Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-26T23:13:24.393Z Has data issue: false hasContentIssue false

Chapter 11 - Predictability of tropical intraseasonal variability

Published online by Cambridge University Press:  03 December 2009

Duane E. Waliser
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena
Tim Palmer
Affiliation:
European Centre for Medium-Range Weather Forecasts
Renate Hagedorn
Affiliation:
European Centre for Medium-Range Weather Forecasts
Get access

Summary

Introduction

Not long after the development of numerical weather forecasting in the 1950s, predictability studies emerged with the desire to determine the theoretical limits associated with deterministic weather forecasting (e.g. Thompson, 1957; Lorenz, 1965, 1982; this volume; Palmer, this volume). Estimating these limits helped to better quantify the capabilities and skill level of operational weather forecast models and to determine how far and fast the community should press the embryonic field of numerical weather forecasting. Numerical predictability studies expanded to include the ocean and the climate scale with the advent of seasonal-to-interannual forecasting based on the El Niño–Southern Oscillation (ENSO) (e.g. Cane et al., 1986; Graham and Barnett, 1995; Kirtman et al., 1997; Barnston et al., 1999; Anderson, this volume; Hagedorn et al., this volume; Shukla and Kinter, this volume). In this case, it was of interest to understand the theoretical limits for predicting tropical Pacific Ocean sea surface temperature (SST) anomalies, and then in turn their implications for predicting monthly or seasonal anomalies of midlatitude circulation, temperature and rainfall.

Very recently, predictability at the intraseasonal timescale (i.e. lead times of about 2 weeks to 2 months) has garnered great interest (Schubert et al., 2002; Waliser et al., 2003a; ECMWF, 2004). This evolution of research and operations in regard to specific prediction regimes (i.e. weather, seasonal and then intraseasonal) has mimicked quite remarkably that anticipated by John von Neumann (1955; relevant excerpt can be found in Waliser, 2005).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annamalai, H., Slingo, J. M., Sperber, K. R. and Hodges, K. (1999). The mean evolution and variability of the Asian summer monsoon: Comparison of ECMWF and NCEP- NCAR reanalyses. Mon. Weather Rev., 127, 1157–862.0.CO;2>CrossRefGoogle Scholar
Baldwin, M. P., Stephenson, D. B., Thompson, D. W. J., et al. (2003). Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636–40CrossRefGoogle ScholarPubMed
Barlow, M., Wheeler, M., Lyon, B. and Cullen, H. (2005). Modulation of daily precipitation over Southwest Asia by the Madden-Julian Oscillation. Mon. Weather Rev., 133, in pressGoogle Scholar
Barnston, A. G., Glantz, M. H. and He, Y. X. (1999). Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño episode and the 1998 La Niña onset. Bull. Am. Meteorol. Soc., 80, 217–432.0.CO;2>CrossRefGoogle Scholar
Berbery, E. H. and Noguespaegle, J. (1993). Intraseasonal interactions between the tropics and extratropics in the Southern-Hemisphere. J. Atmos. Sci., 50, 1950–652.0.CO;2>CrossRefGoogle Scholar
Bond, N. A. and Vecchi, G. A. (2003). The influence of the Madden-Julian oscillation on precipitation in Oregon and Washington. Weather Forecast., 18, 600–132.0.CO;2>CrossRefGoogle Scholar
Cai, M., Kalnay, E. and Toth, Z. (2003). Bred vectors of the Zebiak-Cane model and their potential application to ENSO predictions. J. Climate, 16, 40–562.0.CO;2>CrossRefGoogle Scholar
