Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-14T09:16:23.058Z Has data issue: false hasContentIssue false

5 - Orographically forced flows

Published online by Cambridge University Press:  15 December 2009

Yuh-Lang Lin
Affiliation:
North Carolina State University
Get access
Type
Chapter
Information
Mesoscale Dynamics , pp. 109 - 183
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aebischer, U. and Schär, C., 1998. Low-level potential vorticity and cyclogenesis to the lee of the Alps. J. Atmos. Sci., 55, 186–207.2.0.CO;2>CrossRefGoogle Scholar
Bacmeister, J. T. and Pierrehumbert, R. T., 1988. On high-drag states of nonlinear stratified flow over an obstacle. J. Atmos. Sci., 45, 63–80.2.0.CO;2>CrossRefGoogle Scholar
Batchelor, G. K., 1967. An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bell, G. D. and Bosart, L. F., 1988. Appalachian cold-air damming. Mon. Wea. Rev., 116, 137–61.2.0.CO;2>CrossRefGoogle Scholar
Blackmon, M., Wallace, J. M., Lau, N. C., and Mullen, S., 1977. An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 1040–53.2.0.CO;2>CrossRefGoogle Scholar
Bleck, R. and Mattocks, C., 1984. A preliminary analysis of the role of potential vorticity in Alpine lee cyclogenesis. Beitr. Phys. Atmos., 57, 357–68.Google Scholar
Buzzi, A. and Tibaldi, S., 1977. Inertial and frictional effects on rotating stratified flow over topography. Quart. J. Royal Meteor. Soc., 103, 135–50.CrossRefGoogle Scholar
Buzzi, A., Trevisan, A., Tibaldi, S., and Tosi, E., 1987. A unified theory of orographic influences upon cyclogenesis. Meteor. Atmos. Phys., 36, 91–107.CrossRefGoogle Scholar
Carlson, T. N., 1998. Mid-Latitude Weather Systems. Amer. Meteor. Soc.
Chang, S. W.-J., 1982. The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 1255–70.2.0.CO;2>CrossRefGoogle Scholar
Chen, Y.-L. and Hui, N. B.-F., 1992. Analysis of a relatively dry front during the Taiwan Area Mesoscale Experiment. Mon. Wea. Rev., 120, 2442–68.2.0.CO;2>CrossRefGoogle Scholar
Chung, C. S., Hage, K., and Reinelt, E., 1976. On lee cyclogenesis and airflow in the Canadian Rocky Mountains and the East Asian Mountains. Mon. Wea. Rev., 104, 878–91.2.0.CO;2>CrossRefGoogle Scholar
Clark, T. L. and Peltier, W. R., 1984. Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci., 41, 3122–34.2.0.CO;2>CrossRefGoogle Scholar
Crook, N. A., Clark, T. L., and Moncrieff, M. W., 1990. The Denver cyclone. Part I: Generation in low Froude number flow. J. Atmos. Sci., 47, 2725–42.2.0.CO;2>CrossRefGoogle Scholar
Davis, C. A., 1997. The modification of baroclinic waves by the Rocky Mountains. J. Atmos. Sci., 54, 848–68.2.0.CO;2>CrossRefGoogle Scholar
Davies, H. C., 1984. On the orographic retardation of a cold front. Beitr. Phys. Atmos., 57, 409–18.Google Scholar
Dickinson, M. J. and Knight, D. J., 1999. Frontal interaction with mesoscale topography. J. Atmos. Sci., 56, 3544–59.2.0.CO;2>CrossRefGoogle Scholar
Doyle, J. D. and Durran, D. R., 2004. Recent developments in the theory of atmospheric rotors. Bull. Amer. Meteor. Soc., 85, 337–42.CrossRefGoogle Scholar
Durran, D. R., 1986a. Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 2527–43.2.0.CO;2>CrossRefGoogle Scholar
Durran, D. R., 1986b. Mountain waves. In Mesoscale Meteorology and Forecasting, Ray, P. S. (ed.), Amer. Meteor. Soc., 472–92.CrossRefGoogle Scholar
Durran, D. R., 1990. Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81.
