Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-26T12:15:47.936Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  24 November 2009

Roger LeB. Hooke
Affiliation:
University of Maine, Orono
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. R., Kamb, W. B., Meier, M. F. and Sharp, R. P. (1960). Structure of lower Blue Glacier, Washington. Journal of Geology, 68(6), 601–625CrossRefGoogle Scholar
Alley, R. B. (1989a). Water pressure coupling of sliding and bed deformation: I. Water system. Journal of Glaciology, 35(119), 108–118CrossRefGoogle Scholar
Alley, R. B. (1989b). Water-pressure coupling of sliding and bed deformation: II. Velocity-depth profiles. Journal of Glaciology, 35(119), 119–129CrossRefGoogle Scholar
Alley, R. B. (1991). Deforming bed origin for the southern Laurentide till sheets?Journal of Glaciology, 37(125), 67–76CrossRefGoogle Scholar
Alley, R. B. (1992). Flow-law hypotheses for ice-sheet modeling. Journal of Glaciology, 38(129), 245–256CrossRefGoogle Scholar
Alley, R. B. and Whillans, I. M. (1991). Changes in the West Antarctic Ice Sheet. Science, 254(5034), 259–263CrossRefGoogle ScholarPubMed
Alley, R. B., Blankenship, D. D., Bentley, C. R. and Rooney, S. T. (1987a). Till beneath Ice Stream B 3. Till deformation: evidence and implications. Journal of Geophysical Research, 92(B9), 8921–8929CrossRefGoogle Scholar
Alley, R. B., Blankenship, D. D., Rooney, S. T. and Bentley, C. R. (1987b). Till beneath Ice Stream B 4. A coupled ice-till flow model. Journal of Geophysical Research, 92(B9), 8931–8940CrossRefGoogle Scholar
Alley, R. B.et al. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362(6420), 527–529CrossRefGoogle Scholar
Alley, R. B., Gow, A. J. and Messe, D. A. (1995). Mapping c-axis fabrics to study physical processes in ice. Journal of Glaciology, 41(137), 197–203CrossRefGoogle Scholar
Alley, R. B., Gow, A. J., Messe, D. A., Fitzpatrick, J. J., Waddington, E. D. and Bolzan, J. F. (1997). Grain-scale processes, folding, and stratigraphic disturbance in the GISP2 ice core. Journal of Geophysical Research, 102(C12), 26, 819–826, 830CrossRefGoogle Scholar
Anandakrishnan, S., Blankenship, D. D., Alley, R. B. and Stoffa, P. L. (1998). Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations. Nature, 394, 62–65CrossRefGoogle Scholar
Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S. and Valentine, V. B. (2002). Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297, 382–385Google ScholarPubMed
Ashley, G. M., Boothroyd, J. C. and Borns, H. W. Jr. (1991). Sedimentology of late Pleistocene (Laurentide) deglacial-phase deposits, eastern Maine; an example of a temperate marine grounded ice-sheet margin. Geological Society of America Special Paper 261, pp. 107–125CrossRefGoogle Scholar
Atkinson, B. K. (1984). Subcritical crack growth in geological materials. Journal of Geophysical Research, 89(B6), 4077–4144CrossRefGoogle Scholar
Atkinson, B. K. and Rawlings, R. D. (1981). Acoustic emission during stress corrosion cracking in rocks. In Simpson, D. W. and Richards, P. G. (eds.) Earthquake Prediction. An International Review (Ewing Series, 4). Washington, D.C.: American Geophysical Union, pp. 605–619CrossRef
Attig, J. W., Mickelson, D. M. and Clayton, L. (1989). Late Wisconsin landform distribution and glacier bed conditions in Wisconsin. Sedimentary Geology, 62(3–4), 399–405CrossRefGoogle Scholar
Baker, R. W. (1978). The influence of ice-crystal size on creep. Journal of Glaciology, 21(85), 485–500CrossRefGoogle Scholar
Baker, R. W. (1981). Textural and crystal-fabric anisotropies and the flow of ice masses. Science, 211(4486), 1043–1044CrossRefGoogle ScholarPubMed
Baker, R. W. (1982). A flow equation for anisotropic ice. Cold Regions Science and Technology, 6(3), 141–148CrossRefGoogle Scholar
Barnes, P., Tabor, D. and Walker, J. C. F. (1971). Friction and creep of polycrystalline ice. Proceedings of the Royal Society, London, A324(1557), 127–155CrossRefGoogle Scholar
Bell, R. E., Blankenship, D. D., Finn, C. A., Morse, D. L., Scambos, T. A., Brozenal, J. M. and Hodge, S. M. (1998). Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature, 394, 58–62CrossRefGoogle Scholar
Benoist, J.-P. (1979). The spectral power density and shadowing function of a glacial microrelief at the decimetre scale. Journal of Glaciology, 23(89), 57–66CrossRefGoogle Scholar
Benson, C. S. (1961). Stratigraphic studies in the snow and firn of the Greenland Ice Sheet. Folia Geographica Danica, 9, 13–37Google Scholar
Benson, C. S. (1962). Stratigraphic studies in the snow and firn of the Greenland Ice Sheet. U.S. Snow, Ice, and Permafrost Research EstablishmentResearch Report 70Google Scholar
Biegel, R. L., Sammis, C. G. and Dieterich, J. H. (1989). The frictional properties of simulated gouge having a fractal particle distribution. Journal of Structural Geology, 11(7), 827–846CrossRefGoogle Scholar
Bindschadler, R. A. and Scambos, T. A. (1991). Satellite-image-derived velocity field of an Antarctic ice stream. Science, 252(5003), 242–246CrossRefGoogle ScholarPubMed
Bindschadler, R. A. and Vornberger, P. (1998). Changes in the West Antarctic Ice Sheet since 1963 from declassified satellite photography. Science, 279, 689–692CrossRefGoogle ScholarPubMed
Bindschadler, R. A., King, M. A., Alley, R. B., Anandakrishnan, S. and Padman, L. (2003). Tidally controlled stick-slip discharge of a West Antarctic ice stream. Science, 301, 1087–1089CrossRefGoogle Scholar
Björnsson, H. (1992). Jökulhlaups in Iceland: prediction, characteristics, and simulation. Annals of Glaciology, 16, 95–106CrossRefGoogle Scholar
Blankenship, D. D., Bentley, C. R., Rooney, S. T. and Alley, R. B. (1986). Seismic measurements reveal a saturated, porous layer beneath an active Antarctic ice stream. Nature, 322(6074), 54–57CrossRefGoogle Scholar
Böðvarsson, G. (1955). On the flow of ice sheets and glaciers. Jökull, 5, 1–8Google Scholar
Boulton, G. S. and Hindmarsh, R. C. A. (1987). Sediment deformation beneath glaciers: rheology and geological consequences. Journal of Geophysical Research, 92(B9), 9059–9082CrossRefGoogle Scholar
Broecker, W. S. (1994). Massive iceberg discharges as triggers for global climate change. Nature, 372(6505), 421–424CrossRefGoogle Scholar
Brown, C. S., Meier, M. F. and Post, A. (1982). Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier. U.S. Geological Survey Professional Paper 1258-C, pp. C1–C13Google Scholar
Brown, N. L., Hallet, B. and Booth, D. B. (1987). Rapid soft-bed sliding of the Puget glacial lobe. Journal of Geophysical Research, 92(B9), 8985–8997CrossRefGoogle Scholar
Brugger, K. A. (1992). A comparative study of the response of Rabots Glaciär and Storglaciären to recent climatic change. Ph.D. thesis, University of Minnesota, 295 pages
Budd, W. F. (1969). The dynamics of ice masses. Australian National Antarctic Expeditions Scientific Reports, Series A (IV) Glaciology, Publication No. 108
Budd, W. F. and Jacka, T. H. (1989). A review of ice rheology for ice sheet modelling. Cold Regions Science and Technology, 16(2), 107–144CrossRefGoogle Scholar
Budd, W. F., Jensen, D. and Radok, U. (1971). Derived physical characteristics of the Antarctic Ice Sheet. Australian National Antarctic Expeditions Interim Reports, Series A (IV) Glaciology, Publication No. 120
Budd, W. F., Keage, P. L. and Bundy, N. A. (1979). Empirical studies of ice sliding. Journal of Glaciology, 23(89), pp. 157–170CrossRefGoogle Scholar
Butkovitch, T. R. (1954). The ultimate strength of ice. Snow, Ice, and Permafrost Research Establishment Research Report 11, 12 pagesGoogle Scholar
Canals, M., Urgeles, R. and Calafat, A. M. (2000). Deep sea-floor evidence of past ice streams off the Antarctic Peninsula. Geology, 28(1), 31–342.0.CO;2>CrossRefGoogle Scholar
Carnahan, B., Luther, H. A. and Wilkes, J. O. (1969). Applied Numerical Methods. New York: John Wiley and Sons, Inc.
Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of Heat in Solids. Oxford Clarendon Press. 510 pages
Clark, C. D. and Stokes, C. R. (2001). Extent and basal characteristics of the M'Clintock Channel Ice Stream. Quaternary International, 86, 81–101CrossRefGoogle Scholar
Clark, P. U. and Hansel, A. R. (1989). Clast ploughing, lodgement and glacier sliding over a soft glacier bed. Boreas, 18(3), 201–207CrossRefGoogle Scholar
Clark, P. U. and Walder, J. S. (1994). Subglacial drainage, eskers, and deforming beds beneath the Laurentide and Eurasian ice sheets. Geological Society of America Bulletin, 106(2), 304–3142.3.CO;2>CrossRefGoogle Scholar
Clayton, L. and Cherry, J. A. (1967). Pleistocene superglacial and ice-walled lakes of west-central North America. In Clayton, L. and Freers, T. F. (eds.) Glacial Geology of the Missouri Coteau and Adjacent Areas. N. Dakota Geological Survey Miscellaneous Series 30, pp. 47–52
Clayton, L. and Freers, T. F. (1967). Roadlog. In Clayton, L. and Freers, T. F. (eds.) Glacial Geology of the Missouri Coteau and Adjacent Areas. N. Dakota Geological Survey Miscellaneous Series 30, pp. 1–24
Cohen, D. (1998). Rheology of basal ice at Engabreen, Norway. Ph.D. thesis, University of Minnesota, 166 pages
Cohen, D. (2000). Rheology of ice at the bed of Engabreen, Norway. Journal of Glaciology, 46(155), 611–621CrossRefGoogle Scholar
Cook, E. R., D'Arrigo, R. D. and Briffa, K. R. (1998). A reconstruction of the North Atlantic Oscillation using tree-ring chronologies from North America and Europe. The Holocene, 8, 9–17CrossRefGoogle Scholar
Cullather, R. I., Bromwich, D. H. and Woert, M. L. (1996). Interannual variations in Antarctic precipitation related to El Niño-Southern Oscillation. Journal of Geophysical Research, 101(D14), 19, 109–19, 118CrossRefGoogle Scholar
Cutler, P. M., MacAyeal, D. R., Mickelson, D. M., Parizek, B. R. and Colgan, P. M. (2000). A numerical investigation of ice-lobe—permafrost interaction around the southern Laurentide ice sheet. Journal of Glaciology, 46(153), 311–325CrossRefGoogle Scholar
Cutler, P. M., Colgan, P. M. and Mickelson, D. M. (2002). Sedimentologic evidence for outburst floods from the Laurentide Ice Sheet margin in Wisconsin, USA: implications for tunnel-channel formation. Quaternary International, 90, 23–40CrossRefGoogle Scholar
Dahl-Jensen, D. and Gundestrup, N. S. (1987). Constitutive properties of ice at Dye 3, Greenland. International Association of Hydrological Sciences Publication 170 (Symposium at Vancouver 1987The physical basis for ice sheet modelling), pp. 31–43Google Scholar
Dahl-Jensen, D. and Johnsen, S. J. (1986). Palaeotemperatures still exist in the Greenland ice sheet. Nature, 320, 250–252CrossRefGoogle Scholar
Dansgaard, W. and Oeschger, H. (1989). Past environmental long-term records from the Arctic. The Environmental Record in Glaciers and Ice Sheets. Oeschger, H. and Langway Jr., C. C. (eds.) New York: Wiley, pp. 287–318
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J. and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220CrossRefGoogle Scholar
Deeley, R. M. and Parr, P. H. (1914). The Hintereis Glacier. Philosophical Magazine, 6, 153–176Google Scholar
Chapelle, S., Duval, P. and Baudet, B. (1995). Compressive creep of polycrystalline ice containing a liquid phase. Scripta Metallurgica et Materialia, 33(3), 447–450CrossRefGoogle Scholar
Demorest, M. (1941). Glacier flow and its bearing on the classification of glaciers. Geological Society of America Bulletin, 52(12), 2024–2025Google Scholar
Demorest, M. (1942). Glacier regimens and ice movement within glaciers. American Journal of Science, 240(1), 31–66Google Scholar
Drake, L. and Shreve, R. L. (1973). Pressure melting and regelation of ice by round wires. Proceedings of the Royal Society, London, A332(1588), 51–83CrossRefGoogle Scholar
Duval, P. (1977). The role of water content on the creep rate of polycrystalline ice. In Isotopes and impurities in snow and ice. Proceedings of the Grenoble Symposium, Aug.—Sept. 1975, International Association of Scientific Hydrology Publication 118, pp. 29–33
Duval, P. (1978). Anelastic behavior of polycrystalline ice. Journal of Glaciology, 21(85), 621–628CrossRefGoogle Scholar
Duval, P. and Castelnau, O. (1995). Dynamic recrystallization of ice in polar ice sheets. Journal de Physique IV, Colloque C3, supplement to Journal de Physique III, 5, C3-197–C3-205Google Scholar
Duval, P., Ashby, M. F. and Anderman, I. (1983). Rate-controlling processes in the creep of polycrystalline ice. Journal of Physical Chemistry, 87(21), 4066–4074CrossRefGoogle Scholar
Echelmeyer, K. and Wang, Z. (1987). Direct observation of basal sliding and deformation of basal drift at sub-freezing temperatures. Journal of Glaciology, 33(113), 83–98CrossRefGoogle Scholar
Elsberg, D. H., Harrison, W. D., Echelmeyer, K. A. and Krimmel, R. M. (2001). Quantifying the effects of climate and surface change on glacier mass balance. Journal of Glaciology, 47(159), 649–658CrossRefGoogle Scholar
Engelhardt, H. and Kamb, B. (1997). Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations. Journal of Glaciology, 43(144), 207–230CrossRefGoogle Scholar
Engelhardt, H. and Kamb, B. (1998). Basal sliding of ice stream B, West Antarctica. Journal of Glaciology, 44(147), 223–230Google Scholar
Engelhardt, H., Harrison, W. D. and Kamb, B. (1978). Basal sliding and conditions at the glacier bed as revealed by bore-hole photography. Journal of Glaciology, 20(84), 469–508CrossRefGoogle Scholar
Engelhardt, H., Humphrey, N., Kamb, B. and Fahnestock, M. (1990). Physical conditions at the base of a fast moving Antarctic ice stream. Science, 248(4951), 57–59CrossRefGoogle ScholarPubMed
Etchecopar, A. (1977). A plane kinematic model of progressive deformation in a polycrystalline aggregate. Tectonophysics, 39, 121–139CrossRefGoogle Scholar
Eyles, N., Salden, J. A. and Gilroy, S. (1982). A depositional model for stratigraphic complexes and facies superimposition in lodgement till. Boreas, 11(4), 317–333CrossRefGoogle Scholar
Fastook, J. L. and Chapman, J. E. (1989). A map-plane finite-element model: three modeling experiments. Journal of Glaciology, 35(119), 48–52CrossRefGoogle Scholar
Fastook, J. L. and Holmlund, P. (1994). A glaciological model of the Younger Dryas event in Scandinavia. Journal of Glaciology, 40(134), 125–131CrossRefGoogle Scholar
Fischer, U. H. and Clarke, G. K. C. (1994). Ploughing of subglacial sediment. Journal of Glaciology, 40(134), 97–106CrossRefGoogle Scholar
Fisher, D. A. (1987). Enhanced flow of Wisconsin ice related to solid conductivity through strain history and recrystallization. International Association of Scientific Hydrology Publication 170, pp. 45–51Google Scholar
Fisher, D. A. and Koerner, R. M. (1986). On the special rheological properties of ancient microparticle-laden Northern Hemisphere ice as derived from bore-hole and core measurements. Journal of Glaciology, 32(112), 501–510CrossRefGoogle Scholar
Fisher, D. A., Reeh, N. and Langley, K. (1985). Objective reconstructions of the late Wisconsinan Laurentide ice sheet and the significance of deformable beds. Gèographie Physique et Quaternaire, 39, 229–238CrossRefGoogle Scholar
Fountain, A. G. (1989). The storage of water in, and hydraulic characteristics of, the firn of South Cascade Glacier, Washington State, U.S.A.Annals of Glaciology, 13, 69–75CrossRefGoogle Scholar
Fowler, A. C. (1987). Sliding with cavity formation. Journal of Glaciology, 33(115), 255–267CrossRefGoogle Scholar
Fowler, A. C. and Larson, D. A. (1978). On the flow of polythermal glaciers: II. Surface wave analysis. Proceedings of the Royal Society, London, A70, 155–171Google Scholar
Funk, M. and Röthlisberger, H. (1989). Forecasting the effects of a planned reservoir which will partially flood the tongue of Unteraargletscher in Switzerland. Annals of Glaciology, 13, 76–81CrossRefGoogle Scholar
Gilpin, R. R. (1979). A model of the “liquid-like” layer between ice and a substrate with applications to wire regelation and particle migration. Journal of Colloid and Interface Science, 68(2), 235–251CrossRefGoogle Scholar
Giovinetto, M. B. and Zwally, H. J. (2000). Spatial distribution of net surface accumulation on the Antarctic ice sheet. Annals of Glaciology, 31, 171–178CrossRefGoogle Scholar
Glasstone, S., Laidler, K. J. and Eyring, H. (1941). The Theory of Rate Processes. New York: McGraw-Hill
Glen, J. W. (1955). The creep of polycrystalline ice. Proceedings of the Royal Society, London, A228 (1175), 519–538CrossRefGoogle Scholar
Glen, J. W. (1958). The flow law of ice. A discussion of the assumptions made in glacier theory, their experimental foundations and consequences. International Association of Scientific Hydrology, 47, 171–183Google Scholar
Glen, J. W. (1963). Contribution to the discussion. International Association of Scientific Hydrology Bulletin, 8, 2, 68Google Scholar