Cane, M. A., Zebiak, S. E. and Dolan, S. C. (1986). Experimental forecasts of El-Niño. Nature, 321, 827–32CrossRefGoogle Scholar
Chang, C.-P. (2004). East Asian Monsoon. World ScientificCrossRefGoogle Scholar
Chen, S. S., Houze, R. A. and Mapes, B. E. (1996). Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 1380–4092.0.CO;2>CrossRefGoogle Scholar
Chen, T. C. and Alpert, J. C. (1990). Systematic-errors in the annual and intraseasonal variations of the planetary-scale divergent circulation in NMC medium-range forecasts. Mon. Weather Rev., 118, 2607–232.0.CO;2>CrossRefGoogle Scholar
ECMWF (2004). ECMWF/CLIVAR Workshop on Simulation and Prediction of Intra-Seasonal Variability with Emphasis on the MJO, 3–6 November 2003. ECMWF, Reading, UK
Ferranti, L., Palmer, T. N., Molteni, F. and Klinker, K. (1990). Tropical–extratropical interaction associated with the 30–60-day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 2177–992.0.CO;2>CrossRefGoogle Scholar
Ferranti, L., Slingo, J. M., Palmer, T. N. and Hoskins, B. J. (1997). Relations between interannual and intraseasonal monsoon variability as diagnosed from AMIP integrations. Quart. J. Roy. Meteor. Soc., 123, 1323–57CrossRefGoogle Scholar
Fu, X. H. and Wang, B. (2004). Differences of boreal summer intraseasonal oscillations simulated in an atmosphere-ocean coupled model and an atmosphere-only model. J. Climate, 17, 1263–712.0.CO;2>CrossRefGoogle Scholar
Fu, X., Wang, B., Li, T. and McCreary, J. (2003). Coupling between northward-propagating boreal summer ISO and Indian Ocean SST: revealed in an atmosphere-ocean coupled model. J. Atmos. Sci., 60, 1733–532.0.CO;2>CrossRefGoogle Scholar
Gadgil, S. (2003). The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429–67CrossRefGoogle Scholar
Gill, A. E. (1980). Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–62CrossRefGoogle Scholar
Goswami, B. N. (2005). South Asian Summer Monsoon. In Intraseasonal Variability of the Atmosphere-Ocean Climate System, ed. Lau, W. K. M. and Waliser, D. E.. SpringerGoogle Scholar
Goswami, B. N. and Xavier, P. (2003). Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophys. Res. Lett., 30, 1966, doi:10.1029/2003GL017,810CrossRefGoogle Scholar
Goswami, B. N., Ajayamohan, R. S., Xavier, P. K. and Sengupta, D. (2003). Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett., 30, art. no. 1431CrossRefGoogle Scholar
Graham, N. E. and Barnett, T. P. (1995). Enso and Enso-related predictability. 2: Northern-Hemisphere 700-Mb height predictions based on a hybrid coupled Enso model. J. Climate, 8, 544–92.0.CO;2>CrossRefGoogle Scholar
Gualdi, S., Navarra, A. and Tinarelli, G. (1999). The interannual variability of the Madden-Julian Oscillation in an ensemble of GCM simulations. Clim. Dynam., 15, 643–58CrossRefGoogle Scholar
Hendon, H. H. (2000). Impact of air-sea coupling on the Madden-Julian oscillation in a general circulation model. J. Atmos. Sci., 57, 3939–522.0.CO;2>CrossRefGoogle Scholar
Hendon, H. H. and Salby, M. L. (1994). The life-cycle of the Madden-Julian Oscillation. J. Atmos. Sci., 51, 2225–372.0.CO;2>CrossRefGoogle Scholar
Hendon, H. H., Zhang, C. D. and Glick, J. D. (1999). Interannual variation of the Madden-Julian oscillation during austral summer. J. Climate, 12, 2538–502.0.CO;2>CrossRefGoogle Scholar
Hendon, H. H., Liebmann, B., Newman, M., Glick, J. D. and Schemm, J. E. (2000). Medium-range forecast errors associated with active episodes of the Madden-Julian oscillation. Mon. Weather Rev., 128, 69–862.0.CO;2>CrossRefGoogle Scholar