Durran, D. R. and Klemp, J. B., 1987. Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning layers. J. Atmos. Sci., 44, 3402–12.2.0.CO;2>CrossRefGoogle Scholar
Eady, E. T., 1949. Long waves and cyclone waves. Tellus, 1, 33–52.CrossRefGoogle Scholar
Egger, , 1972. Numerical experiments on lee cyclogenesis in the Gulf of Genoa. Beitr. Phys. Atmos., 45, 320–46.Google Scholar
Epifanio, C. C., 2003. Lee vortices. In Encyclopedia of the Atmospheric Sciences, Cambridge University Press, 1150–60.Google Scholar
Epifanio, C. C. and Durran, D. R., 2001. Three-dimensional effects in high-drag-state flows over long ridges. J. Atmos. Sci., 58, 1051–65.2.0.CO;2>CrossRefGoogle Scholar
Epifanio, C. C. and Rotunno, R., 2005. The dynamics of orographic wake formation in flows with upstream blocking. J. Atmos. Sci., 62, 3127–50.CrossRefGoogle Scholar
Garner, S. T., 1995. Permanent and transient upstream effects in nonlinear stratified flow over a ridge. J. Atmos. Sci., 52, 227–46.2.0.CO;2>CrossRefGoogle Scholar
Gaberšek, S. and Durran, D. R. 2004. Gap flows through idealized topography. Part I: Forcing by large-scale winds in the nonrotating limit. J. Atmos. Sci., 61, 2846–62.CrossRefGoogle Scholar
Grimshaw, R. H. and Smyth, N., 1986. Resonant flow of a stratified fluid over topography. J. Fluid Mech., 169, 429–64.CrossRefGoogle Scholar
Gross, B. D., 1994. Frontal interaction with isolated topography. J. Atmos. Sci., 51, 1480–96.2.0.CO;2>CrossRefGoogle Scholar
Grubišić, V. and Lewis, J. M., 2004. Sierra Wave Project revisited. Bull. Amer. Meteor. Soc., 85, 1127–42.CrossRefGoogle Scholar
Hayes, J. L., Williams, R. T., and Rennick, M. A., 1993. Lee cyclogenesis. Part II: Numerical studies. J. Atmos. Sci., 50, 2354–68.2.0.CO;2>CrossRefGoogle Scholar
Haynes, P. H. and McIntyre, M. E., 1990. On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci., 47, 2021–31.2.0.CO;2>CrossRefGoogle Scholar
Holland, G. J. and Leslie, L. M., 1986. Ducted coastal ridging over S. E. Australia. Quart. J. Roy. Meteor. Soc., 112, 731–48.CrossRefGoogle Scholar
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W., 1985. On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.CrossRefGoogle Scholar
Hunt, J. C. R. and Snyder, W. H., 1980. Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96, 671–704.CrossRefGoogle Scholar
Laprise, R. and Peltier, W. R., 1989a. On the structural characteristics of steady finite-amplitude mountain waves over bell-shaped topography. J. Atmos. Sci., 46, 586–95.2.0.CO;2>CrossRefGoogle Scholar
Laprise, R. and Peltier, W. R., 1989b. The linear stability of severe downslope windstorms. J. Atmos. Sci., 46, 545–64.Google Scholar
Lee, T.-Y., Park, Y.-Y., and Lin, Y.-L., 1998. A numerical modeling study of mesoscale cyclogenesis to the east of the Korean Peninsula. Mon. Wea. Rev., 126, 2305–29.2.0.CO;2>CrossRefGoogle Scholar
Lin, Y.-L. and Perkey, D. J., 1989. Numerical modeling studies of a process of lee cyclogenesis. J. Atmos. Sci., 46, 3685–97.2.0.CO;2>CrossRefGoogle Scholar
Lin, Y.-L. and Wang, T.-A., 1996. Flow regimes and transient dynamics of two-dimensional stratified flow over an isolated mountain ridge. J. Atmos. Sci., 53, 139–58.2.0.CO;2>CrossRefGoogle Scholar
Lin, Y.-L., Lin, N.-H., and Weglarz, R. P., 1992. Numerical modeling studies of lee mesolows, mesovortices, and mesocyclones with application to the formation of Taiwan mesolows. Meteor. Atmos. Phys., 49, 43–67.CrossRefGoogle Scholar
Lin, Y.-L., Han, J., Hamilton, D. W., and Huang, C.-Y., 1999. Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534–62.2.0.CO;2>CrossRefGoogle Scholar
