Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T07:22:20.683Z Has data issue: false hasContentIssue false

4 - Hamiltonians and stock options

Published online by Cambridge University Press:  22 February 2010

Belal E. Baaquie
Affiliation:
National University of Singapore
Get access

Summary

In this chapter the concept of the Hamiltonian is introduced in the pricing of options. Hamiltonians occur naturally in finance; to demonstrate this the analysis of the Black–Scholes equation is recast in the formalism of quantum mechanics. It is then shown how the Hamiltonian plays a central role in the general theory of option pricing.

The Hamiltonian formulation provides new tools for obtaining solutions for option pricing; two key concepts related to the Hamiltonian are (a) eigenfunctions and (b) potentials. Knowledge of all the eigenfunctions of a Hamiltonian yields an exact solution for a large class of path-dependent and path-independent options. For example, barrier options can be modelled by placing constraints on the eigenfunctions of the Hamiltonian. The potentials are a means for defining new financial instruments, and for modelling path-dependent options.

Essentials of quantum mechanics

It is shown in this chapter that option pricing in finance has a mathematical description that is identical to a quantum system; hence the key features of quantum theory are briefly reviewed.

Quantum theory is a vast subject that forms the bedrock of contemporary physics, chemistry and biology. Only those aspects of quantum mechanics are reviewed that are relevant for the analysis of option pricing.

In classical mechanics the position of a particle at time t, denoted by xt, is a deterministic function of t, and is given by Newton's law of motion. Classical mechanics is analogous to the case of the evolution of a stock price with zero volatility (σ = 0) that yields a deterministic evolution of the stock price.

Type
Chapter
Information
Quantum Finance
Path Integrals and Hamiltonians for Options and Interest Rates
, pp. 45 - 77
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×