Higgins, R. W., Schemm, J. K. E., Shi, W. and Leetmaa, A. (2000). Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793–8202.0.CO;2>CrossRefGoogle Scholar
Hsu, H. H. (2005). East Asian monsoon. In Intraseasonal Variability of the Atmosphere-Ocean Climate System, ed. Lau, W. K. M. and Waliser, D. E.. SpringerGoogle Scholar
Inness, P. M., Slingo, J. M., Guilyardi, E. and Cole, J. (2003). Simulation of the Madden-Julian oscillation in a coupled general circulation model. II: The role of the basic state. J. Climate, 16, 365–822.0.CO;2>CrossRefGoogle Scholar
Jiang, X. N., Li, T. and Wang, B. (2004). Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 1022–392.0.CO;2>CrossRefGoogle Scholar
Jones, C. (2000). Occurrence of extreme precipitation events in California and relationships with the Madden-Julian oscillation. J. Climate, 13, 3576–872.0.CO;2>CrossRefGoogle Scholar
Jones, C., Waliser, D. E., Schemm, J. K. E. and Lau, W. K. M. (2000). Prediction skill of the Madden and Julian Oscillation in dynamical extended range forecasts. Clim. Dynam., 16, 273–89CrossRefGoogle Scholar
Jones, C., Waliser, D. E., Lau, K. M. and Stern, W. (2004a). The Madden-Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Weather Rev., 132, 1462–712.0.CO;2>CrossRefGoogle Scholar
Jones, C., Carvalho, L. M. V., Higgins, R. W., Waliser, D. E. and Schemm, J.-K. E. (2004b). Climatology of tropical intraseasonal convective anomalies: 1979–2002. J. Climate, 17, 523–392.0.CO;2>CrossRefGoogle Scholar
Jones, C., Carvalho, L. M. V., Higgins, R. W., Waliser, D. E. and Schemm, J.-K. E. (2004c). A statistical forecast model of tropical intraseasonal convective anomalies. J. Climate, 17, 2078–952.0.CO;2>CrossRefGoogle Scholar
Kalnay, E., Balgovind, R., Chao, W., et al. (1983). Documentation of the GLAS Fourth Order General Circulation Model, Volume 1. NASA Tech. Memo. No. 86064. NASA Goddard Space Flight Center, Greenbelt, MD
Kalnay, E., Kanamitsu, M., Kistler, R., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77, 437–712.0.CO;2>CrossRefGoogle Scholar
Kemball-Cook, S. and Wang, B. (2001). Equatorial waves and air-sea interaction in the Boreal summer intraseasonal oscillation. J. Climate, 14, 2923–422.0.CO;2>CrossRefGoogle Scholar
Kemball-Cook, S., Wang, B. and Fu, X. H. (2002). Simulation of the intraseasonal oscillation in the ECHAM-4 model: the impact of coupling with an ocean model. J. Atmos. Sci., 59, 1433–532.0.CO;2>CrossRefGoogle Scholar
Kessler, W. (2005). The oceans. In Intraseasonal Variability of the Atmosphere-Ocean Climate System, ed. Lau, W. K. M. and Waliser, D. E.. SpringerGoogle Scholar
Kessler, W. S. (2001). EOF representations of the Madden-Julian oscillation and its connection with ENSO. J. Climate, 14, 3055–612.0.CO;2>CrossRefGoogle Scholar
Kessler, W. S. and Kleeman, R. (2000). Rectification of the Madden-Julian oscillation into the ENSO cycle. J. Climate, 13, 3560–752.0.CO;2>CrossRefGoogle Scholar
Kirtman, B. P., Shukla, J., Huang, B. H., Zhu, Z. X. and Schneider, E. K. (1997). Multiseasonal predictions with a coupled tropical ocean-global atmosphere system. Mon. Weather Rev., 125, 789–8082.0.CO;2>CrossRefGoogle Scholar
Kirtman, B. P., Paolino, D. A., Kinter, J. L. and Straus, D. M. (2001). Impact of tropical subseasonal SST variability on seasonal mean climate simulations. Mon. Weather Rev., 129, 853–682.0.CO;2>CrossRefGoogle Scholar
Koster, R., Suarez, M. J., Liu, P., et al. (2004). Realistic initialization of land surface states: impacts on subseasonal forecast skill. J. Hydrometeorol., 5, 1049–63CrossRefGoogle Scholar