Lin, Y.-L., Chen, S.-Y., Hill, C. M., and Huang, C.-Y., 2005. Control parameters for track continuity and deflection associated with tropical cyclones over a mesoscale mountain. J. Atmos. Sci., 62, 1849–66.CrossRefGoogle Scholar
Long, R. R., 1953. Some aspects of the flow of stratified fluids. Part I. A theoretical investigation. Tellus, 5, 42–58.CrossRefGoogle Scholar
Mayr, G. J., 2005. Gap flows – our state of knowledge at the end of MAP. Croatian Meteor. J., 40, 6–10.Google Scholar
Miles, J. W., 1968. Lee waves in a stratified flow. Part 2: Semi-circular obstacle. J. Fluid Mech., 33, 803–14.CrossRefGoogle Scholar
Miles, J. W. and Huppert, H. E., 1969. Lee waves in a stratified flow. Part 4: Perturbation approximation. J. Fluid Mech., 35, 497–525.CrossRefGoogle Scholar
Orlanski, I. and Gross, B. D., 1994. Orographic modification of cyclone development. J. Atmos. Sci., 51, 589–611.2.0.CO;2>CrossRefGoogle Scholar
Petterssen, S., 1956. Weather Analysis and Forecasting. Vol. I, McGraw Hill.Google Scholar
Pichler, H. and Steinacker, R., 1987. On the synoptics and dynamics of orographically induced cyclones in the Mediterranean. Meteor. Atmos. Phys., 36, 108–17.CrossRefGoogle Scholar
Pierrehumbert, R. T., 1986. Lee cyclogenesis. In Mesoscale Meteorology and Forecasting, Ray, P. S. (ed.), Amer. Meteor. Soc., 493–515.CrossRefGoogle Scholar
Pierrehumbert, R. T. and Wyman, B., 1985. Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 977–1003.2.0.CO;2>CrossRefGoogle Scholar
Queney, P., 1948. The problem of air flow over mountain: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 16–26.Google Scholar
Queney, P., G. Corby, N. Gerbier, H. Koschmieder, and J. Zierep, 1960. The Airflow Over Mountains. WMO Tech. Note, 34.
Reason, C. J. C., Tory, K. J., and Jackson, P. L., 2001. A model investigation of the dynamics of a coastally trapped disturbance. J. Atmos. Sci., 58, 1892–906.2.0.CO;2>CrossRefGoogle Scholar
Rottman, J. W. and Smith, R. B., 1989. A laboratory model of severe downslope winds. Tellus, 41A, 401–15.CrossRefGoogle Scholar
Schär, C., 1990. Quasi-geostrophic lee cyclogenesis. J. Atmos. Sci., 47, 3044–66.2.0.CO;2>CrossRefGoogle Scholar
Schär, C., 1993. A generation of Bernoulli's theorem. J. Atmos. Sci., 50, 1437–43.2.0.CO;2>CrossRefGoogle Scholar
Schär, C. and Durran, D. R., 1997. Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54, 534–54.2.0.CO;2>CrossRefGoogle Scholar
Schär, C. and Smith, R. B., 1993a. Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, 1373–1400.2.0.CO;2>CrossRefGoogle Scholar
Schär, C. and Smith, R. B., 1993b. Shallow-water flow past isolated topography. Part II: Transition to vortex shedding. J. Atmos. Sci., 50, 1401–12.2.0.CO;2>CrossRefGoogle Scholar
Scinocca, J. F. and Peltier, W. R., 1993. The instability of Long's stationary solution and the evolution toward severe downslope windstorm flow. Part I: Nested grid numerical simulations. J. Atmos. Sci., 50, 2245–63.2.0.CO;2>CrossRefGoogle Scholar
Scorer, R. S., 1949. Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 41–56.CrossRefGoogle Scholar
Scorer, R. S., 1954. Theory of airflow over mountains: III – airstream characteristics. Quart. J. Roy. Meteor. Soc., 80, 417–28.CrossRefGoogle Scholar
Sharman, R. D. and Wurtele, M. G., 1983. Ship waves and lee waves. J. Atmos. Sci., 40, 396–427.2.0.CO;2>CrossRefGoogle Scholar
Skamarock, W. C., Rotunno, R., and Klemp, J. B., 1999. Models of coastally trapped disturbances. J. Atmos. Sci., 56, 3349–65.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B., 1979. The influence of mountains on the atmosphere. Adv. Geophys., 21, 87–230.CrossRefGoogle Scholar
