., A64, 567–571.CrossRefGoogle Scholar
Milliken, K. L. and Mack, L. E., 1990, Subsurface dissolution of heavy minerals, Frio Formation sandstones of the ancestral Rio Grande Province, south Texas: Sediment. Geol., 68, 187–199.CrossRefGoogle Scholar
Milliken, K. L., Land, L. S., and Loucks, R. G., 1981, History of burial diagenesis determined from isotopic geochemistry, Frio Formation, Brazoria County, Texas: Am. Assoc. Pet. Geol. Bull., 65, 1397–1413.Google Scholar
Milliman, J. D., 1974, Marine Carbonates: Springer-Verlag, New York, NY.Google Scholar
Milner, H. B., 1962, Sedimentary Petrography, 4th edn: George Allen and Unwin Ltd., London, vol. II.Google Scholar
Monicard, R. P., 1980, Properties of Reservoir Rocks: Core Analyses: Gulf Publishing, Houston (Editions Technip: Paris).CrossRefGoogle Scholar
Montañez, I. P., Gregg, J. M., and Shelton, K. L., 1997, Basin-Wide Diagenetic Patterns: Integrated Petrologic, Geochemical, and Hydrologic Considerations: SEPM Special Publication 57.
Monty, C. L. V., 1976, The origin and development of cryptalgal fabrics, in Walter, M. R. (ed.), Stromatolites: Elsevier, Amsterdam, pp. 193–249.CrossRefGoogle Scholar
Moon, C. F. and Hurst, C. W., 1984, Fabric of muds and shales: an overview, in Stow, D. A. V. and Piper, D. J. W. (eds.), Fine-Grained Sediments: Deep-Water Processes and Facies: Geological Society Special Publication 15, pp. 579–593.
Moore, C. H., 1985, Upper Jurassic subsurface cements: A case history, in Schneidermann, N. and Harris, P. M. (eds.), Carbonate Cements: SEPM Special Publication 36, pp. 291–308.
Moore, C. H., 1989, Carbonate Diagenesis and Porosity: Developments in Sedimentology 46.
Moore, C. H., 2001, Carbonate Reservoirs: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework: Developments in Sedimentology 55.
Moore, D. M., 1978, A sample of the Purington Shale prepared as a geochemical standard: J. Sediment. Petrol., 48, 995–998.CrossRefGoogle Scholar
Morad, S. (ed.), 1998a, Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution: International Association of Sedimentologists Special Publication 26.
Morad, S., 1998b, Carbonate cementation in sandstones: Distribution patterns and geochemical evolution, in Morad, S. (ed.), 1998, Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution: International Association of Sedimentologists Special Publication 26, pp. 1–26.
Morad, S. and Aldahan, A. A., 1987, Diagenetic replacement of feldspars by quartz in sandstones: J. Sediment. Petrol., 57, 488–493.Google Scholar
Morad, S., Bergan, M., Knarud, R., and Nystuen, J. P., 1990, Albitization of detrital plagioclase in Triassic reservoir sandstones from the Snorre Field, Norwegian North Sea: J. Sediment. Petrol., 60, 411–425.Google Scholar
Moraes, M. A. S. and Ros, L. F., 1990, Infiltrated clays in fluvial Jurassic sandstones of Recôncavo Basin, Northeastern Brazil: J. Sediment. Petrol., 60, 809–819.Google Scholar
Morse, J. W., 1985, Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates: Discussion: J. Sediment. Petrol., 55, 919–920.CrossRefGoogle Scholar
Morse, J. W. and Mackenzie, F. T., 1990, Geochemistry of Sedimentary Carbonates: Elsevier, Amsterdam.Google Scholar
Morton, A. C., 1985, Heavy minerals in provenance studies, in Zuffa, G. G. (ed.), Provenance of Arenites: Reidel, Dordrecht, pp. 249–77.CrossRefGoogle Scholar
Morton, A. C., 1991, Geochemical studies of detrital heavy minerals and their application to provenance research, in Morton, A. C., Todd, S. P., and , P. D. W. (eds.), Development in Sedimentary Provenance Studies: Geological Society of London Special Publication 57, pp. 31–45.
Morton, A. C. and Hallsworth, C. R., 1999, Processes controlling the composition of heavy mineral assemblages in sandstones: Sediment. Geol., 124, 3–29.CrossRefGoogle Scholar
Mount, J., 1985, Mixed siliciclastic and carbonate sediments: A proposed first-order textural and compositional classification: Sedimentology, 32, 435–442.CrossRefGoogle Scholar
Mucci, A. and Morse, J. W., 1983, The incorporation of Mg2+ and Sr2+ into calcite overgrowths: Influences of growth rate and solution composition: Geochim. Cosmochim. Acta, 47, 217–233.CrossRefGoogle Scholar
Mullins, H. T., Neumann, A. C., Wilber, R. J., and Boardman, M. R., 1980, Nodular carbonate sediment on Bahamian slopes: Possible precursors to nodular limestones: J. Sediment. Petrol. 50, 117–131.Google Scholar
Mumpton, F. A., 1981, Natural zeolites, in Mumpton, F. A. (ed.), Mineralogy and Geology of Natural Zeolites: Mineralogical Society of America Reviews in Mineralogy 4, pp. 1–17.
Nathan, Y., 1984, The mineralogy and geochemistry of phosphorites, in Nriagu, J. O. and Moore, P. B. (eds.), Phosphate Minerals: Springer-Verlag, Berlin, pp. 275–291.CrossRefGoogle Scholar
Naylor, M. A., 1980, The origin of inverse grading in muddy debris flow deposits – a review: J. Sediment. Petrol., 50, 1111–1116.Google Scholar
Nelson, C. H., 1982, Modern shallow-water graded sand layers from storm surges, Bering shelf: A mimic of Bouma sequences and turbidite systems: J. Sediment. Petrol., 52, 537–545.Google Scholar
Nesse, W. D., 1986, Introduction to Optical Mineralogy: Oxford University Press, New York, NY.Google Scholar
Neumann, A. C. and Land, L. S., 1975, Lime mud deposition and calcareous algae in the Bight of Abaco, Bahamas: A budget: J. Sediment. Petrol., 45, 763–786.Google Scholar
Neumann, A. C., Kofoed, J. W., and Keller, G. H., 1977, Lithoherms in the Straits of Florida: Geology, 5, 4–11.2.0.CO;2>CrossRefGoogle Scholar
Newell, N. D., Rigby, J. K., Whitman, A. J., and Bradley, J. S., 1951, Shoal-water geology and environments, eastern Andros Island, Bahamas: Am. Mus. Nat. Hist. Bull., 97, 1–29.Google Scholar
Noble, J. P. A. and Howells, K. D. M., 1974, Early marine lithification of the nodular limestones in the Silurian of New Brunswick: Sedimentology, 21, 597–609.CrossRefGoogle Scholar
Notholt, A. J. and Sheldon, R. P., 1986, Proterozoic and Cambrian phosphorites – regional review: World resources, in Cook, P. J. and Shergold, J. H. (eds.), Phosphate Deposits of the World, 1. Proterozoic and Cambrian Phosphorites: Cambridge University Press, Cambridge, pp. 9–19.Google Scholar
Notholt, A. J. G., Sheldon, R. P., and Davidson, D. F. (eds.), 1989, Phosphate Deposits of the World, 2: Phosphate Rock Resources: Cambridge University Press, Cambridge.