Krishnamurti, T. N., Subramaniam, M., Oosterhof, D. K. and Daughenbaugh, G. (1990). Predictability of low-frequency modes. Meteorol. Atmos. Phys., 44, 63–83CrossRefGoogle Scholar
Krishnamurti, T. N., Subramaniam, M., Daughenbaugh, G., Oosterhof, D. and Xue, J. H. (1992). One-month forecasts of wet and dry spells of the monsoon. Mon. Weather Rev., 120, 1191–2232.0.CO;2>CrossRefGoogle Scholar
Krishnamurti, T. N., Han, S. O. and Misra, V. (1995). Prediction of the dry and wet spell of the Australian monsoon. Int. J. Climatol., 15, 753–71CrossRefGoogle Scholar
Lau, K. M. and Chan, P. H. (1986). Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Weather Rev., 114, 1354–672.0.CO;2>CrossRefGoogle Scholar
Lau, K. M. and Chang, F. C. (1992). Tropical intraseasonal oscillation and its prediction by the NMC operational model. J. Climate, 5, 1365–782.0.CO;2>CrossRefGoogle Scholar
Lau, K. M. and Phillips, T. J. (1986). Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal timescales. J. Atmos. Sci., 43, 1164–812.0.CO;2>CrossRefGoogle Scholar
Lau, W. K. M. and Waliser, D. E. (eds.) (2005). Intraseasonal Variability of the Atmosphere-Ocean Climate System. SpringerGoogle Scholar
Lau, K. M., Nakazawa, T. and Sui, C. H. (1991). Observations of cloud cluster hierarchies over the tropical Western Pacific. J. Geophys. Res.-Oceans, 96, 3197–208CrossRefGoogle Scholar
Lawrence, D. M. and Webster, P. J. (2001). Interannual variations of the intraseasonal oscillation in the south Asian summer monsoon region. J. Climate, 14, 2910–222.0.CO;2>CrossRefGoogle Scholar
Lawrence, D. M. and Webster, P. J. (2002). The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 1593–6062.0.CO;2>CrossRefGoogle Scholar
Li, T. M. and Wang, B. (1994). The influence of sea-surface temperature on the tropical intraseasonal oscillation – a numerical study. Mon. Wea. Rev., 122, 2349–622.0.CO;2>CrossRefGoogle Scholar
Liebmann, B. and Hartmann, D. L. (1984). An observational study of tropical midlatitude interaction on intraseasonal timescales during winter. J. Atmos. Sci., 41, 3333–502.0.CO;2>CrossRefGoogle Scholar
Liess, S. and Bengtsson, L. (2004). The intraseasonal oscillation in ECHAM4. II: Sensitivity studies. Clim. Dyn., 22, 671–88CrossRefGoogle Scholar
Liess, S., Waliser, D. E. and Schubert, S. (2005). Predictability studies of the intraseasonal oscillation with the ECHAM5 GCM. J. Atmos. Sci., 62(9), 3326–36CrossRefGoogle Scholar
Lo, F. and Hendon, H. H. (2000). Empirical extended-range prediction of the Madden-Julian oscillation. Mon. Weather Rev., 128, 2528–432.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N. (1965). A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321–33CrossRefGoogle Scholar
Lorenz, E. N. (1982). Atmospheric predictability experiments with a large numerical-model. Tellus, 34, 505–13CrossRefGoogle Scholar
Madden, R. and Julian, P. (2005). Historical perspective. In Intraseasonal Variability of the Atmosphere–Ocean Climate System, ed. Lau, W. K. M. and Waliser, D. E.. SpringerGoogle Scholar
Madden, R. A. and Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–82.0.CO;2>CrossRefGoogle Scholar
Madden, R. A. and Julian, P. R. (1994). Observations of the 40–50-day tropical oscillation – a review. Mon. Weather Rev., 122, 814–372.0.CO;2>CrossRefGoogle Scholar
Maloney, E. D. (2002). An intraseasonal oscillation composite life cycle in the NCAR CCM3.6 with modified convection. J. Climate, 15, 964–822.0.CO;2>CrossRefGoogle Scholar