Gogineni, S., Chuah, T., Allen, C., Jezek, K. and Moore, R. K. (1998). An improved coherent radar depth sounder. Journal of Glaciology, 44(148), 659–669CrossRefGoogle Scholar
Gold, L. W. (1958). Some observations on the dependence of strain on stress for ice. Canadian Journal of Physics, 36(10), 1265–1275CrossRefGoogle Scholar
Goldthwait, R. P. (1951). Development of end moraines in east-central Baffin Island. Journal of Geology, 59(6), 567–577CrossRefGoogle Scholar
Gow, A. J. and Williamson, T. (1976). Rheological implications of the internal structure and crystal fabrics of the West Antarctic ice sheet as revealed by deep core drilling at Byrd Station. Geological Society of America Bulletin, 87, 1665–16772.0.CO;2>CrossRefGoogle Scholar
Gravenor, C. P. (1955). The origin and significance of prairie mounds. American Journal of Science, 253, 475–481CrossRefGoogle Scholar
Gravenor, C. P. and Kupsch, W. O. (1959). Ice disintegration features in western Canada. Journal of Geology, 67, 48–67CrossRefGoogle Scholar
Griffith, A. A. (1924). Theory of rupture. Proc. First International Congress Applied Mechanics, Delft, 55–63Google Scholar
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. and Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP 2 and GRIP Greenland ice cores. Nature, 366, 552–554CrossRefGoogle Scholar
Grove, J. M. (1988). The Little Ice Age. London: Methuen
Haefeli, R. (1962). The ablation gradient and the retreat of a glacier tongue. In Symposium of Obergurgl, International Association of Scientific Hydrology, Publication 58, 49–59
Hallet, B. (1976a). Deposits formed by subglacial precipitation of CaCO3. Geological Society of America Bulletin, 87(7), 1003–10152.0.CO;2>CrossRefGoogle Scholar
Hallet, B. (1976b). The effect of subglacial chemical processes on sliding. Journal of Glaciology, 17(76), 209–221CrossRefGoogle Scholar
Hallet, B. (1979a). A theoretical model of glacial abrasion. Journal of Glaciology, 23(89), 39–50Google Scholar
Hallet, B. (1979b). Subglacial regelation water film. Journal of Glaciology, 23(89), 321–334CrossRefGoogle Scholar
Hallet, B. (1996). Glacial quarrying: a simple theoretical model. Annals of Glaciology, 22, 1–8CrossRefGoogle Scholar
Hallet, B. and Anderson, R. S. (1980). Detailed glacial geomorphology of a proglacial bedrock area at Castleguard Glacier, Alberta, Canada. Zeitschrift fur Gletscherkunde und Glazialgeologie, 16, 171–184Google Scholar
Hallet, B., Lorrain, R. D. and Souchez, R. A. (1978). The composition of basal ice from a glacier sliding over limestones. Geological Society of America Bulletin, 89(2), 314–3202.0.CO;2>CrossRefGoogle Scholar
Hamilton, W. C. and Ibers, J. A. (1968). Hydrogen Bonding in Solids; Methods of Molecular Structure Determination. New York: W. A. Benjamin
Hanson, B. (1995). A fully three-dimensional finite-element model applied to velocities on Storglaciären, Sweden. Journal of Glaciology, 41(137), 91–102CrossRefGoogle Scholar
Hanson, B. and Hooke, R. LeB. (2000). A model study of the forces involved in glacier calving. Journal of Glaciology, 46(153), 188–194CrossRefGoogle Scholar
Hanson, B., Hooke, R. LeB. and Grace, E. M. Jr. (1998). Short-term velocity and water-pressure measurements down-glacier from a riegel, Storglaciären, Sweden. Journal of Glaciology, 44(147), 359–367CrossRefGoogle Scholar
Harper, J. T., Humphrey, N. F., Pfeffer, W. T., Huzurbazar, S. V., Bahr, D. B. and Welch, B. C. (2001). Spatial variability in the flow of a valley glacier: deformation of a large array of boreholes. Journal of Geophysical Research, 106(B5), 8547–8562CrossRefGoogle Scholar
Harrison, W. D. (1972). Temperature of a temperate glacier. Journal of Glaciology, 11(61), 15–29CrossRefGoogle Scholar
Harrison, W. D., Elsberg, D. H., Echelmeyer, K. A. and Krimmel, R. M. (2001). On the characterization of glacier response by a single time-scale. Journal of Glaciology, 47(159), 659–664CrossRefGoogle Scholar
Hättestrand, C. and Kleman, J. (1999). Ribbed moraine formation. Quaternary Science Reviews, 18, 43–61CrossRefGoogle Scholar
Hausmann, M. R. (1990). Engineering Principles of Ground Modification. New York: McGraw-Hill
Hays, J. D., Imbrie, J. and Shackleton, N. S. (1976). Variations in the Earth's orbit: Pacemaker of the ice ages. Science, 194(4270), 1121–1132CrossRefGoogle ScholarPubMed
Heinrich, H. (1988). Origin and consequences of ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29, 141–152CrossRefGoogle Scholar
Hobbs, P. V. (1974). Ice Physics. New York: Oxford Clarendon Press
Hock, R. and Hooke, R. LeB. (1993). Further tracer studies of internal drainage in the lower part of the ablation area of Storglaciären, Sweden. Geological Society of America Bulletin, 105(4), 537–5462.3.CO;2>CrossRefGoogle Scholar
Hodge, S. M. (1974). Variations in sliding of a temperate glacier. Journal of Glaciology, 13(69), 349–369CrossRefGoogle Scholar
Hodge, S. M., Trabant, D. C., Krimmel, R. M., Heinrichs, T. A., March, R. S. and Joshberger, E. G. (1998). Climate variations and changes in mass balance of three glaciers in western North America. Journal of Climate, 11, 2161–21792.0.CO;2>CrossRefGoogle Scholar
Holmlund, P. (1987). Mass balance of Storglaciären during the 20th century. Geografiska Annaler, 69A(3–4), 439–447Google Scholar
Holmlund, P. (1988). Internal geometry and evolution of moulins, Storglaciären, Sweden. Journal of Glaciology, 34(117), 242–248CrossRefGoogle Scholar
Hong, S., Candelone, J-P., Patterson, C. C. and Boutron, C. F. (1994). Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science, 265, 1841–1843CrossRefGoogle ScholarPubMed
Hooke, R. LeB. (1970). Morphology of the ice-sheet margin near Thule, Greenland. Journal of Glaciology, 9(57), 303–324CrossRefGoogle Scholar
Hooke, R. LeB. (1973a). Flow near the margin of the Barnes Ice Cap and the development of ice-cored moraines. Geological Society of America Bulletin, 84(12), 3929–39482.0.CO;2>CrossRefGoogle Scholar
Hooke, R. LeB. (1973b). Structure and flow in the margin of Barnes Ice Cap, Baffin Island, N. W. T., Canada. Journal of Glaciology, 12(66), 423–438CrossRefGoogle Scholar
Hooke, R. LeB. (1976). Pleistocene ice at the base of the Barnes Ice Cap, Baffin Island, N. W. T., Canada. Journal of Glaciology, 17(75), 49–60CrossRefGoogle Scholar
Hooke, R. LeB. (1977). Basal temperatures in polar ice sheets: a qualitative review. Quaternary Research, 7(1), 1–13CrossRefGoogle Scholar
Hooke, R. LeB. (1981). Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Reviews of Geophysics and Space Physics, 19(4), 664–672CrossRefGoogle Scholar
Hooke, R. LeB. (1984). On the role of mechanical energy in maintaining subglacial conduits at atmospheric pressure. Journal of Glaciology, 30(105), 180–187CrossRefGoogle Scholar
Hooke, R. LeB. (1989). Englacial and subglacial hydrology: a qualitative review. Arctic and Alpine Research, 21(3), 221–233CrossRefGoogle Scholar
Hooke, R. LeB. (1991). Positive feedbacks associated with the erosion of glacial cirques and overdeepenings. Geological Society of America Bulletin, 103(8), 1104–11082.3.CO;2>CrossRefGoogle Scholar
Hooke, R. LeB. and Clausen, H. B. (1982). Wisconsin and Holocene δO variations, Barnes Ice Cap, Canada. Geological Society of America Bulletin, 93(8), 784–7892.0.CO;2>CrossRefGoogle Scholar
Hooke, R. LeB. and Elverhøi, A. (1996). Sediment flux from a fjord during glacial periods, Isfjorden, Spitsbergen. Global and Planetary Change, 12, 237–249CrossRefGoogle Scholar
Hooke, R. LeB. and Hanson, B. H. (1986). Borehole deformation experiments, Barnes Ice Cap, Canada. Cold Regions Science and Technology, 12(3), 261–276CrossRefGoogle Scholar
Hooke, R. LeB. and Hudleston, P. J. (1978). Origin of foliation in glaciers. Journal of Glaciology, 20(83), 285–299CrossRefGoogle Scholar
Hooke, R. LeB. and Hudleston, P. J. (1980). Ice fabrics in a vertical flowplane, Barnes Ice Cap, Canada. Journal of Glaciology, 25(92), 195–214CrossRefGoogle Scholar
Hooke, R. LeB. and Hudleston, P. J. (1981). Ice fabrics from a borehole at the top of the South Dome, Barnes Ice Cap, Baffin Island. Geological Society of America Bulletin, 92(5), 274–2812.0.CO;2>CrossRefGoogle Scholar
Hooke, R. LeB. and Iverson, N. R. (1995). Grain size distribution in deforming subglacial tills: role of grain fracture. Geology, 23(1), 57–602.3.CO;2>CrossRefGoogle Scholar
Hooke, R. LeB. and Pohjola, A. (1994). Hydrology of a segment of a glacier situated in an overdeepening, Storglaciären, Sweden. Journal of Glaciology, 40(134), 140–148CrossRefGoogle Scholar
Hooke, R. LeB., Dahlin, B. B. and Kauper, M. T. (1972). Creep of ice containing dispersed fine sand. Journal of Glaciology, 11(63), 327–336CrossRefGoogle Scholar
Hooke, R. LeB., Alexander, E. C. Jr. and Gustafson, R. J. (1980). Temperature profiles in Barnes Ice Cap, Baffin Island, Canada, and heat flux from the subglacial terrane. Canadian Journal of Earth Sciences, 17(9), 1174–1188CrossRefGoogle Scholar