O'Brien, N. R., 1990, Significance of lamination in Toarcian (Lower Jurassic) shales from Yorkshire, Great Britain: Sediment. Geol., 67, 25–34.CrossRefGoogle Scholar
O'Brien, N. R. and Slatt, R. M., 1990, Argillaceous Rock Atlas: Springer-Verlag, New York, NY.CrossRefGoogle Scholar
O'Brien, N. R., Brett, C. E., and Woodard, M. J., 1998, Shale fabrics as a clue to sedimentary processes – example from the Williamson–Willowvale shales (Silurian), New York, in Schieber, J., Zimmerle, W., and Sethi, P. (eds.), Shales and Mudstones II: E. Schweizerbart'sche Verlagsbuchandlung, Stuttgart, pp. 55–66.Google Scholar
Odom, I. E., Doe, T. W., and Dott, Jr. R. H., 1976, Nature of feldspar–grain size relations in some quartz-rich sandstones: J. Sediment. Petrol., 46, 862–870.Google Scholar
Ogihara, S. and Iijima, A., 1989, Clinoptilolite to heulandite transformation in burial diagenesis, in Jacobs, P. A. and Santen, R. A. (eds.), Zeolites: Facts, Figures, Future: Elsevier, Amsterdam, pp. 491–500.Google Scholar
Ohmoto, H., Watanbe, Y. and Yamaguchi, K. E., 2006, Chemical and biological evolution of early Earth: Constraints from banded iron formations, in Kesler, S. E. and Ohmoto, H. (eds.), Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere – Constraints from Ore Deposits: Geological Society of America Memoir 198, pp. 291–331.
Oliver, J., 1986, Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geologic phenomena: Geology, 14, 99–102.2.0.CO;2>CrossRefGoogle Scholar
Ondrick, C. W. and Griffith, J. C., 1969, Frequency distribution of elements in Rensselaer Graywacke, Troy, New York: Geol. Soc. Am. Bull., 80, 509–518.CrossRefGoogle Scholar
Orford, J. D. and Whalley, W. B., 1983, The use of fractal dimension to characterize irregular-shaped particles: Sedimentology, 30, 655–668.CrossRefGoogle Scholar
Orford, J. D. and Whalley, W. B., 1987, The quantitative description of highly irregular sedimentary particles: the use of the fractal dimension, in Marshall, J. R. (ed.), Clastic Particles, Van Nostrand Reinhold, New York, NY, pp. 267–280.Google Scholar
Pandalai, H. S. and Basumallick, S., 1984, Packing in a clastic sediment: concepts and measurements: Sediment. Geol., 39, 87–93.CrossRefGoogle Scholar
Park, W. C. and Schot, E. H., 1968, Stylolitization in carbonate rocks, in Müller, G. and Friedman, G. M. (eds.), Carbonate Sedimentology in Central Europe: Springer-Verlag, New York, NY, pp. 66–74.CrossRefGoogle Scholar
Parsons, I., Thompson, P., Lee, M. R., and Cayzer, N., 2005, Alkali feldspar microtextures as provenance indicators in siliciclastic rocks and their role in feldspar dissolution during transport and diagenesis: J. Sediment. Res., 75, 921–942.CrossRefGoogle Scholar
Pashin, J. C. and Gastaldo, R. A., 2004, Sequence Stratigraphy, Paleoclimate, and Tectonics of Coal-Bearing Strata: American Association of Petroleum Geology Studies in Geology 51.
Pederson, T. F. and Calvert, S. E., 1990, Anoxia vs. productivity: what controls the formation of organic-carbon rich sediments and sedimentary rocks: Am. Assoc. Pet. Geol. Bull., 74, 454–466.Google Scholar
Pedley, H.M, 1990, Classification and environmental models of cool freshwater tufas: Sediment. Geol., 68, 143–154.CrossRefGoogle Scholar
Peryt, T. M., 1983a, Classification of coated grains, in Peryt, T. M. (ed.), Coated Grains: Springer-Verlag, Berlin, pp. 3–6.CrossRefGoogle Scholar
Peryt, T. M. (ed.), 1983b, Coated Grains: Springer-Verlag, Berlin.CrossRef
Peterson, M. N. and der Borch, C. C., 1965, Chert: Modern inorganic deposition in a carbonate-precipitating locality: Science, 149, 1501–1503.CrossRefGoogle Scholar
Petránek, J. and Houten, F. B., 1997, Phanerozoic Ooidal Ironstones: Czech Geological Survey Special Paper 7.
Pettijohn, F. J., 1941, Persistence of heavy minerals and geologic age: J. Geol., 49, 610–625.CrossRefGoogle Scholar
Pettijohn, F. J., 1963, Chemical composition of sandstones – excluding carbonate and volcanic sands, in Data of Geochemistry, 6th edn. US Geological Survey Professional Paper 440S.
Pettijohn, F. J., 1975, Sedimentary Rocks, 3rd edn.: Harper and Row, New York, NY.Google Scholar
Pettijohn, F. J. and Potter, P. E., 1964, Atlas and Glossary of Primary Sedimentary Structures: Springer-Verlag, New York, NY.CrossRefGoogle Scholar
Pettijohn, F. J., Potter, P. E., and Siever, R., 1987, Sand and Sandstone, 2nd edn.: Springer-Verlag, New York, NY.CrossRefGoogle Scholar
Phillips, R. L., 1984, Depositional features of Late Miocene, marine cross-bedded conglomerates, California, in Koster, E. H. and Steel, R. J. (eds.), Sedimentology of Gravels and Conglomerates: Canadian Society of Petroleum Geology Memoir 10, pp. 345–358.
Piazzola, J. and Cavaroc, V. V., 1991, Comparison of grain-size-distribution statistics determined by sieving and thin-section analyses: J. Geol. Educ., 39, 364–367.CrossRefGoogle Scholar
Picard, M. D., 1971, Classification of fine-grained sedimentary rocks: J. Sediment Petrol., 41, 179–195.Google Scholar
Pickerill, R. K., 1994, Nomenclature and taxonomy of invertebrate trace fossils, in Hopkins, S. K. (ed.), The Palaeobiology of Trace Fossils: John Hopkins University Press, Baltimore, MD, pp. 3–42.Google Scholar
Pittman, E. D., 1963, The use of zoned plagioclase as an indicator of provenance: J. Sediment. Petrol., 33, 380–386.Google Scholar
Plummer, P. S. and Gostin, V. A., 1981, Shrinkage cracks: Desiccation or synaeresis?J. Sediment. Petrol., 51, 1147–1156.Google Scholar
Popp, B. N., Parekh, P., Tilbrook, B., Bidigare, R. R., and Laws, E. A., 1997, Organic carbon δ13C variations in sedimentary rocks as chemostratigraphic and paleoenvironmental tools: Paleogeogr., Paleoclim., Paleoecol., 132, 119–132.CrossRefGoogle Scholar
Poppe, L. J., Eliason, A. H., and Fredricks, J. J., 1985, APSAS – an Automated Particle Size Analysis System: US. Geological Survey Circular 963.
Potter, P. E. and Pettijohn, F. J., 1977, Paleocurrents and Basin Analysis, 2nd edn.: Springer-Verlag, New York.CrossRefGoogle Scholar
Potter, P. E., Maynard, J. B., and Pryor, W. A., 1980, Sedimentology of Shale: Springer-Verlag, New York.CrossRefGoogle Scholar
Potter, P. E., Maynard, J. B., and Depetris, P. J., 2005, Mud and Mudstones: Springer-Verlag, Berlin.Google Scholar
Powers, M. C., 1953, A new roundness scale for sedimentary particles: J. Sediment. Petrol., 23, 117–119.CrossRefGoogle Scholar
Prezbindowski, D. R., 1985, Burial cementation – is it important? A case study, Stuart City Trend, south-central Texas, in Schneidermann, N. and Harris, P. M. (eds.), Carbonate Cements, SEPM Special Publication 36, pp. 241–264.