Maloney, E. D. and Hartmann, D. L. (2000a). Modulation of eastern North Pacific hurricanes by the Madden-Julian oscillation. J. Climate, 13, 1451–602.0.CO;2>CrossRefGoogle Scholar
Maloney, E. D. and Hartmann, D. L. (2000b). Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science, 287, 2002–4CrossRefGoogle Scholar
Matsuno, T. (1966). Quasi-geostrophic motions in the Equatorial area. J. Meteorol. Soc. Jpn., 44, 25–43CrossRefGoogle Scholar
Matthews, A. J. (2004). Intraseasonal variability over tropical Africa during northern summer. J. Climate, 17, 2427–402.0.CO;2>CrossRefGoogle Scholar
McPhaden, M. J. (1999). Climate oscillations: genesis and evolution of the 1997–98 El Niño. Science, 283, 950–4CrossRefGoogle Scholar
Mo, K. and Paegle, J. (2005). Pan America. In Intraseasonal Variability of the Atmosphere–Ocean Climate System, ed. Lau, W. K. M. and Waliser, D. E.. SpringerGoogle Scholar
Mo, K. C. (1999). Alternating wet and dry episodes over California and intraseasonal oscillations. Mon. Weather Rev., 127, 2759–762.0.CO;2>CrossRefGoogle Scholar
Mo, K. C. (2000). The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon. Weather Rev., 128, 4097–1072.0.CO;2>CrossRefGoogle Scholar
Mo, K. C. (2001). Adaptive filtering and prediction of intraseasonal oscillations. Mon. Weather Rev., 129, 802–172.0.CO;2>CrossRefGoogle Scholar
Moore, A. M. and Kleeman, R. (1999). Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 1199–2202.0.CO;2>CrossRefGoogle Scholar
Nakazawa, T. (1988). Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteorol. Soc. Jpn., 66, 823–39CrossRefGoogle Scholar
Newman, M., Sardeshmukh, P. D., Winkler, C. R. and Whitaker, J. S. (2003). A study of subseasonal predictability. Mon. Weather Rev., 131, 1715–32CrossRefGoogle Scholar
Sardeshmukh, P. D. and Hoskins, B. J. (1988). The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228–512.0.CO;2>CrossRefGoogle Scholar
Schubert, S., Dole, R., H. v. d. Dool, M. Suarez and D. Waliser (2002). Proceedings from a workshop on “Prospects for improved forecasts of weather and short-term climate variability on subseasonal (2 week to 2 month) timescales”, 16–18 April 2002, Mitchellville, MD. NASA/TM 2002-104606, vol. 23
Shukla, J. (1985). Predictability. Adv. Geophys., 28B, 87–122CrossRefGoogle Scholar
Slingo, J. M., Sperber, K. R., Boyle, J. S., et al. (1996). Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Clim. Dyn., 12, 325–57CrossRefGoogle Scholar
Slingo, J. M., Rowell, D. P., Sperber, K. R. and Nortley, E. (1999). On the predictability of the interannual behaviour of the Madden-Julian Oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125, 583–609Google Scholar
Slingo, J., Inness, P. and Sperber, K. (2005). Modeling. In Intraseasonal Variability of the Atmosphere-Ocean Climate System, ed. Lau, W. K. M. and Waliser, D. E.. SpringerGoogle Scholar
Sperber, K. R., Slingo, J. M., Inness, P. M. and Lau, W. K. M. (1997). On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Clim. Dyn., 13, 769–95CrossRefGoogle Scholar
Sperber, K. R., Slingo, J. M., Inness, P. M., et al. (2003). The Madden-Julian Oscillation in GCMs. In Research Activities in Atmospheric and Oceanic Modelling, Report No. 33, WMO/TD-No. 1161, p. 09–010
Sud, Y. C. and Walker, G. K. (1992). A review of recent research on improvement of physical parameterizations in the GLA GCM. In Physical Processes in Atmospheric Models, ed. Sikka, D. R. and Singh, S. S., pp. 422–79. Wiley Eastern LtdGoogle Scholar
Teng, H. Y. and Wang, B. (2003). Interannual variations of the boreal summer intraseasonal oscillation in the Asian-Pacific region. J. Climate, 16, 3572–842.0.CO;2>CrossRefGoogle Scholar