Hooke, R. LeB., Gould, J. E. and Brzozowski, J. (1983). Near-surface temperatures near and below the equilibrium line on polar and subpolar glaciers. Zeitschrift für Gletscherkunde und Glazialgeologie, 19(1), 1–25Google Scholar
Hooke, R. LeB., Johnson, G. W., Brugger, K. A., Hanson, B. and Holdsworth, G. (1987). Changes in mass balance, velocity, and surface profile along a flow line on Barnes Ice Cap, 1970–1984. Canadian Journal of Earth Sciences, 24(8), 1550–1561CrossRefGoogle Scholar
Hooke, R. LeB., Calla, P., Holmlund, P., Nilsson, M. and Stroeven, A. (1989). A three-year record of seasonal variations in surface velocity, Storglaciären, Sweden. Journal of Glaciology, 35(120), 235–247CrossRefGoogle Scholar
Hooke, R. LeB., Laumann, T. and Kohler, J. (1990). Subglacial water pressures and the shape of subglacial conduits. Journal of Glaciology, 36(122), 67–71CrossRefGoogle Scholar
Hooke, R. LeB., Pohjola, V., Jansson, P. and Kohler, J. (1992). Intra-seasonal changes in deformation profiles revealed by borehole studies, Storglaciären, Sweden. Journal of Glaciology, 38(130), 348–358CrossRefGoogle Scholar
Hooke, R. LeB., Hanson, B., Iverson, N. R., Jansson, P. and Fischer, U. H. (1997). Rheology of till beneath Storglaciären, Sweden. Journal of Glaciology, 43(143), 172–179CrossRefGoogle Scholar
Hooyer, T. S. and Iverson, N. R. (2002). Flow mechanism of the Des Moines Lobe of the Laurentide ice sheet. Journal of Glaciology, 48(163), 575–586CrossRefGoogle Scholar
Houghton, J. T., et al. (2001). Climate Change 2001: The Scientific Basis. Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, 881 pages
Howell, D., Behringer, R. P. and Veje, C. (1999). Stress fluctuations in a 2D granular Couette experiment: a continuous transition. Physical Review Letters, 82(96), 5241–5244CrossRefGoogle Scholar
Huang, M., Ohtomo, M. and Wakahama, G. (1985). Transition in preferred orientation of polycrystalline ice from repeated recrystallization. Annals of Glaciology, 6, 263–264Google Scholar
Hudleston, P. J. (1976). Recumbent folding in the base of the Barnes Ice Cap, Baffin Island, Northwest Territories, Canada. Geological Society of America Bulletin, 87(12), 1678–16832.0.CO;2>CrossRefGoogle Scholar
Hudleston, P. J. and Hooke, R. LeB. (1980). Cumulative deformation in the Barnes Ice Cap and implications for the development of foliation. Tectonophysics, 66, 127–146CrossRefGoogle Scholar
Hughes, T. (1987). Ice dynamics and deglaciation models when ice sheets collapsed, In Ruddiman, W. F. and Wright, H. E., Jr. (eds.) North American and adjacent oceans during the last deglaciation. The Geology of North America K-3. Boulder Colorado: Geological Society of America
Hughes, T. (1992). Abrupt climate change related to unstable ice-sheet dynamics: toward a new paradigm. Palaeogeography, Palaeoclimatology, Palaeoecology, 97, 203–234CrossRefGoogle Scholar
Hulbe, C., Joughin, I., Morse, D. and Bindschadler, R. A. (2000). Tributaries to West Antarctic ice streams: characteristics deduced from numerical modelling of ice flow. Annals of Glaciology, 31, 184–190CrossRefGoogle Scholar
Hull, D. (1969). Introduction to Dislocations. New York: Pergamon Press
Humphrey, N. F. and Raymond, C. F. (1994). Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982–83. Journal of Glaciology, 40(136), 539–552CrossRefGoogle Scholar
Humphrey, N. F., Kamb, B., Fahnestock, M. and Engelhardt, H. (1993). Characteristics of the bed of the lower Columbia Glacier, Alaska: Journal of Geophysical Research, 98(B1), 837–846CrossRefGoogle Scholar
Hutter, K. (1981). The effect of longitudinal strain on the shear stress of an ice sheet. In defense of using stretched coordinates. Journal of Glaciology, 27(95), 39–56CrossRefGoogle Scholar
Hutter, K. (1983). Theoretical Glaciology. Tokyo, Japan: D. Reidel Publishing, 510 pagesCrossRef
Huybrechts, Ph.). (1990). A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Climate Dynamics, 5, 79–92CrossRefGoogle Scholar
Huybrechts, Ph. (2002). Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews, 21(1–3), 203–231CrossRefGoogle Scholar
Huybrechts, Ph. and T'Siobbel, S. (1995). Thermomechanical modeling of northern hemisphere ice sheets with a two-level mass balance parameterization. Annals of Glaciology, 21, 111–117CrossRefGoogle Scholar
Huybrechts, Ph., Payne, T. and The EISMINT Intercomparison Group. (1996). The EISMINT benchmarks for testing ice-sheet models. Annals of Glaciology, 23, 1–12CrossRefGoogle Scholar
Huybrechts, Ph., Steinhage, D., Wilhelms, F. and Bamber, J. (2000). Balance velocities and measured properties of the Antarctic ice sheet from a new compilation of gridded data for modelling. Annals of Glaciology, 30, 52–60CrossRefGoogle Scholar
Iken, A. (1981). The effect of subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model. Journal of Glaciology, 27(97), 407–421CrossRefGoogle Scholar
Iken, A. and Bindschadler, R. A. (1986). Combined measurements of subglacial water pressure and surface velocity of Findelen-gletscher, Switzerland: conclusions about the drainage system and sliding mechanism. Journal of Glaciology, 32(110), 101–119CrossRefGoogle Scholar
Iken, A. and Truffer, M. (1997). The relationship between subglacial water pressure and velocity of Findelengletscher during its advance and retreat. Journal of Glaciology, 43(144), 328–338CrossRefGoogle Scholar
Irons, B. M. and Shrive, N. G. (1987). Numerical Methods in Engineering and Applied Science: Numbers are Fun. New York: John Wiley & Sons, 248 pages
Iverson, N. (1989). Theoretical and experimental analyses of glacial abrasion and quarrying. Ph.D. thesis, University of Minnesota, Minneapolis, 233 pages
Iverson, N. (1991). Potential effects of subglacial water-pressure fluctuations on quarrying. Journal of Glaciology, 37(125), 27–36CrossRefGoogle Scholar
Iverson, N. (1993). Regelation of ice through debris at glacier beds: Implications for sediment transport. Geology, 21(6), 559–5622.3.CO;2>CrossRefGoogle Scholar
Iverson, N. and Iverson, R. M. (2001). Distributed shear of subglacial till due to Coulomb slip. Journal of Glaciology, 47(158), 481–488CrossRefGoogle Scholar
Iverson, N., Hanson, B., Hooke, R. LeB. and Jansson, P. (1995). Flow mechanics of glaciers on soft beds. Science, 267(5194), 80–81CrossRefGoogle Scholar
Iverson, N., Hooyer, T. S. and Hooke, R. LeB. (1996). A laboratory study of sediment deformation: stress heterogeneity and grain-size evolution. Annals of Glaciology, 22, 167–175CrossRefGoogle Scholar
Iverson, N., Hooyer, T. S. and Baker, R. W. (1998). Ring-shear studies of till deformation: Coulomb-plastic behavior and distributed strain in glacier beds. Journal of Glaciology, 44(148), 634–642CrossRefGoogle Scholar
Iverson, N., Cohen, D., Hooyer, T. S., Fischer, U. H., Jackson, M., Moore, P. L., Lappegard, G. and Kohler, J. (2003). Effects of basal debris on glacier flow. Science, 301, 81–84CrossRefGoogle ScholarPubMed
Jacka, T. H. (1984). Laboratory studies on the relationship between ice crystal size and flow rate. Cold Regions Science and Technology, 10(1), 31–42CrossRefGoogle Scholar
Jacka, T. H. and Maccagnan, M. (1984). Ice crystallographic and strain rate changes with strain in compression and extension. Cold Regions Science and Technology, 8(3), 269–286CrossRefGoogle Scholar
Jacobel, R. W., Scambos, T. A., Raymond, C. F. and Gades, A. M. (1996). Changes in the configuration of ice stream flow from the West Antarctic Ice Sheet. Journal of Geophysical Research, 101(B3), 5499–5504CrossRefGoogle Scholar
Jansson, E. P. (1995). Water pressure and basal sliding on Storglaciären, northern Sweden. Journal of Glaciology, 41(138), 232–240CrossRefGoogle Scholar
Jezek, K. C., Alley, R. B. and Thomas, R. H. (1985). Rheology of glacier ice. Science, 227(4692), 1335–1337CrossRefGoogle ScholarPubMed
Jóhannesson, T., Raymond, C. F. and Waddington, E. (1989). Time-scale for adjustment of glaciers to changes in mass balance. Journal of Glaciology, 35(121), 355–369CrossRefGoogle Scholar
Johnsen, S. J., Dansgaard, W., Clausen, H. B. and Langway, C. C. Jr. (1972). Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature, 235(5339), 429–434CrossRefGoogle Scholar
Johnson, A. (1960). Variation in surface elevation of the Nisqually glacier Mt. Rainier, Washington. International Association of Scientific Hydrology Bulletin, 19, 54–60CrossRefGoogle Scholar
Johnson, M. D. (1999). Spooner Hills, northwest Wisconsin: High-relief hills carved by subglacial meltwater of the Superior Lobe. In Mickelson, D. M. and Attig, J. W. (eds.) Glacial Processes Past and Present. Boulder, Colorado, Geological Society of America Special Paper 337, 83–92
Johnson, W. and Mellor, P. B. (1962). Plasticity for Mechanical Engineers. London, Princeton: Van Nostrand, Ltd., 412 pages. (There is also a 1973 edition, in which the relevant pages are 44–49.)