Prothero, D. R. and Schwab, F., 2004, Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy, 2nd edn.: W. H Freeman, New York.
Purdy, E. G., 1963, Recent calcium carbonate facies of the Great Bahama Bank: J. Geol., 71, 334–355; 472–497.CrossRefGoogle Scholar
Pye, K., 1994, Shape sorting during wind transport of quartz silt grains – Discussion: J. Sediment. Petrol., A64, 704–705.Google Scholar
Radke, B. M. and Mathis, R. L., 1980, On the formation and occurrence of saddle dolomite: J. Sediment. Petrol., 50, 1149–1168.Google Scholar
Raffensperger, J. P. and Vlassopoulos, D., 1999, The potential for free and mixed convection in sedimentary basins: Hydrogeol. J., 7, 505–520.CrossRefGoogle Scholar
Rahmani, R. A. and Flores, R. M. (eds.), 1984, Sedimentology of Coal and Coal-Bearing Sequences: International Association of Sedimentologists Special Publication 7.
Railsback, L. B., Anderson, T. F., Ackerly, S. C., and Cisne, J. L., 1989, Paleoceanographic modeling of temperature–salinity profiles from stable isotopic data: Paleoceanography, 4, 585–591.CrossRefGoogle Scholar
Ramseyer, K. and Boles, J. R., 1986, Mixed-layer illite/smectite minerals in Tertiary sandstones and shales, San Joaquin basin, California: Clays Clay Mins., 34, 115–124.CrossRefGoogle Scholar
Reddy, M. M. and Wang, K. K., 1980, Crystallization of calcium carbonate in the presence of metal ions. I. Inhibition by magnesium ions at pH 8.8 and 25 ℃: J. Cryst. Growth, 50, 470–480.CrossRefGoogle Scholar
Reed, S. J. B. and Romanenko, , 1995, Electron probe microanalysis, in Marfunin, A. S. (ed.), Advanced Mineralogy, Methods and Instrumentations: Results and Recent Developments: Springer-Verlag, Berlin, vol. 2, pp. 240–246.Google Scholar
Reeder, R. J., 1983, Crystal chemistry of the rhombohedral carbonates, in Reeder, R. J. (ed.), Carbonates: Mineralogy and Chemistry: Mineralogical Society of America Reviews in Mineralogy 11, pp. 1–47.
Reeder, R. J. and Prosky, J. L., 1986, Compositional sector zoning in dolomite: J. Sediment. Petrol., 56, 237–247.Google Scholar
Reid, R. P., Macintyre, I. G., and James, N. P., 1990, Internal precipitation of microcrystalline carbonate: A fundamental problem for sedimentologists: Sediment. Geol., 68, 163–170.CrossRefGoogle Scholar
Reineck, H. E. and Singh, I. B., 1980, Depositional Sedimentary Environments, 2nd edn.: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Retallack, G. J., 1997, A Colour Guide to Paleosols: John Wiley and Sons, Chichester.Google Scholar
Ricci-Lucchi, F., 1995, Sedimentographica: A Photographic Atlas of Sedimentary Structures, 2nd edn.: Columbia University Press, New York.Google Scholar
Richter, D. K., 1983a, Calcareous ooids: A synopsis, in Peryt, T. (ed.), Coated Grains, Springer-Verlag, Berlin, pp. 72–99.Google Scholar
Richter, D. K., 1983b, Classification of coated grains: Discussion, in Peryt, T. (ed.), Coated Grains, Springer-Verlag, Berlin, pp. 7–8.CrossRefGoogle Scholar
Richter, D. K. and Füchtbauer, H., 1978, Ferroan calcite replacement indicates former magnesian calcite skeletons: Sedimentology, 25, 843–861.CrossRefGoogle Scholar
Ridley, W. I. and Lichte, F. E., 1998, Major, trace, and ultratrace element analysis by laser ablation ICP-MS, in Shanks, W. C. and Ridley, W. I. (eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes: Reviews in Economic Geology 7, pp. 199–215.
Riggs, S. R., 1980, Intraclast and pellet phosphorite sedimentation in the Miocene of Florida: J. Geol. Soc. London, 137, 741–748.CrossRefGoogle Scholar
Rimstidt, J. D., 1997, Quartz solubility at low temperatures: Geochim. Cosmochim. Acta, 61, 2553–2558.CrossRefGoogle Scholar
Rittenhouse, G., 1943, Transportation and deposition of heavy minerals: Geol. Soc. Am. Bull., 54, 1725–1780.CrossRefGoogle Scholar
Robbins, L. L., Tao, Y., and Evans, C. A., 1997, Temporal and spacial distribution of whitings on Great Bahama Bank and a new lime mud budget: Geology, 25, 947–950.2.3.CO;2>CrossRefGoogle Scholar
Robin, P. F., 1978, Pressure solution at grain-to-grain contacts: Geochim. Cosmochim. Acta, 42, 1383–1389.CrossRefGoogle Scholar
Ronov, A. B., 1983, The Earth's Sedimentary Shell: AGI Reprint Series 5.
Ronov, A. B. and Migdisov, A. A., 1971, Geochemical history of the crystalline basement and sedimentary cover of the Russian and North American platforms: Sedimentology, 16, 137–185.CrossRefGoogle Scholar
Ronov, A. B., Khain, E. E., Balukhovsky, A. N., and Seslavinsky, K. B., 1980, Quantitative analysis of Phaneorzoic sedimentation: Sediment. Geol., 25, 311–325.CrossRefGoogle Scholar
Roser, B. P. and Korsch, R. J., 1986, Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratios: J. Geol., 94, 635–650.CrossRefGoogle Scholar
Russell, P. L., 1990, Oil Shales of the World: Their Origin, Occurrence and Exploration: Pergamon Press, Oxford.Google Scholar
Ryer, T. A. and Langer, A. W., 1980, Thickness change involved in the peat-to-coal transformation for a bituminous coal of Cretaceous age in central Utah: J. Sediment. Petrol., 50, 987–992.Google Scholar
Sagoe, K. -M. O. and Visher, G. S., 1977, Population breaks in grain-size distributions of sand – A theoretical model: J. Sediment. Petrol., 47, 285–310.Google Scholar
Saigal, G. C. and Walton, E. K., 1988, On the occurrence of displacive calcite in Lower Old Red Sandstones of Carnoustie, eastern Scotland: J. Sediment. Petrol., 58, 131–135.Google Scholar
Saller, A. H., 1984, Petrologic and geochemical constraints on the origin of subsurface dolomite: An example of dolomitization by normal seawater, Enewetak Atoll: Geology,. 12, 217–220.2.0.CO;2>CrossRefGoogle Scholar
Sandberg, P. A., 1983, An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy: Nature, 305, 19–22.CrossRefGoogle Scholar
Sass, E. and Katz, A., 1982, The origin of platform dolomites: Am. J. Sci., 282, 1184–1213.CrossRefGoogle Scholar
Sassen, R., Moore, C. H., and Meendsen, F. C., 1987, Distribution of hydrocarbon source potential in the Jurassic Smackover Formation: Org. Geochem., 11, 379–383.CrossRefGoogle Scholar
Savin, S. M. and Yeh, H. W., 1981, Stable isotopes in ocean sediments, in Emiliani, C. (ed.), The Sea: Wiley-Interscience, New York, NY, vol. 7, pp. 1521–1554.Google Scholar
Schäfer, A. and Teyssen, T., 1987, Size, shape and orientation of grains in sands and sandstones – image analysis applied to rock thin-sections: Sediment. Geol., 52, 251–271.CrossRefGoogle Scholar
Schieber, J., 1991, Sedimentary structures: Textures and depositional settings of shales from the Lower Belt Supergroup, Mid-Proterozoic, Montana, U.S.A., in Bennett, R. H., O'Brien, N. R., and Hulbert, M. H. (eds,), Microstructures of Fine-Grained Sediments: Springer-Verlag, New York, NY, pp. 101–108.CrossRefGoogle Scholar
Schieber, J. and Zimmerle, W., 1998, Petrology of shales: A survey of technics, in Schieber, J., Zimmerle, W., and Sethi, P. S. (eds.), Shales and Mudstones I: Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, pp. 3–12.Google Scholar
Schieber, J., Zimmerle, W., and Sethi, P. S. (eds.), 1998, Shales and Mudstones I and II: E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.