Thompson, D. W. J. and Wallace, J. M. (2001). Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85–9CrossRefGoogle ScholarPubMed
Thompson, P. D. (1957). Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9, 275–95CrossRefGoogle Scholar
Toth, Z. and Kalnay, E. (1993). Ensemble forecasting at NMC: the generation of perturbations. Bull. Am. Meteorol. Soc., 74, 2330–712.0.CO;2>CrossRefGoogle Scholar
Dool, H. M. and Qin, J. (1996). An efficient and accurate method of continuous time interpolation of large-scale atmospheric fields. Mon. Weather Rev., 124, 964–712.0.CO;2>CrossRefGoogle Scholar
Dool, H. M. and Saha, S. (2002). Analysis of propagating modes in the tropics in short AMIP runs. In AMIP II workshop, Toulouse, November 12–15, 2002. WMO.Google Scholar
Vecchi, G. A. and Bond, N. A. (2004). The Madden-Julian Oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys. Res. Lett., 31Google Scholar
Neumann, J. (1955). Some remarks on the problem of forecasting climate fluctuations. In Dynamics of Climate: The Proceedings of a Conference on the Application of Numerical Integration Techniques to the Problem of the General Circulation p. 137. Pergamon PressGoogle Scholar
Storch, H. and Xu, J. (1990). Principal oscillation pattern analysis of the 30- to 60-day oscillation in the tropical troposphere. Clim. Dynam., 4, 175–90CrossRefGoogle Scholar
Waliser, D. E. (2005). Predictability and forecasting. In Intraseasonal Variability of the Atmosphere-Ocean Climate System, ed. Lau, W. K. M. and Waliser, D. E.. SpringerGoogle Scholar
Waliser, D. E. (2006). Intraseasonal variability. In The Asian Monsoon, ed. Wang, B.. Springer PraxisGoogle Scholar
Waliser, D. E., Lau, K. M. and Kim, J. H. (1999a). The influence of coupled sea surface temperatures on the Madden-Julian oscillation: a model perturbation experiment. J. Atmos. Sci., 56, 333–582.0.CO;2>CrossRefGoogle Scholar
Waliser, D. E., Jones, C., Schemm, J. K. E. and Graham, N. E. (1999b). A statistical extended-range tropical forecast model based on the slow evolution of the Madden-Julian oscillation. J. Climate, 12, 1918–392.0.CO;2>CrossRefGoogle Scholar
Waliser, D., Zhang, Z., Lau, K. M. and Kim, J. H. (2001). Interannual sea surface temperature variability and the predictability of tropical intraseasonal variability. J. Atmos. Sci., 58, 2595–142.0.CO;2>CrossRefGoogle Scholar
Waliser, D., Schubert, S., Kumar, A., K. Weickmann and R. Dole (2003a). Proceedings from a workshop on “Modeling, Simulation and Forecasting of Subseasonal Variability”, 4–5 June 2003, University of Maryland, College Park, Maryland. NASA/TM 2003–104606, vol. 25
Waliser, D. E., Lau, K. M., Stern, W. and Jones, C. (2003b). Potential Predictability of the Madden-Julian Oscillation. Bull. Am. Meteor. Soc., 84, 33–50CrossRefGoogle Scholar
Waliser, D. E., Stern, W., Schubert, S. and Lau, K. M. (2003c). Dynamic predictability of intraseasonal variability associated with the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 129, 2897–925CrossRefGoogle Scholar
Waliser, D. E., Jin, K., Kang, I. S., et al. (2003d). AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Clim. Dynam., 21, 423–46CrossRefGoogle Scholar
Waliser, D. E., Jin, K., Kang, I. S. (2003e). AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Clim. Dynam., 21, 423–46CrossRefGoogle Scholar
Waliser, D., Weickmann, K., Dole, R., et al. (2006). The Experimental MJO Prediction Project. Bull. Am. Meteor. Soc., in pressGoogle Scholar