Jones, S. J. and Chew, H. A. M. (1983). Effect of sample and grain size on the compressive strength of ice. Annals of Glaciology, 4, 129–132CrossRefGoogle Scholar
Joughin, I., Gray, L., Bindschadler, R., Price, S., Morse, D., Hulbe, C., Mattar, K. and Werner, C. (1999). Tributaries of West Antarctic ice streams revealed by RADARSAT interferometry. Science, 286, 283–286CrossRefGoogle ScholarPubMed
Kamb, B. (1965). Structure of Ice VI. Science, 150(3693), 205–209CrossRefGoogle ScholarPubMed
Kamb, B. (1970). Sliding motion of glaciers: theory and observation. Reviews of Geophysics and Space Physics, 8(4), 673–728CrossRefGoogle Scholar
Kamb, B. (1972). Experimental recrystallization of ice under stress. In Heard, H. C., Borg, I. Y., Carter, N. L. and Raleigh, C. B. (eds.) Flow and Fracture of Rocks. American Geophysical Union Geophysical Monograph 16, 211–241
Kamb, B. (1987). Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. Journal of Geophysical Research, 92(B9), 9083–9100CrossRefGoogle Scholar
Kamb, B. (1991). Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion. Journal of Geophysical Research, 96(B10), 16, 585–16, 595CrossRefGoogle Scholar
Kamb, B. (2001). Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. In Alley, R. B. and Bindschadler, R. A. (eds.) The West Antarctic ice sheet: behavior and environment. Antarctic Research Series, 77, 157–201CrossRef
Kamb, B. and LaChapelle, E. (1964). Direct observation of the mechanism of glacier sliding over bedrock. Journal of Glaciology, 5(38), 159–172CrossRefGoogle Scholar
Kamb, B., Raymond, C. F., Harrison, W. D., Engelhardt, H., Echelmeyer, K. A., Humphrey, N., Brugman, M. M. and Pfeffer, T. (1985). Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science, 227(4686), 469–479CrossRefGoogle ScholarPubMed
Kanninen, M. F. and Popelar, C. H. (1985). Advanced Fracture Mechanics. New York: Oxford University Press. 563 pages
Kaspari, S., Mayewski, P. A., Dixon, D. A., Spikes, V. B., Sneed, S. B., Handley, M. J. and Hamilton, G. S. (2004). Climate variability in West Antarctica derived from annual accumulation rate records from ITASE firn/ice cores. Annals of Glaciology (in press)CrossRefGoogle Scholar
Kell, G. S. (1967). Precise representation of volume properties of water at one atmosphere, Journal of Chemical and Engineering Data, 12, 66–69CrossRefGoogle Scholar
Kendall, K. (1978). The impossibility of comminuting small particles by compression. Nature, 272, 710–711CrossRefGoogle Scholar
Kenneally, J. (2003). Crevassing and calving of glacial ice. Ph. D. thesis, University of Maine, Orono. 145 pages
Ketcham, W. M. and Hobbs, P. V. (1969). An experimental determination of the surface energies of ice. Philosophical Magazine, 8th Series, 19(162), 1161–1173CrossRefGoogle Scholar
Kinosita, S. (1962). Transformation of snow into ice by plastic compression. Low Temperature Science, A20, 131–157Google Scholar
Kleman, J. and Borgström, I. (1994). Glacial landforms indicative of a partly frozen bed. Journal of Glaciology, 40(135), 255–264CrossRefGoogle Scholar
Kleman, J. and Hättestrand, C. (1999). Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum. Nature, 402, 63–66CrossRefGoogle Scholar
Krabill, W., Abdalati, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R., Wright, W. and Yungel, J. (2000). Greenland ice sheet: high-elevation balance and peripheral thinning. Science 289, 428–430CrossRefGoogle ScholarPubMed
Kuhn, M. (1981). Climate and glaciers. International Association of Scientific Hydrology, Publication 131, 3–20Google Scholar
Kuhn, M. (1989). The response of the equilibrium line altitude to climate fluctuations: Theory and observations. In Oerlemans, J. (ed.), Glacier Fluctuations and Climatic Change. Dordrecht: Kluwer Academic Publishers, pp. 407–417CrossRef
Lambe, T. W. and Whitman, R. V. (1969). Soil Mechanics. New York: John Wiley, 553 pages
Lawn, B. (1993). Fracture of Brittle Solids 2nd edition. Cambridge: Cambridge University Press, 378 pages
Lawson, D. E., Strasser, J. C., Evenson, E. B., Alley, R. B., Larson, G. J. and Arcone, S. A. (1998). Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: I. Field evidence. Journal of Glaciology, 44(148), 547–562CrossRefGoogle Scholar
Leonard, K. C. and Fountain, A. G. (2003). Map-based methods for estimating glacier equilibrium line altitudes. Journal of Glaciology, 49(166), 329–336CrossRefGoogle Scholar
Leonard, K. C., Bell, R. E. and Studinger, M. (2003). (Abstract.) The influence of subglacial topography on accumulation rates at Lake Vostok. American Geophysical Union Annual Meeting, December 7–12, 2003Google Scholar
Li, J., Jacka, T. H. and Budd, W. F. (1996). Deformation rates in combined compression and shear for ice which is initially isotropic and after the development of strong anisotropy. Annals of Glaciology, 23, 247–252Google Scholar
Lighthill, M. J. and Whitham, G. B. (1955). On kinematic waves, I. Flood movement in long rivers. Proceedings of the Royal Society, London, A229(1178), 281–316CrossRefGoogle Scholar
Liu, C.-H., Nagel, S. R., Schecter, D. A., Coppersmith, S. N., Majumdar, S., Narayan, O. and Witten, T. A. (1995). Force fluctuations in bead packs. Science, 269(5223), 513–515CrossRefGoogle ScholarPubMed
Liu, H., Jezek, K. C. and Li, B. (1999). Development of an Antarctic DEM database by integrating cartographic and remotely sensed data: a GIS approach. Journal of Geophysical Research, 104(B10), 23 199–23 213CrossRefGoogle Scholar
Lliboutry, L. (1964). Traité de Glaciologie, Vol. 1. Paris: Masson and Co.