Schlanger, W. and James, N. P., 1978, Low-magnesian calcite forming on the deep-sea floor, Tongue of the Ocean, Bahamas: Sedimentology, 25, 675–702.CrossRefGoogle Scholar
Schmalz, R. F., 1967, Kinetics and diagenesis in carbonate sediments: J. Sediment. Petrol., 37, 60–68.Google Scholar
Schmid, R., 1981, Descriptive nomenclature and classification of pyroclastic deposits and fragments: Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks: Geology, 9, 41–43.2.0.CO;2>CrossRefGoogle Scholar
Schmidt, V. and McDonald, D. A., 1979, The role of secondary porosity in the course of sandstone diagenesis, in Scholle, P. A. and Schluger, P. R. (eds.), Aspects of Diagenesis: SEPM Special Publication 26, pp. 175–207.
Schmoker, J. W. and Halley, R. B., 1982, Carbonate porosity versus depth: A predictable relation for south Florida: Am. Assoc. Pet. Geol. Bull., 66, 2561–2570.Google Scholar
Schneidermann, N. and Harris, P. M., 1985, Carbonate Cements: SEPM Special Publication 36.
Scholle, P. A., 1978, A Color Illustrated Guide to Carbonate Rock Constituents, Textures, Cements and Porosities: AAPG Memoir 27.
Scholle, P. A., 1979, A Color Illustrated Guide to Constituents, Textures, Cements and Porosities of Sandstones and Associated Rocks: AAPG Memoir 28.
Scholle, P. A. and Halley, R. B., 1985, Burial diagenesis: out of sight out of mind, in Schneidermann, N. and Harris, P. M. (eds.), Carbonate Cements: SEPM Special Publication 36, pp. 309–334.
Scholle, P. A. and Ulmer-Scholle, D. S., 2003, A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis: AAPG Memoir 77.
Schopf, J. M., 1956, A definition of coal: Econ. Geol., 51, 521–527.CrossRefGoogle Scholar
Schreiber, B. C., 1988a, Introduction, in Schreiber, B. C. (ed.), Evaporites and Hydrocarbons: Columbia University Press, New York, NY, pp. 1–10.Google Scholar
Schreiber, B. C., 1988b, Subaqueous evaporite deposition, in Schreiber, B. C. (ed.), Evaporites and Hydrocarbons: Columbia University Press, New York, NY, pp. 182–255.Google Scholar
Schreiber, B. C. and Hsü, K. J., 1980, Evaporites, in Hobson, G. D. (ed.), Developments in Petroleum Geology – 2: Applied Science Publishers, Barking, pp. 87–138.Google Scholar
Schreiber, B. C., Friedman, G. M., Decima, A., and Schreiber, E., 1976, Depositional environments of Upper Miocene (Messinian) evaporite deposits of the Sicilian basin: Sedimentology, 23, 729–760.CrossRefGoogle Scholar
Schreiber, B. C., Tucker, M. E., and Till, R., 1986, Arid shorelines and evaporites, in Reading, H. G. (ed.), Sedimentary Environments and Facies: Blackwell Science, Oxford, pp. 189–228.Google Scholar
Schubel, K. A. and Simonson, B. M., 1990, Petrography and diagenesis of cherts from Lake Magadi, Kenya: J. Sediment. Petrol., 60, 761–776.Google Scholar
Schwab, F. L., 1975, Framework mineralogy and chemical composition of continental margin-type sandstone: Geology, 3, 487–490.2.0.CO;2>CrossRefGoogle Scholar
Schwab, F. L., 1981, Evolution of the Western Continental Margin, French–Italian Alps: Sandstone mineralogy as an index of plate tectonic setting: J. Geol., 89, 349–368.CrossRefGoogle Scholar
Schwarcz, H. P. and Shane, K. C., 1969, Measurement of particle shape by Fourier analysis: Sedimentology, 13, 213–231.CrossRefGoogle Scholar
Schwennicke, T., Siegmund, H., and Jehl, C., 2000, Marine phosphogenesis in shallow-water environments: Cambrian, Tertiary, and Recent examples, in Glenn, C. R., Prévôt-Lucas, L., and Lucas, J. (eds.), Marine Authigenesis: From Global to Microbial: SEPM Special Publication 66, pp. 481–498.
Scoffin, T. P., 1987, An Introduction to Carbonate Sediments and Rocks: Blackie, Glasgow.Google Scholar
Scott, A. C., 2002, Coal petrology and the origin of coal macerals: a way ahead?: Int. J. Coal Geol., 50, 119–134.CrossRefGoogle Scholar
Searl, A., 1989, Pedogenic columnar calcite from the Oolite Group (Lower Carboniferous), south Wales: Sediment. Geol., 62, 47–58.CrossRefGoogle Scholar
Sedimentation Seminar, 1981, Comparison of methods of size analysis for sands of the Amazon and Solemões rivers, Brazil and Peru: Sedimentology, 28, 123–128.CrossRef
Seiders, V. M. and Blome, C. D., 1988, Implications of upper Mesozoic conglomerate for suspect terrane in western California and adjacent areas: Geol. Soc. Am. Bull., 100, 374–391.2.3.CO;2>CrossRefGoogle Scholar
Seilacher, A., 1964, Biogenic sedimentary structures, in Imbrie, J. and Newell, N. D. (eds.), Approaches to Paleoecology: John Wiley and Sons, New York, NY, pp. 296–315.Google Scholar
Sellwood, B. W., Shepherd, T. J., Evans, M. R., and James, B., 1989, Origin of late cements in oolitic reservoir facies: a fluid inclusion and isotopic study (Mid-Jurassic, southern England): Sediment. Geol., 61, 223–237.CrossRefGoogle Scholar
Sethi, P. S., Hannigan, R. E., and Leithold, E. L., 1998, Rare-earth element chemistry of Cenomanian–Turonian shales of the North American Greenhorn Sea, Utah, in Schieber, J., Zimmerle, W., and Sethi, P. (eds.), Shales and Mudstones II: E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, pp. 195–208.Google Scholar
Seyedolali, A., Krinsley, D. H., Boggs, Jr. S., et al., 1997, Provenance interpretation of quartz by scanning electron microscope – cathodoluminescence fabric analysis: Geology, 25, 787–790.2.3.CO;2>CrossRefGoogle Scholar
Shanmugam, G., 1984, Types of porosity in sandstones and their significance in interpreting provenance, in Zuffa, G. G. (ed.), Provenance of Arenites: Reidel, Dordrecht, pp. 115–137.Google Scholar
Sharp, W. E. and Kennedy, G. C., 1965, The solution alteration of carbonate rocks, the effects of temperature and pressure: J. Geol., 73, 391–403.CrossRefGoogle Scholar
Sharp, Z., 2007, Principles of Stable Isotope Geochemistry: Prentice-Hall, Upper Saddle River, NJ.Google Scholar
Shaw, D. M., 1956, Geochemistry of pelitic rocks. Part III: Major elements and general geochemistry: Geol. Soc. Am. Bull., 67, 919–934.CrossRefGoogle Scholar
Shearman, D. J., 1982, Evaporites of coastal sabkhas, in Dean, W. E. and Schreiber, B. C. (eds.), Marine Evaporites: SEPM Short Course Notes 4, pp. 6–42.