Wang, B. (2005). Theories. In Intraseasonal Variability of the Atmosphere-Ocean Climate System, ed. Lau, W. K. M. and Waliser, D. E.. SpringerGoogle Scholar
Wang, B. and Rui, H. (1990). Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteorol. Atmos. Phys., 44, 43–61CrossRefGoogle Scholar
Wang, B. and Xie, X. S. (1996). Low-frequency equatorial waves in vertically sheared zonal flow. 1: Stable waves. J. Atmos. Sci., 53, 449–672.0.CO;2>CrossRefGoogle Scholar
Wang, B. and Xie, X. S. (1997). A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 72–862.0.CO;2>CrossRefGoogle Scholar
Wang, B. and Xu, X. H. (1997). Northern hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J. Climate, 10, 1071–852.0.CO;2>CrossRefGoogle Scholar
Webster, P. J. and Hoyos, C. (2004). Forecasting monsoon rainfall and river discharge variability on 20–25 day timescales. Bull. Am. Meteorol. Soc., 85, 1745–65CrossRefGoogle Scholar
Weickmann, K. M. (1983). Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Weather Rev., 111, 1838–582.0.CO;2>CrossRefGoogle Scholar
Weickmann, K. M., Lussky, G. R. and Kutzbach, J. E. (1985). Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250-Mb stream-function during northern winter. Mon. Weather Rev., 113, 941–612.0.CO;2>CrossRefGoogle Scholar
Wheeler, M. and Kiladis, G. N. (1999). Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–992.0.CO;2>CrossRefGoogle Scholar
Wheeler, M. and Weickmann, K. M. (2001). Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Weather Rev., 129, 2677–942.0.CO;2>CrossRefGoogle Scholar
Wheeler, M. and Hendon, H. (2004). An all-season real-time multivariate MJO Index: development of an index for monitoring and prediction. Mon. Weather Rev., 132, 1917–322.0.CO;2>CrossRefGoogle Scholar
Wheeler, M. C. and McBride, J. L. (2005). Australian-Indonesian monsoon region. In Intraseasonal Variability of the Atmosphere-Ocean Climate System, ed. Lau, W. K. M. and Waliser, D. E.. SpringerGoogle Scholar
Whitaker, J. S. and Weickmann, K. M. (2001). Subseasonal variations of tropical convection and week-2 prediction of wintertime western North American rainfall. J. Climate, 14, 3279–882.0.CO;2>CrossRefGoogle Scholar
Winkler, C. R., Newman, M. and Sardeshmukh, P. D. (2001). A linear model of wintertime low-frequency variability. I: Formulation and forecast skill. J. Climate, 14, 4474–942.0.CO;2>CrossRefGoogle Scholar
Wu, M. L. C., Schubert, S., Kang, I. S. and Waliser, D. E. (2002). Forced and free intra-seasonal variability over the South Asian monsoon region simulated by 10 AGCMs. J. Climate, 15, 2862–802.0.CO;2>CrossRefGoogle Scholar
Xie, P. P. and Arkin, P. A. (1997). Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc., 78, 2539–582.0.CO;2>CrossRefGoogle Scholar
Yasunari, T. (1979). Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteorol. Soc. Jpn., 57, 227–42CrossRefGoogle Scholar
Zhang, C. (2005). Madden Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004 RG000158Google Scholar
Zhang, C., Hendon, H. H., Kessler, W. S. and Rosati, A. (2001). A workshop on the MJO and ENSO. Bull. Am. Meteorol. Soc., 82, 971–62.3.CO;2>CrossRefGoogle Scholar
Zheng, Y., Waliser, D. E., Stern, W. F. and Jones, C. (2004). The role of coupled sea surface temperatures in the simulation of the tropical intraseasonal oscillation. J. Climate, 17, 4109–34CrossRefGoogle Scholar
Zveryaev, I. (2002). Interdecadal changes in the zonal wind and the intensity of intraseasonal oscillations during boreal summer Asian monsoon. Tellus Ser. A-Dyn. Meteorol. Oceanol., 54, 288–98CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×