Lliboutry, L. (1968). General theory of subglacial cavitation and sliding of temperate glaciers. Journal of Glaciology, 7(49), 21–58CrossRefGoogle Scholar
Lliboutry, L. (1970). Ice flow law from ice sheet dynamics. Proceedings of the International Symposium on Antarctic Glaciological Exploration, Hanover, NH, 3–7 September, 1968; International Association of Scientific Hydrology, Publication 86, 216–228
Lliboutry, L. (1971). Permeability, brine content, and temperature of temperate ice. Journal of Glaciology, 10(58), 15–30CrossRefGoogle Scholar
Lliboutry, L. (1975). Loi de glissement d'un glacier sans cavitation. Annals of Geophysics, 31(2), 207–226Google Scholar
Lliboutry, L. (1976). Physical processes in temperate glaciers. Journal of Glaciology, 16(74), 151–158CrossRefGoogle Scholar
Lliboutry, L. (1983). Modifications to the theory of intraglacial waterways for the case of subglacial ones. Journal of Glaciology, 29(102), 216–226CrossRefGoogle Scholar
Loewe, F. (1970). Screen temperatures and 10 m temperatures. Journal of Glaciology, 9(56), 263–268CrossRefGoogle Scholar
MacAyeal, D. R. (1989). Large scale ice flow over a viscous basal sediment: Theory and application to Ice Stream B, Antarctica. Journal of Geophysical Research, 94(B4), 4071–4087CrossRefGoogle Scholar
MacAyeal, D. R. (1993a). A low-order model of the Heinrich event cycle. Paleoceanography, 8(6), 767–773CrossRefGoogle Scholar
MacAyeal, D. R. (1993b). Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography, 8(6), 775–784CrossRefGoogle Scholar
Mandl, G., Jong, L. N. J. and Maltha, A. 1977. Shear zones in granular material – an experimental study of their structure and mechanical genesis. Rock Mechanics, 9(2–3), 95–144CrossRefGoogle Scholar
Mantua, N. J. and Hare, S. R. (2002). The Pacific decadal oscillation. Journal of Oceanography, 58, 35–44CrossRefGoogle Scholar
Marshall, S. J., Tarasov, L., Clarke, G. K. C. and Peltier, W. R. (2000). Glaciological reconstruction of the Laurentide Ice Sheet: physical processes and modeling challenges. Canadian Journal of Earth Sciences, 37, 769–793CrossRefGoogle Scholar
Martinerie, P., Raynaud, D., Etheridge, D. M., Barnola, J. M. and Mazaudier, D. (1992). Physical and climatic parameters which influence the air content in polar ice. Earth and Planetary Science Letters, 112(1/4), 1–13CrossRefGoogle Scholar
Matsuda, M. and Wakahama, G. (1978). Crystallographic structure of polycrystalline ice. Journal of Glaciology, 21(85), 607–620CrossRefGoogle Scholar
Matthews, J. B. (1981). The seasonal circulation of Glacier Bay, Alaska fjord system. Estuarine, Coastal, and Shelf Science, 12, 679–700CrossRefGoogle Scholar
Matthews, W. H. (1974). Surface profiles of the Laurentide ice sheet in its marginal areas. Journal of Glaciology, 13(67), 37–43CrossRefGoogle Scholar
Maxwell, K. D. (2002). Pacific decadal oscillation and Arizona precipitation (available on-line from http://www.wrh.noaa.gov/wrhq/02TAs/0208/)
Meier, M. F. (1961). Mass budget of South Cascade Glacier. 1957–1960. U.S. Geological Survey Professional Paper 424-B, pp. 206–211Google Scholar
Meier, M. F. (1962). Proposed definitions for glacier mass balance terms. Journal of Glaciology, 4(33), 252–263CrossRefGoogle Scholar
Meier, M. F. (1965). Glaciers and climate. In Wright Jr., H. E. and Frey, D. G. (eds.). The Quaternary of the United States. Princeton: Princeton University Press, pp. 795–805CrossRef
Meier, M. F., Rasmussen, L. A., Krimmel, R. M., Olsen, R. W. and Frank, D. (1985). Photogrametric determination of surface altitude, terminus position, and ice velocity of Columbia Glacier, Alaska. U.S. Geological Survey Professional Paper 1258-F, pp. F1–F40Google Scholar
Meier, M. F., Lundstrom, S., Stone, D., Kamb, B., Engelhardt, H., Humphrey, N., Dunlap, W. W., Fahnestock, M., Krimmel, R. M. and Rasmussen, L. A. (1994). Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier: 1. Observations. Journal of Geophysical Research, 99(B8), 15, 219–215, 229CrossRefGoogle Scholar
Mellor, M. and Testa, R. (1969). Effect of temperature on the creep of ice. Journal of Glaciology, 8(52), 131–145CrossRefGoogle Scholar
Menzies, J. and Shilts, W. W. (1996). Subglacial environments. In Menzies, J. (ed.) Past Glacial Environments – Sediments, Forms, and Techniques. Glacial Environments, Vol. 2. Oxford: Butterworth-Heinemann, pp. 15–136
Mickelson, D. M. (1987). Central Lowlands. In Graf, W. L., (ed.) Geomorphic Systems of North America. Boulder, CO: Geological Society of America, Centennial Special Volume 2, pp. 111–118CrossRef
Mitchell, J. K. (1993). Fundamentals of Soil Behavior (2nd edition). New York: John Wiley
Mitchell, J. K., Campanella, R. G. and Singh, A. (1968). Soil creep as a rate process. Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers, 94(SM1), 231–253Google Scholar
Montagnat, M. and Duval, P. (2000). Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization. Earth and Planetary Science Letters, 183, 179–186CrossRefGoogle Scholar
Mooers, H. D. (1989). On the formation of tunnel valleys of the Superior Lobe, Central Minnesota. Quaternary Research, 32, 24–35CrossRefGoogle Scholar
Mooers, H. D. (1990a). A glacial-process model: the role of spatial and temporal variations in glacier thermal regime. Geological Society of America Bulletin, 102(2), 243–2512.3.CO;2>CrossRefGoogle Scholar
Mooers, H. D. (1990b). Ice marginal thrusting of drift and bedrock: thermal regime subglacial aquifers, and glacial surges. Canadian Journal of Earth Sciences, 27(6), 849–862CrossRefGoogle Scholar
Moran, S. R., Clayton, L., Hooke, R. LeB., Fenton, M. M. and Andriashek, L. D. (1980). Glacier bed landforms of the prairie region of North America. Journal of Glaciology, 25(93), 457–476CrossRefGoogle Scholar
Morse, D. L., Waddington, E. D. and Steig, E. J. (1998). Ice age storm trajectories from radar stratigraphy at Taylor Dome, Antarctica. Geophysical Research Letters, 25(17), 3383–3386CrossRefGoogle Scholar
Müller, F. (1962). Zonation in the accumulation area of the glaciers of Axel Heiberg Island, N. W. T., Canada. Journal of Glaciology, 4(33), 302–318CrossRefGoogle Scholar
Murozumi, M., Chow, T. J. and Patterson, C. (1969). Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochimica et Cosmochimica Acta, 33, 1247–1294CrossRefGoogle Scholar
Nadai, A. (1950). Theory of Flow and Fracture of Solids, Volume 1, 2nd edition. New York: McGraw Hill, 572 pages
Nakase, A. and Kamei, T. (1986). Influence of strain rate on undrained shear strength characteristics of Ko-consolidated cohesive soils. Soils and Foundations, 26, 85–95CrossRefGoogle Scholar
Nereson, N. A., Raymond, C. F., Waddington, E. D. and Jacobel, R. W. (1998). Migration of the Siple Dome ice divide, West Antarctica. Journal of Glaciology, 44(148), 643–652CrossRefGoogle Scholar
Ng, F. S. L. (1999). A mathematical model of wide subglacial water drainage channels. In Wettlaufer, J. S., Dash, J. G. and Untersteiner, N. (eds.) Ice Physics and the Natural Environment. NATO ASI Series I: Global Environmental Change 56. Berlin: Springer-Verlag, 325–327
Ng, F. S. L. (2000a). Canals under sediment-based ice sheets. Annals of Glaciology, 30, 146–152CrossRefGoogle Scholar
Ng, F. S. L. (2000b). Coupled ice—till deformation near subglacial channels and cavities. Journal of Glaciology, 46(155), 580–598CrossRefGoogle Scholar
Ng, F. S. L. and Hallet, B. (2002). Patterning mechanisms in subglacial carbonate dissolution and deposition. Journal of Glaciology, 48(162), 386–400CrossRefGoogle Scholar
NOAA (2003). http://www.cpc.ncep.noaa.gov/products/winter_outlook/naoschem_both.gif
Nye, J. F. (1951). The flow of glaciers and ice sheets as a problem in plasticity. Proceedings of the Royal Society, London, A207(1091), 554–572CrossRefGoogle Scholar
Nye, J. F. (1952a). Reply to Mr. Joel E. Fisher's comments. Journal of Glaciology, 2(11), 52–53CrossRefGoogle Scholar
Nye, J. F. (1952b). Mechanics of glacier flow. Journal of Glaciology, 2(12), 82–93CrossRefGoogle Scholar
Nye, J. F. (1953). The flow law of ice from measurements in glacier tunnels, laboratory experiments, and the Jungfraufirn borehole experiment. Proceedings of the Royal Society, London, A219(1139), 477–489CrossRefGoogle Scholar
Nye, J. F. (1957). The distribution of stress and velocity in glaciers and ice sheets. Proceedings of the Royal Society, London, A239(1216), 113–133CrossRefGoogle Scholar
Nye, J. F. (1960). The response of glaciers and ice sheets to seasonal and climatic changes. Proceedings of the Royal Society, London, A256(1287), 559–584CrossRefGoogle Scholar