Shearman, D. J. and Smith, A. J., 1985, Ikaite, the parent mineral of jarrowite-type pseudomorphs: Proc. Geologists Assoc., 96, 305–314.CrossRefGoogle Scholar
Sheldon, R. P., 1989, Phosphorite deposits of the Phosphoria Formation, western United States, in Notholt, A. J. G., Sheldon, R. P., and Davidson, D. F. (eds.), Phosphate Deposits of the World, 2: Cambridge University Press, Cambridge, pp. 53–61.Google Scholar
Shinn, E. A. and Robbin, D. M., 1983, Mechanical and chemical compaction in fine-grained shallow-water limestones: J. Sediment. Petrol., 53, 595–618.Google Scholar
Shinn, E. A., Steinen, R. P., Lidz, B. H., and Swart, P. K., 1989, Whitings, a sedimentologic dilemma: J. Sediment. Petrol., 59, 147–161.CrossRefGoogle Scholar
Sibley, D. F. and Gregg, J. M., 1987, Classification of dolomite rock textures: J. Sediment. Petrol., 57, 967–975.Google Scholar
Siever, R., 1957, The silica budget in the sedimentary cycle: Am. Mineral., 42, 821–841.Google Scholar
Siever, R., 1983, Evolution of chert at active and passive continental margins, in Iijima, A., Hein, J. R., and Siever, R. (eds.), Siliceous Deposits in the Pacific Region: Developments in Sedimentology 36, pp. 7–24.
Siever, R., 1992, The silica cycle in the Precambrian: Geochim. Cosmochim. Acta, 56, 3265–3272.CrossRefGoogle Scholar
Simonson, B. M., 1985, Sedimentological constraints on the origins of Precambrian iron-formations: Geol. Soc. Am. Bull., 96, 244–252.2.0.CO;2>CrossRefGoogle Scholar
Simonson, B. M., 2003, Origin and evolution of large Precambrian iron formations, in Chan, M. A. and Archer, A. W. (eds.), Extreme Depositional Environments: Mega End Members in Geologic Time: Geological Society of America Special Paper 370, pp. 231–244.
Sindowski, F. K. H., 1949, Results and problems of heavy mineral analysis in Germany: A review of sedimentological–petrological papers, 1936–1948: J. Sediment. Petrol., 19, 3–25.CrossRefGoogle Scholar
Singer, A. and Müller, G., 1983, Diagenesis in argillaceous sediments, in Larsen, G. and Chilingar, G. V. (eds.), Diagenesis in Sediments and Sedimentary Rocks, 2: Elsevier, Amsterdam, pp. 115–212.Google Scholar
Singer, J. K., Anderson, J. B., Ledbetter, M. T., et al., 1988, An assessment of analytical techniques for the size analysis of fine-grained sediments: J. Sediment. Petrol., 58, 534–543.Google Scholar
Skilbeck, C. G. and Cawood, P. A., 1994, Provenance history of a Carboniferous Gondwana margin forearc basin, New England Fold Belt, eastern Australia: modal and geochemical constraints: Sediment. Geol., 93, 107–133.CrossRefGoogle Scholar
Slansky, M., 1986, Geology of Sedimentary Phosphates: North Oxford Academic Publishers, London.Google Scholar
Smith, G. H. S., Best, J. L., Bristow, C. S., and Petts, G. E. (eds.), 2006, Braided Rivers: Process, Deposits, Ecology and Management: International Association of Sedimentologists Special Publication 36.
Sneed, E. D. and Folk, R. L., 1958, Pebbles in the lower Colorado River, Texas – A study in particle morphogenesis: J. Geol., 66, 114–150.CrossRefGoogle Scholar
Sorby, H. C., 1880, On the structure and origin of non-calcareous stratified rocks: Proc. Geol. Soc. London, 36, 46–92.Google Scholar
Southard, J. B. and Boguchwal, L. A., 1990, Bed configurations in steady unidirectional water flows. Part 2. Synthesis of flume data: J. Sediment. Petrol., 60, 658–679.CrossRefGoogle Scholar
Spears, D. A., 1980, Toward a classification of shales: J. Geol. Soc. London, 137, 125–129.CrossRefGoogle Scholar
Speer, J. A., 1983, Crystal chemistry and phase relations of orthorhombic carbonates, in Reeder, R. J. (ed.), Carbonates: Mineralogy and Chemistry: Mineralogical Society of America Reviews in Mineralogy 11, pp. 145–190.
Sperazza, M., 2004, High-resolution particle size analysis of naturally occurring very fine-grained sediment through laser diffractometry: J. Sediment. Res., 74, 736–743.CrossRefGoogle Scholar
Stach, E., Mackowsky, M. Th., Teichmüller, M., et al., 1982, Coal Petrology, 3rd edn.: Gebruder Borntraeger, Berlin.Google Scholar
Stauffer, P. H., 1967, Grain-flow deposits and their implications, Santa Ynez Mountains, California: J. Sediment. Petrol., 37, 487–508.Google Scholar
Stein, R., 1985, Rapid grain-size analyses of clay and silt fraction by Sedigraph 5000D: Comparison with Coulter counter and Atterberg methods: J. Sediment. Petrol., 55, 590–593.CrossRefGoogle Scholar
Stewart, F. H., 1963, Marine evaporites, in Fleischer, M. (ed.), Data of Geochemistry: US Geological Survey Professional Paper 440-Y.
Stoesser, R. K. and Moore, C. H., 1983, Chemical constraints and origins of four groups of Gulf Coast reservoir fluids: Am. Assoc. Pet. Geol. Bull., 67, 896–906.Google Scholar
Stokes, S., Nelson, C. S., and Healy, T. R., 1989, Textural procedures for the environmental discrimination of late Neogene coastal sand deposits, southwest Auckland, New Zealand: Sediment. Geol., 61, 135–150.CrossRefGoogle Scholar
Stone, W. N. and Siever, R., 1996, Quantifying compaction, pressure solution and quartz cementation in moderately- and deeply-buried quartzose sandstones from the Greater Green River Basin, Wyoming, in Crossey, L. J., Totten, M. W., and Scholle, P. A. (eds.), Siliciclastic Diagenesis and Fluid Flow: Concepts and Applications: SEPM Special Publication 55, pp. 129–150.
Stopes, M. C., 1919, On the four visible ingredients in banded bituminous coal. Studies in the composition of coal: Royal Soc. London Proc., Ser. B., 90, 470–487.CrossRefGoogle Scholar
Stopes, M. C., 1935, On the petrology of banded bituminous coal: Fuel London, 14, 4–13.Google Scholar
Stow, D. A. V., 2005, Sedimentary Rocks in the Field: A Color Guide: Elsevier, Burlington, MA.CrossRefGoogle Scholar
Stow, D. A. V. and Bowen, A. J., 1980, A physical model for the transport and sorting of fine-grained sediment by turbidity currents: Sedimentology, 27, 31–46.CrossRefGoogle Scholar
Stow, D. A. V. and Piper, D. J. W., 1984, Deep-water fine-grained sediments: history, methodology and terminology, in Stow, D. A. V. and Piper, D. J. W. (eds.), Fine-Grained Sediments: Geological Society Special Publication 15, pp. 3–14.