Smith, R. B., 1980. Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348–64.CrossRefGoogle Scholar
Smith, R. B., 1984. A theory of lee cyclogenesis. J. Atmos. Sci., 41, 1159–68.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B., 1985. On severe downslope winds. J. Atmos. Sci., 42, 2597–2603.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B., 1986. Further development of a theory of lee cyclogenesis. J. Atmos. Sci., 43, 1582–1602.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B., 1989a. Hydrostatic airflow over mountainsAdv. Geophys., 31, 1–41.CrossRefGoogle Scholar
Smith, R. B., 1989b. Comments on “Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices.” J. Atmos. Sci., 46, 3611–13.2.0.CO;2>CrossRefGoogle Scholar
Smolarkiewicz, P. K. and Rotunno, R., 1989. Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 1154–64.2.0.CO;2>CrossRefGoogle Scholar
Speranza, A., Buzzi, A., Trevisan, A., and Malguzzi, P., 1985. A theory of deep cyclogenesis in the lee of the Alps: Part I, Modification of baroclinic instability by localized topography. J. Atmos. Sci., 42, 1521–35.2.0.CO;2>CrossRefGoogle Scholar
Stein, J., 1992. Investigation of the regime diagram of hydrostatic flow over a mountain with a primitive equation model. Part I: Two-dimensional flows. Mon. Wea. Rev., 120, 2962–76.2.0.CO;2>CrossRefGoogle Scholar
Steinacker, R., 1981. Analysis of the temperature and wind fields in the Alpine region. Geophys. Astrophys. Fluid Dyn., 17, 51–62.CrossRefGoogle Scholar
Sun, W.-Y. and Chern, J. D., 2006. Numerical study of the influence of Central Mountain Ranges in Taiwan on a cold front. J. Meteor. Soc. Japan, 84, 27–46.CrossRefGoogle Scholar
Sun, W.-Y., Chern, J. D., Wu, C. C., and Hsu, W.-R., 1991. Numerical simulation of mesoscale circulation in Taiwan and surrounding area. Mon. Wea. Rev., 119, 2558–73.2.0.CO;2>CrossRefGoogle Scholar
Tafferner, A. and Egger, J., 1990. Test of lee cyclogenesis: ALPEX cases. J. Atmos. Sci., 47, 2417–28.2.0.CO;2>CrossRefGoogle Scholar
Teixeira, M. A. C. and Miranda, P. M. A., 2006. A linear model of gravity wave drag for hydrostatic sheared flow over elliptical mountains. Quart. J. Roy. Met. Soc., 132, 2439–58.CrossRefGoogle Scholar
Teixeira, M. A. C., Miranda, P. M. A., Argain, J. L., and Valente, M. A., 2005. Resonant gravity wave drag enhancement in linear stratified flow over mountains, Quart. J. Roy. Met. Soc., 131, 1795–1814.CrossRefGoogle Scholar
Tibaldi, S., A. Buzzi, and A. Speranza, 1990. Orographic cyclogenesis. In Extratropical Cyclones, Newton, C. and Holopainen, E. O. (eds.), Amer. Meteor. Soc., 107–28.Google Scholar
Wang, S.-T., 1980. Prediction of the movement and strength of typhoons in Taiwan and its vicinity. Res. Rep., 108, National Sci. Council Tech. Rep., Taipei, Taiwan.
Wang, T.-A. and Lin, Y.-L., 1999. Wave ducting in a stratified shear flow over a two-dimensional mountain. Part II: Implication for the development of high-drag states for severe downslope windstorms. J. Atmos. Sci., 56, 437–52.2.0.CO;2>CrossRefGoogle Scholar
Xu, Q., Gao, S., and Fiedler, B. H., 1996. A theoretical study of cold air damming with upstream cold air inflow. J. Atmos. Sci., 53, 312–26.2.0.CO;2>CrossRefGoogle Scholar
Zängl, G., 2002. Stratified flow over a mountain with a gap: Linear theory and numerical simulations. Quart. J. Roy. Meteor. Soc., 128, 927–49.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×