Nye, J. F. (1963a). On the theory of the advance and retreat of glaciers. Geophysical Journal of the Royal Astronomical Society, 7(4), 432–456Google Scholar
Nye, J. F. (1963b). The response of glaciers to changes in the rate of nourishment and wastage. Proceedings of the Royal Society, London, A257(1360), 87–112CrossRefGoogle Scholar
Nye, J. F. (1965a). The flow of a glacier in a channel of rectangular, elliptic, or parabolic cross section. Journal of Glaciology, 5(41), 661–690CrossRefGoogle Scholar
Nye, J. F. (1965b). A numerical method for inferring the budget history of a glacier from its advance and retreat. Journal of Glaciology, 5(41), 589–607CrossRefGoogle Scholar
Nye, J. F. (1969). The calculation of sliding of ice over a wavy surface using a Newtonian viscous approximation. Proceedings of the Royal Society, London, A311(1506), 445–467CrossRefGoogle Scholar
Nye, J. F. (1973a). The motion of ice past obstacles. In Whalley, E., Jones, S. J. and Gold, L. W. (eds.), The Physics and Chemistry of Ice. Ottawa: Royal Society of Canada, pp. 387–394
Nye, J. F. (1973b). Water at the bed of a glacier. IUGG-AIHS Symposium on the Hydrology of Glaciers, Cambridge, September 7–13, 1969. International Association of Scientific Hydrology, Publication 95, pp. 189–194
Nye, J. F. and Frank, F. C. (1973). Hydrology of intergranular veins in a temperate glacier. IUGG-AIHS Symposium on the Hydrology of Glaciers, Cambridge, September 7–13, 1969. International Association of Scientific Hydrology, Publication 95, pp. 157–161
Nye, J. F. and Mae, S. (1972). The effect of non-hydrostatic stress on intergranular water veins and lenses in ice. Journal of Glaciology, 11(61), 81–101CrossRefGoogle Scholar
Parker, G. (1979). Hydraulic geometry of active gravel rivers. Journal of the Hydraulics Division, American Society of Civil Engineers, 105(HY9), 1185–1201Google Scholar
Paterson, W. S. B. (1971). Temperature measurements in Athabasca Glacier, Alberta, Canada. Journal of Glaciology, 10(60), 339–349CrossRefGoogle Scholar
Paterson, W. S. B. (1977). Secondary and tertiary creep of glacier ice as measured by borehole closure rates. Reviews of Geophysics and Space Physics, 15(1), 47–55CrossRefGoogle Scholar
Paterson, W. S. B. (1991). Why ice-age ice is sometimes “soft”. Cold Regions Science and Technology, 20, 75–98CrossRefGoogle Scholar
Paterson, W. S. B. (1994). Physics of Glaciers (3rd edition). New York: Pergamon Press
Paterson, W. S. B.et al. (1977). An oxygen-isotope climate record from Devon Island ice cap, arctic Canada, Nature, 266, 508–511Google Scholar
Patterson, C. J. (1997). Southern Laurentide ice lobes were created by ice streams: Des Moines lobe in Minnesota, USA. Sedimentary Geology, 111, 247–261CrossRefGoogle Scholar
Patterson, C. J. (2002). Toward a unified explanation for subglacial tunnel formation. Geological Society of America Abstracts with Programs, 36(6), 59–3Google Scholar
Patterson, C. J. and Hooke, R. LeB. (1995). Physical environment of drumlin formation. Journal of Glaciology, 41(137), 30–38CrossRefGoogle Scholar
Payne, A. J., Huybrechts, P., Abe-Ouchi, A., Calov, R., Fastook, J. L., Greve, R., Marshall, S. J., Marsiat, I., Ritz, C., Tarasov, L. and Thomassen, M. P. A. (2000). Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. Journal of Glaciology, 46(153), 227–238CrossRefGoogle Scholar
Philberth, K. and Federer, B. (1971). On the temperature profile and age profile in the central part of cold ice sheets. Journal of Glaciology, 10(58), 3–14CrossRefGoogle Scholar
Pimienta, P. and Duval, P. (1987). Rate controlling processes in the creep of polar glacier ice. Journal de Physique, 48. Colloque C1, Supplement to no. 3, pp. C1-243–C1-248Google Scholar
Ramsay, J. G. and Graham, R. H. (1970). Strain variation in shear belts. Canadian Journal of Earth Sciences, 7, 786–813CrossRefGoogle Scholar
Rasmussen, E. M. (1984). El Niño: The ocean/atmosphere connection. Oceanus, 27(2), 5–12Google Scholar
Rasmussen, L. A. and Meier, M. F. (1982). Continuity equation model of the predicted drastic retreat of Columbia Glacier, Alaska. U.S. Geological Survey Professional Paper 1258-F, pp. A1–A23Google Scholar
Ratcliffe, E. H. (1962). Thermal conductivity of ice: new data on the temperature coefficient. Philosophical Magazine, 8th Series, 7, 1197–1203CrossRefGoogle Scholar
Raymond, C. F. (1971). Flow in a transverse section of Athabasca Glacier, Alberta, Canada. Journal of Glaciology, 10(58), 55–84CrossRefGoogle Scholar
Raymond, C. F. (1973). Inversion of flow measurements for stress and rheological parameters in a valley glacier. Journal of Glaciology, 12(64), 19–44CrossRefGoogle Scholar
Raymond, C. F. (1983). Deformation in the vicinity of ice divides. Journal of Glaciology, 29(103), 357–373CrossRefGoogle Scholar
Raymond, C. F. (2000). Energy balance of ice streams. Journal of Glaciology, 46(155), 665–674CrossRefGoogle Scholar
Raymond, C. F. and Harrison, W. D. (1975). Some observations on the behavior of liquid and gas phases in temperate glacier ice. Journal of Glaciology, 14(71), 213–234CrossRefGoogle Scholar
Raymond, C. F. and Harrison, W. D. (1988). Evolution of Variegated Glacier, U.S.A., prior to its surge. Journal of Glaciology, 34(117), 154–165CrossRefGoogle Scholar
Raymond, C. F., Echelmeyer, K. A., Whillans, I. M., and Doake, C. S. M. (2001). Ice stream shear margins. In The West Antarctic Ice Sheet: Behavior and Environment. Antarctic Research Series, 77, 137–155Google Scholar
Raynaud, D. and Whillans, I. M. (1982). Air content of the Byrd core and past changes in the West Antarctic Ice Sheet. Annals of Glaciology, 3, 269–273CrossRefGoogle Scholar
Raynaud, D., Jouzel, J., Barnola, J.-M., Chappellaz, J., Delmas, R. J. and Lorius, C. (1993). The ice core record of greenhouse gases. Science, 259(5097), 926–934CrossRefGoogle Scholar
Reeh, N. (1968). On the calving of ice from floating glaciers and ice shelves. Journal of Glaciology, 7(50), 215–232CrossRefGoogle Scholar
Retzlaff, R. and Bentley, C. R. (1993). Timing of stagnation of Ice Streams A, West Antarctica, from short-pulse radar studies of buried surface crevasses. Journal of Glaciology, 39(133), 553–561CrossRefGoogle Scholar
Retzlaff, R., Lord, N. and Bentley, C. R. (1993). Airborne-radar studies: Ice streams A, B and C, West Antarctica. Journal of Glaciology, 39(133), 495–506CrossRefGoogle Scholar
Rigsby, G. P. (1958). Effect of hydrostatic pressure on velocity of shear deformation of single ice crystals. Journal of Glaciology, 3(24), 273–278CrossRefGoogle Scholar
Rist, M. A., Sammonds, P. R., Murrell, S. A. F., Meredith, P. G., Doake, C. S. M., Oerter, H. and Matsuki, K. (1999). Experimental and theoretical fracture mechanics applied to Antarctic ice and surface crevassing. Journal of Geophysical Research, 104(B2), 2973–2987CrossRefGoogle Scholar
Robin, G. deQ. (1955). Ice movement and temperature distribution in glaciers and ice sheets. Journal of Glaciology, 2(18), 523–532CrossRefGoogle Scholar
Robin, G. deQ. (1970). Stability of ice sheets as deduced from deep temperature gradients. International Symposium on Antarctic Glaciological Exploration (ISAGE), Hanover, NH, September 3–7, 1968. International Association of Scientific Hydrology, Publication 86, pp. 141–151Google Scholar
Robin, G. deQ. (1976). Is the basal ice of a temperate glacier at the pressure melting point?Journal of Glaciology, 16(74), 183–195CrossRefGoogle Scholar
Röthlisberger, H. (1972). Water pressure in intra- and subglacial channels. Journal of Glaciology, 11(62), 177–204Google Scholar
Röthlisberger, H. and Iken, A. (1981). Plucking as an effect of water-pressure variations at the glacier bed. Annals of Glaciology, 2, 57–62CrossRefGoogle Scholar
Russell-Head, D. S. and Budd, W. F. (1979). Ice-sheet flow properties derived from bore-hole shear measurements combined with ice-core studies. Journal of Glaciology, 24(90), 117–130CrossRefGoogle Scholar
Sammis, C. G., King, G. and Biegel, R. (1987). The kinematics of gouge deformation. Pure and Applied Geophysics, 125(5), 777–812CrossRefGoogle Scholar
Scambos, T. A., Hulbe, C., Fahnestock, M. and Bohlander, J. (2000). The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 46(154), 516–530CrossRefGoogle Scholar
Schytt, V. (1968). Notes on glaciological activities in Kebnekaise, Sweden during 1966 and 1967. Geografiska Annaler, 50, 111–120CrossRefGoogle Scholar
Seaberg, S. Z., Seaberg, J. Z., Hooke, R. LeB. and Wiberg, D. W. (1988). Character of the englacial and subglacial drainage system in the lower part of the ablation area of Storglaciären, Sweden, as revealed by dye-trace studies. Journal of Glaciology, 34(117), 217–227CrossRefGoogle Scholar