Strasser, A., Davaud, E., and Jedouri, Y., 1989, Carbonate cements in Holocene beachrock: Examples from Bahiret el Biban, southeastern Tunisia: Sediment. Geol., 62, 89–100.CrossRefGoogle Scholar
Strohmenger, C. and Wirsing, G., 1991, A proposed extension of Folk's textural classification of carbonate rocks: Carbonate Evaporite, 6, 23–28.CrossRefGoogle Scholar
Sturesson, U., Dronov, A., and Saadre, T., 1999, Lower Ordovician iron ooids and associated oolitic clays in Russia and Estonia: A clue to the origin of iron oolites: Sediment. Geol., 123, 63–80.CrossRefGoogle Scholar
Sudo, T., Shimoda, S., Yotsumoto, H., and Aita, S., 1981, Electron Micrographs of Clay Minerals: Elsevier, Amsterdam.Google Scholar
Suess, E., Balzer, W., Hesse, K.-F., et al., 1982, Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic Shelf: Precursor of Glendonites: Science, 1216, 1128–1131.CrossRefGoogle Scholar
Sugisaki, R., 1984, Relation between chemical composition and sedimentation rate of Pacific ocean-floor sediments deposited since the middle Cretaceous: Basic evidence for chemical constraints on depositional environments of ancient sediments: J. Geol., 92, 235–260.CrossRefGoogle Scholar
Surdam, R. C., 1981, Zeolites in closed hydrologic systems, in Mumpton, F. A. (ed.), Mineralogy and Geology of Natural Zeolites: Mineralogical Society of America Reviews in Mineralogy 4, pp. 65–91.
Surdam, R. C. and Boles, J. R., 1979, Diagenesis of volcanic sandstones, in Scholle, P. A. and Schluger, P. R. (eds.), Aspects of Diagenesis: SEPM Special Publication 26, pp. 227–242.
Surdam, R. C., Crossey, L. J., Hagen, E. S., and Heasler, H. P., 1989a, Organic–inorganic interactions and sandstone diagenesis: Am. Assoc. Pet. Geol. Bull., 73, 1–23.Google Scholar
Surdam, R. C., Dunn, T. L., Heasler, H. P., and MacGowan, D. B., 1989b, Porosity evolution in sandstone/shale systems, in Hutcheon, I. E. (ed.), Burial Diagenesis: Mineralogical Association of Canada Short Course Handbook 15, pp. 61–134.
Suryanarayana, C. and Norton, M. G., 1998, X-Ray Diffraction: a Practical Approach: Plenum Press, New York, NY.CrossRefGoogle Scholar
Suttner, L. J. and Basu, A., 1985, The effects of grain size on detrital modes: A test of the Gazzi–Dickinson point-counting method: J. Sediment. Petrol., 55, 6l6–617.CrossRefGoogle Scholar
Suttner, L. J. and Dutta, P. K., 1986, Alluvial sandstone composition and paleoclimate, I. Framework mineralogy: J. Sediment. Petrol., 56, 329–345.Google Scholar
Suttner, L. J., Basu, A., and Mack, G. H., 1981, Climate and the origin of quartz arenites: J. Sediment. Petrol., 51, 1235–1246.Google Scholar
Sutton, R. G. and Lewis, T. L., 1966, Regional patterns of cross-laminae and convolution in a single bed: J. Sediment. Petrol., 36, 225–229.CrossRefGoogle Scholar
Swanson, F. J., 1972, Morphogenesis and shape sorting of coarse sediment in the Elk River, Southwestern Oregon: Unpublished Ph.D dissertation, University of Oregon, OR.
Swarbrick, R. E., Osborne, M. J., and Yardley, G. S., 2002, Comparison of overpressure magnitude resulting from main generating mechanisms, in Huffman, A. R. and Bowers, G. L. (eds.), Pressure Regimes in Sedimentary Basins and Their Prediction: AAPG Memoir 76, pp. 1–12.
Swart, P. K. and Melim, L. A., 2000, The origin of dolomites in Tertiary sediments from the margin of Great Bahama Bank: J. Sediment. Res., 70, 738–748.CrossRefGoogle Scholar
Swift, D. J. P., Schubel, J. R., and Sheldon, R. E., 1972, Size analysis of fine-grained suspended sediments: a review: J. Sediment. Petrol., 42, 122–134.Google Scholar
Syvitski, J. P. M. (ed.), 1991a, Applications, in Principles, Methods, and Application of Particle Size Analysis: Cambridge University Press, Cambridge, p. 281.CrossRef
Syvitski, J. P. M., 1991b Factor analysis of size frequency distributions: Significance of factor solutions based on simulation experiments, in Syvitski, J. P. M. (ed.), 1991, Principles, Methods, and Application of Particle Size Analysis: Cambridge University Press, Cambridge, pp. 249–263.CrossRefGoogle Scholar
Syvitski, J. P. M., Asprey, K. W., and Clattenburg, D. A., 1991, Principles, design, and calibration of settling tubes, in Syvitski, J. P. M. (ed.), Principles, Methods, and Application of Particle Size Analysis: Cambridge University Press, Cambridge, pp. 45–63.CrossRefGoogle Scholar
Tauxe, L., 2002, Paleomagnetic Principles and Practice: Kluwer, Dordrect.Google Scholar
Telford, R. W., Lyons, M., Orford, J. D., Whalley, W. B., and Fay, D. Q. M., 1987, A low-cost, microcomputer-based image analyzing system for characterization of particle outline morphology, in Marshall, J. R. (ed.), Clastic Particles: Van Nostrand Reinhold, New York, NY, pp. 281–289.Google Scholar
Thomas, L., 1992, Handbook of Practical Coal Geology: John Wiley and Sons, Chichester.Google Scholar
Thompson, S. K., 2002, Sampling, 2nd edn.: John Wiley and Sons, New York.Google ScholarPubMed
Ting, F. T. C., 1982, Coal macerals, in Meyers, R. A. (ed.), Coal Structure: Academic Press, New York, NY, pp. 7–49.CrossRefGoogle Scholar
Tissot, B. P. and Welte, D. H., 1984, Petroleum Formation and Occurrence, 2nd edn.: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Tolstov, G. P., 1976, Fourier Series: Dover Publishers, New York.Google Scholar
Torley, R. F., 2001, Results of a new method of Fourier grain-shape analysis of detrital quartz grains in sediments from Jackson County, Oregon: Oreg. Geol., 63, 60–64.Google Scholar
Tourtelet, H. A., 1960, Origin and use of the word “shale”: Am. J. Sci., 258-A (Bradley Volume) 335–343.Google Scholar
Tovey, N. K., Hounslow, M. H., and Wang, J. M., 1995, Orientation analysis and its application in image analysis: Adv. Imag. Elect. Phys., 93, 219–329.CrossRefGoogle Scholar
Trappe, J., 2001, A nomenclature system for granular phosphate rock according to depositional texture: Sediment. Geol., 145, 135–150.CrossRefGoogle Scholar
Trendall, A. F., 1983, Introduction, in Trendall, A. F. and Mooris, R. C. (eds.), Iron-Formation: Facts and Problems: Elsevier, Amsterdam, pp. 1–12.Google Scholar
Trendall, A. F., 2002, The significance of iron-formation in the Precambrian record, in Wladyslaw, A. and Corcoran, P. L. (eds.), Precambrian Sedimentary Environments: International Association of Sedimentologists Special Publication 33, pp. 33–66.
Trendall, A. F. and Blockley, J. G., 1970, The iron formations of the Precambrian Hammersley Group, western Australia: Geol. Surv. West. Aust. Bull., 119, 1–136.Google Scholar
Trevena, A. S. and Nash, W. P., 1979, Chemistry and provenance of detrital feldspars: Geology, 7, 475–478.2.0.CO;2>CrossRefGoogle Scholar
Trevena, A. S. and Nash, W. P., 1981, An electron microprobe study of detrital feldspar: J. Sediment. Petrol., 51, 137–150.Google Scholar
Trurnit, P., 1968, Analysis of pressure-solution contacts and classification of pressure solution phenomena, in Müller, G. and Friedman, G. M. (eds.), Carbonate Sedimentology in Central Europe: Springer-Verlag, New York, NY, pp. 75–84.CrossRefGoogle Scholar
Tucker, M. (ed.), 1988, Techniques in Sedimentology: Blackwell Scientific, Oxford.
Tucker, M. E, 2003, Sedimentary Rocks in the Field: John Wiley and Sons, Chichester.Google Scholar
Tucker, M. E. and Wright, V. P., 1990, Carbonate Sedimentology: Blackwell Scientific, Oxford.CrossRefGoogle Scholar
Tyler, S. A., Barghoorn, E. S., and Barrett, L. P., 1957, Anthracitic coal from Precambrian Upper Huronian black shale of the Iron River district, northern Michigan: Geol. Soc. Am. Bull., 68, 1293–1304.CrossRefGoogle Scholar
Usdowski, E., 1994, Synthesis of dolomite and geochemical implications, in Purser, B. H., Tucker, M. E., and Zenger, D. H. (eds.), Dolomite – a Volume in Honour of Dolomieu: International Association of Sedimentologists Special Publication 21, pp. 345–360.
Valley, J. W. and Cole, D. R. (eds.), 2001, Stable Isotope Geochemistry: Mineralogical Society of America Reviews in Mineralogy and Geochemistry 43.
Berg, E. H., Bense, V. F., and Schlager, W., 2003, Assessing textural variation in laminated sands using digital image analysis of thin sections: J. Sediment. Res., 73, 133–143.CrossRefGoogle Scholar
Houten, F. B., 1982, Phanerozoic oolitic ironstones – Geologic record and facies models: Ann. Rev. Earth Planet. Sci., 10, 441–457.CrossRefGoogle Scholar
Houten, F. B., 2000, Ooidal ironstones and phosphorites – A comparison from a stratigrapher's view, in Glen, C. R., Prévôt-Lucas, L., and Lucas, J. (eds.), Marine Authigenesis: From Global to Microbial: SEPM Special Publication 66, pp. 127–132.
Vasconcelos, C. and McKenzie, J. A., 1997, Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil): J. Sediment. Res., 67, 378–390.Google Scholar
Vavra, C. L., 1989, Mineral reactions and controls on zeolite-facies alterations in sandstones of the central Transantarctic Mountains, Antarctica: J. Sediment. Petrol., 59, 688–703.Google Scholar
Veizer, J., 1983, Trace elements and isotopes in sedimentary rocks, in Reeder, R. J. (ed.), Carbonates: Mineralogy and Chemistry: Mineralogical Society of America Reviews in Mineralogy 11, pp. 265–299.
Veizer, J., Ala, D., Azmy, K., et al., 1999, 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater: Chem. Geol., 161, 59–88.CrossRefGoogle Scholar
Velbel, M. A. and Saad, M. K., 1991, Paleoweathering or diagenesis as the principal modifier of sandstone framework composition? A case study from some Triassic rift-valley redbeds of eastern North America, in Morton, A. C., Todd, S. P., and Haughton, P. W. D. (eds.), Developments in Sedimentary Provenance Studies: Geological Society Special Publication 57, pp. 91–99.
Velde, B., 1995, Mineralogy of Clays: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Vincent, P., 1986, Differentiation of modern beach and coastal dune sands – A logistic regression approach using parameters of the hyperbolic function: Sediment. Geol., 49, 167–176.CrossRefGoogle Scholar
Visher, G. S., 1969, Grain size distributions and depositional processes: J. Sediment. Petrol., 39, 1074–1106.Google Scholar
Wadell, H., 1932, Volume, shape and roundness of rock particles: J. Geol., 40., 443–451.CrossRefGoogle Scholar
Walderhaug, O., 1990, A fluid inclusion study of quartz-cemented sandstones from offshore mid Norway: J. Sediment. Petrol., 60, 203–210.Google Scholar
Walkden, G. M. and Berry, J. R., 1984, Syntaxial overgrowths in muddy crinoidal limestones: Cathodoluminescence sheds new light on an old problem: Sedimentology, 31, 251–267.CrossRefGoogle Scholar
Walker, S., 2000, Major Coalfields of the World: IEA Coal Research, The Clean Coal Centre, London.Google Scholar
Walker, R. G., 1984, Shelf and shallow marine sands, in Walker, R. G. (ed.), Facies Models, 2nd edn.: Geoscience Canada Reprint Series 1.
Walker, T. R., 1974, Formation of red beds in moist tropical climates: A hypothesis: Geol. Soc. Am. Bull., 85, 633–638.2.0.CO;2>CrossRefGoogle Scholar
Walker, T. R., 1984, Diagenetic albitization of potassium feldspars in arkosic sandstones: J. Sediment. Petrol., 54, 3–16.Google Scholar
Walker, T. R., Waugh, B., and Grone, A. J., 1978, Diagenesis in first-cycle desert alluvium of Cenozoic age, southwestern United States and northwestern Mexico: Geol. Soc. Am. Bull., 89, 19–32.2.0.CO;2>CrossRefGoogle Scholar
Wallace, M. W., 1987, The role of internal erosion and sedimentation in the formation of stromatactis mudstones and associated lithologies: J. Sediment. Petrol., 57, 695–700.Google Scholar
Walther, J. V., 2005, Essentials of Geochemistry: Jones and Bartlett Publishers, Boston, MA.Google Scholar
Wandres, A. M., Bradshaw, J. D., Weaver, S., et al., 2004, Provenance analysis using conglomerate clast lithologies: a case study from the Pahau terrane of New Zealand: Sediment. Geol., 167, 57–89.CrossRefGoogle Scholar
Wanless, H. R., 1979, Limestone response to stress: Pressure solution and dolomitization: J. Sediment. Petrol., 49, 437–462.Google Scholar
Ward, C. R. (ed.), 1984, Coal Geology and Coal Technology: Blackwell Scientific, Melbourne.
Wardlaw, N., Oldlershaw, A., and Stout, M., 1978, Transformation of aragonite to calcite in a marine gastropod: Can. J. Earth Sci., 15, 1861–1866.CrossRefGoogle Scholar
Warren, J., 2000, Dolomite: occurrence, evolution and economically important associations: Earth Sci. Rev., 52, 1–81.CrossRefGoogle Scholar
Warren, J. K., 1989, Evaporite Sedimentology: Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Warren, J. K., 2006, Evaporites: Sediments, Resources, and Hydrocarbons: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Warren, J. K. and St, G. C.. Kendall, C., 1985, Comparison of marine sabkhas (subaerial) and salina (subaqueous) evaporites: Modern and ancient: Am. Assoc. Pet. Geol. Bull., 69, 1013–1023.Google Scholar
Weaver, M. and Wise, Jr. S. W., 1974, Opaline sediments of the southeastern coastal plain and Horizon A: Biogenic origin: Science, 184, 899–901.CrossRefGoogle Scholar
Welte, D. H., Horsfield, B., and Baker, D. R. (eds.), 1997, Petroleum and Basin Evolution: Insights From Petroleum Geochemistry, Geology and Basin Modeling: Springer-Verlag, Berlin.CrossRef
Weltje, G. J., 2006, Ternary sandstone composition and provenance: an evaluation of the “Dickinson model,” in Buccianti, A., Mateu-Figuras, G., and Pawlowsky-Glahn, V. (eds.), Compositional Data Analysis in the Geosciences: From Theory to Practice: Geological Society of London Special Publication 264, pp. 79–99.
Wentworth, C. K., 1922, A scale of grade and class terms for clastic sediments: J. Geol., 30, 377–392.CrossRefGoogle Scholar
Wetzel, A., 1989, Influence of heat flow on ooze/chalk cementation: Quantification from consolidation parameters in DSDP sites 504 and 505 sediments: J. Sediment. Petrol., 59, 539–547.Google Scholar
Whalley, W. B. and Orford, J. D., 1986, Practical methods for analysing and quantifying two-dimensional images, in Sieveking, C.De C. and Hart, M. B. (eds.), The Scientific Study of Flint and Chert: Cambridge University Press, Cambridge, pp. 235–242.Google Scholar
Whitaker, F. F., Smart, P. L., Vahrenkamp, V. C., Nicholson, H., and Wogelius, R. A., 1994, Dolomitization by near-normal seawater? Field evidence from the Bahamas, in Purser, B., Tucker, M., and Zenger, D. (eds.), Dolomites – a Volume in Honour of Dolomieu: International Association of Sedimentologists Special Publication 21, pp. 111–132.
Whitaker, F. F., Smart, P. L., and Jones, G. D., 2004, Dolomitization: from conceptual to numerical models, in Braithwaite, C. J. R., Rizzi, G., and Darke, G. (eds.), The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs: Geological Society of London Special Publication 235, pp. 99–139.
White, D. E., 1965, Saline waters of sedimentary rocks, in Young, A. and Galley, J. E. (eds.), Fluids in Subsurface Environments: AAPG Memoir 4, pp. 342–366.
White, J. D. L. and Riggs, N. R. (eds.), 2001, Volcaniclastic Sedimentation in Lacustrine Settings: International Association of Sedimentologists Special Publication 30.
Wiegman, J., Horte, C. H., and Kranz, G., 1982, Determination of the complete mineral composition of clays, in Olphen, H. and Veniale, F. (eds.), International Clay Conference 1981: Developments in Sedimentology 35, pp. 365–372.
Wilkinson, M., Milliken, K. L., and Haszeldine, R. S., 2001, Systematic destruction of K-feldspar in deeply buried rift and passive margin sandstones: J. Geol. Soc. London, 158, 675–683.CrossRefGoogle Scholar
Willey, J. D. 1974, The effect of pressure on the solubility of amorphous silica in seawater at 0 ℃: Mar. Chem., 2, 239–250.CrossRefGoogle Scholar
Williams, H., Turner, F. J., and Gilbert, C. M., 1982, Petrography: An Introduction to the Study of Rocks in Thin Sections, 2nd edn.: W. H. Freeman, San Francisco, CA.Google Scholar
Williams, L. A. and Crerar, D. A., 1985, Silica diagenesis, II. General mechanisms: J. Sediment. Petrol., 55, 312–321.Google Scholar
Williams, L. A., Parks, G. A., and Crerar, D. A., 1985, Silica diagenesis, I. Solubility controls: J. Sediment. Petrol., 55, 301–311.Google Scholar
Wilson, J. C. and McBride, E. F., 1988, Compaction and porosity evaluation of Pliocene Sandstones, Ventura Basin, California: Am. Assoc. Petrol. Geol. Bull., 72, 664–681.Google Scholar
Wilson, J. E., 1975, Carbonate Facies in Geologic History: Springer-Verlag, New York, NY.CrossRefGoogle Scholar
Winland, H. D. and Matthews, R. K., 1974, Origin and significance of grapestone, Bahama Island: J. Sediment. Petrol., 44, 921–927.Google Scholar
Wise, S. W. and Kelts, K. R., 1972, Inferred diagenetic history of a weakly silicified deep sea chalk: Gulf Coast Assoc. Geol. Soc. Trans., 22, 177–203.Google Scholar
Woodland, B. G., 1964, The nature and origin of cone-in-cone structure: Fieldiana: Geol., 13, 185–305.Google Scholar
Worden, R. H. and Burley, S. D., 2003, Sandstone diagenesis: the evolution of sand to stone, in Burley, S. D. and Worden, R. H. (eds.), Sandstone Diagenesis: Recent and Ancient: Blackwell, Malden, MA, pp. 3–44.Google Scholar
Worden, R. H. and Morad, S. (eds.), 2003, Clay Mineral Cements in Sandstones: International Association of Sedimentologists, Special Publication 34.
Wright, V. P., 1992, A revised classification of limestones: Sediment. Geol., 76, 177–185.CrossRefGoogle Scholar
Wright, V. P. and Burchette, T. P., 1996, Shallow-water carbonate environments, in Reading, H. G. (ed.), Sedimentary Environments: Processes, Facies and Stratigraphy: Blackwell Science., Oxford, pp. 325–394.Google Scholar
Wright, W. R., 2001, Dolomitization, fluid-flow and mineralization of the lower carboniferous rocks of the Irish Midlands and Dublin Basin: Unpublished Ph.D thesis, University College, Dublin (Cited in Machel, 2004.)
Wyrwoll, K. -H. and Smyth, G. K., 1985, On using the log-hyperbolic distribution to describe the textural characteristics of eolian sediments: J. Sediment. Petrol., 55, 471–478.Google Scholar
Yao, Q. and Demicco, R. V., 1995, Paleoflow patterns of dolomitizing fluids and paleohydrogeology of the southern Canadian Rocky Mountains: Evidence from dolomite geometry and numerical modeling: Geology 23, 791–794.2.3.CO;2>CrossRefGoogle Scholar
Yates, K. K. and Robbins, L. L., 2001, Microbial lime-mud production and its relation to climate change, in Gearhard, L. C., Harrison, W. E., and Hanson, B. M. (eds.), Geological Perspectives of Global Climate Change: AAPG Studies in Geology 47, pp. 267–283.
Yen, T. F. and Chilingar, G. V., 1976, Introduction to oil shales, in Yen, T. F. and Chilingarian, G. V. (eds.), Oil Shale: Elsevier, Amsterdam, pp. 1–12.Google Scholar
Young, S. W., 1976, Petrographic textures of detrital polycrystalline quartz as an aid to interpreting crystalline source rocks: J. Sediment. Petrol., 46, 595–603.Google Scholar
Young, S. W., Basu, A., Mack, G., Darnell, N., and Suttner, L. J., 1975, Use of size-composition trends in Holocene soil and fluvial sand for paleoclimatic interpretation: Proceedings of the IXth International Congress on Sedimentation, Th. 1, Nice, France, July 6–13.
Young, T. P. and Taylor, W. E. G. (eds.), 1989, Phanerozoic Ironstones: The Geological Society Special Publication 46.
Zack, T., Eynatten, H., and Kronz, A., 2004, Rutile geochemistry and its potential use in quantitative provenance studies: Sediment. Geol., 171, 37–58.CrossRefGoogle Scholar
Zenger, D. H., 1989, Dolomite abundance and stratigraphic age: Constraints on rates and mechanisms of Phanerozoic dolostone formation – Discussion: J. Sediment. Petrol., 59, 162–164.CrossRefGoogle Scholar
Zingg, Th., 1935, Beiträge zur Schotteranalyse: Schweiz. Mineral. Petrog. Mitt., 15, 39–140.Google Scholar
Zuffa, G. G., 1980, Hybrid arenites: Their composition and classification: J. Sediment. Petrol., 50, 21–29.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Sam Boggs, Jr, University of Oregon
  • Book: Petrology of Sedimentary Rocks
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626487.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Sam Boggs, Jr, University of Oregon
  • Book: Petrology of Sedimentary Rocks
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626487.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Sam Boggs, Jr, University of Oregon
  • Book: Petrology of Sedimentary Rocks
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626487.015
Available formats
×