Segall, P. (1984). Rate-dependent extensional deformation resulting from crack growth in rock. Journal of Geophysical Research, 89(B6), 4185–4195CrossRefGoogle Scholar
Shabtaie, S. and Bentley, C. R. (1988). Ice-thickness map of the West Antarctic ice streams by radar sounding. Annals of Glaciology, 11, 126–136CrossRefGoogle Scholar
Sharp, M. (1982). Modification of clasts in lodgement tills by glacial erosion. Journal of Glaciology, 28(100), 475–481CrossRefGoogle Scholar
Shreve, R. L. (1972). Movement of water in glaciers. Journal of Glaciology, 11(62), 205–214CrossRefGoogle Scholar
Shreve, R. L. (1984). Glacier sliding at subfreezing temperatures. Journal of Glaciology, 30(106), 341–347CrossRefGoogle Scholar
Shreve, R. L. (1985a). Esker characteristics in terms of glacier physics, Katahdin esker system, Maine. Geological Society of America Bulletin, 96(5), 639–6462.0.CO;2>CrossRefGoogle Scholar
Shreve, R. L. (1985b). Late Wisconsin ice-surface profile calculated from esker paths and types, Katahdin esker system, Maine. Quaternary Research, 23(1), 27–37CrossRefGoogle Scholar
Shreve, R. L. and Sharp, R. P. (1970). Internal deformation and thermal anomalies in lower Blue Glacier, Mount Olympus, Washington, USA. Journal of Glaciology, 9(55), 65–86CrossRefGoogle Scholar
Shumskii, P. A. (1964). Principles of Structural Glaciology. New York: Dover
Sih, G. C. (1973). Handbook of Stress-Intensity Factors; Stress-Intensity Factor Solutions and Formulas for Reference. Bethlehem, PA: Institute of Fracture and Solid Mechanics, Leigh University
Skempton, A. W. (1985). Residual strength of clays in landslides, folded strata, and the laboratory. Géotechnique, 25(1), 3–18CrossRefGoogle Scholar
Sokolnikoff, I. S. and Redheffer, R. M. (1958). Mathematics of Physics and Modern Engineering. New York: McGraw Hill, 810 pages
Sommerfeld, R. and LaChapelle, E. (1970). The classification of snow metamorphism. Journal of Glaciology, 9(55), 3–17CrossRefGoogle Scholar
Souchez, R. A. and Lorrain, R. D. (1978). Origin of the basal ice layer from Alpine glaciers indicated by its chemistry. Journal of Glaciology, 20(83), 319–328CrossRefGoogle Scholar
Strang, G. and Fix, G. J. (1973). An Analysis of the Finite-Element Method. New York: Prentice Hall, 306 pages
Stone, G. H. (1899). The Glacial Gravels of Maine and their Associated Deposits. U.S. Geological Survey Monograph 34, 499 pages
Taylor, L. D. (1963). Structure and fabric on the Burroughs Glacier, south-east Alaska. Journal of Glaciology, 4(36), 731–752CrossRefGoogle Scholar
Tarasov, L. and Peltier, W. R. (1999). Impact of thermomechanical ice sheet coupling on a model of the 100 kyr ice age cycle. Journal of Geophysical Research, 105(D4), 9517–9545CrossRefGoogle Scholar
Thomas, R. H. (1973a). The creep of ice shelves: theory. Journal of Glaciology, 12(64), 45–53CrossRefGoogle Scholar
Thomas, R. H. (1973b). The creep of ice shelves: Interpretation of observed behavior. Journal of Glaciology, 12(64), 55–70CrossRefGoogle Scholar
Thomas, R. H., Akins, T., Csatho, B., Fahnestock, M., Gogineni, P., Kim, C. and Sonntag, J. (2000). Mass balance of the Greenland ice sheet at high elevations. Science, 289, 426–428CrossRefGoogle ScholarPubMed
Thompson, L. G., Mosley-Thompson, E., Dansgaard, W. and Grootes, P. M. (1986). The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya Ice Cap. Science, 234(4774), 361–364CrossRefGoogle ScholarPubMed
Tresca, M. H. (1864). Mémoire sur l'écoulement des corps solides soumis à de fortes pressions. Comptes Rendus des Séances de l'Academie des Sciences, Paris, 59, 754–758Google Scholar
Truffer, M., Harrison, W. D. and Echelmeyer, K. A. (2000). Glacier motion dominated by processes deep in underlying till. Journal of Glaciology, 46(153), 213–221CrossRefGoogle Scholar
Truffer, M., Echelmeyer, K. A. and Harrison, W. D. (2001). Implications of till deformation on glacier dynamics. Journal of Glaciology, 47(156), 123–134CrossRefGoogle Scholar
Tulaczyk, S. (1999). Ice sliding over weak, fine-grained tills: Dependence of ice-till interactions on till granulometry. In Mickelson, D. M. and Attig, J. W. (eds.) Glacial Processes Past and Present. Boulder, Colorado: Geological Society of America Special Paper 337, pp. 159–177CrossRef
Tulaczyk, S., Kamb, B., Scherer, R. and Engelhardt, H. (1998). Sedimentary processes at the base of a West Antarctic ice stream: constraints from textural and compositional properties of subglacial debris. Journal of Sedimentary Research, 68, 487–496CrossRefGoogle Scholar
Tulaczyk, S., Kamb, W. B. and Engelhardt, H. F. (2000a). Basal mechanics of Ice Stream B, West Antarctica 1. Till mechanics. Journal of Geophysical Research, 105(B1), 463–481CrossRefGoogle Scholar
Tulaczyk, S., Kamb, W. B. and Engelhardt, H. F. (2000b). Basal mechanics of Ice Stream B, West Antarctica 2. Undrained plastic bed model. Journal of Geophysical Research, 105(B1), 483–494CrossRefGoogle Scholar
Tulaczyk, S., Kamb, W. B. and Engelhardt, H. F. (2001a). Estimates of effective stress beneath a modern West Antarctic ice stream from till preconsolidation and void ratio. Boreas, 30, 101–114CrossRefGoogle Scholar
Tulaczyk, S., Scherer, R. P. and Clark, C. D. (2001b). A ploughing model for the origin of weak tills beneath ice streams: a qualitative treatment. Quaternary International, 86, 59–70CrossRefGoogle Scholar
Ussing, N. V. (1903). On Jyllands hedesletter og teorierne om deres dannelse. [On Jyllands meltwater outwash plains and theories of their origin.]Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger, 2, 99–165Google Scholar
Vallon, M., Petit, J.-R. and Fabre, B. (1976). Study of an ice core to bedrock in the accumulation zone of an alpine glacier. Journal of Glaciology, 17(75), 13–28CrossRefGoogle Scholar
Van Beaver, H. G. (1971). The significance of the distribution of clasts within the Great Pond esker and adjacent till. MS thesis, University of Maine, Orono, 61 pages
Veen, C. J. (1996). Tidewater calving. Journal of Glaciology, 42(141), 375–385CrossRefGoogle Scholar
Veen, C. J. (1998). Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Regions Science and Technology, 27, 31–47CrossRefGoogle Scholar
Veen, C. J. (2002). Calving glaciers. Progress in Physical Geography, 26(1), 96–122CrossRefGoogle Scholar
Veen, C. J. and Whillans, I. M. (1989). Force budget: I. Theory and numerical methods. Journal of Glaciology, 35(119), 53–60CrossRefGoogle Scholar
Veen, C. J. and Whillans, I. M. (1994). Development of fabric in ice. Cold Regions Science and Technology, 22, 171–195CrossRefGoogle Scholar
Wal, R. S. W. and Oerlemans, J. (1995). Response of valley glaciers to climatic change and kinematic waves: a study with a numerical ice flow model. Journal of Glaciology, 41(137), 142–152Google Scholar
Vaughan, D. G. (1993). Relating the occurrence of crevasses to surface strain rates. Journal of Glaciology, 39(132), 255–266CrossRefGoogle Scholar
Waite, A. H. and Schmidt, S. J. (1961). Gross errors in height indication from pulsed radar altimeters operating over thick ice or snow. Institute of Radio Engineers International Convention Record, 5, 38–53Google Scholar
Walder, J. S. (1982). Stability of sheet flow of water beneath temperate glaciers and implications for glacier surging. Journal of Glaciology, 28(99), 273–293CrossRefGoogle Scholar
Walder, J. S. and Fowler, A. (1994). Channelized subglacial drainage over a deformable bed. Journal of Glaciology, 40(134), 3–15CrossRefGoogle Scholar
Walder, J. S. and Hallet, B. (1979). Geometry of former subglacial water channels and cavities. Journal of Glaciology, 23(89), 335–346CrossRefGoogle Scholar
Walters, R. and Meier, M. F. (1989). Variability of Glacier Mass Balances in Western North America. American Geophysical Union, Geophysical Monograph 55, pp. 365–374CrossRef
Walters, R. A., Joshberger, E. G. and Driedger, C. L. (1988). Columbia Bay, Alaska: an “upside down” estuary. Estuarine, Coastal, and Shelf Science, 26, 607–617CrossRefGoogle Scholar
Warren, C. R., Glasser, N. F., Harrison, S., Winchester, V., Kerr, A. and Rivera, A. (1995). Characteristics of tide-water calving at Glaciar San Rafael, Chile. Journal of Glaciology, 41(138), 273–289CrossRefGoogle Scholar
Weertman, J. (1957a). On sliding of glaciers. Journal of Glaciology, 3(21), 33–38CrossRefGoogle Scholar
Weertman, J. (1957b). Deformation of floating ice shelves. Journal of Glaciology, 3(21), 38–42CrossRefGoogle Scholar
Weertman, J. (1964). Glacier sliding. Journal of Glaciology, 5(39), 287–303CrossRefGoogle Scholar
Weertman, J. (1972). General theory of water flow at the base of a glacier or ice sheet. Reviews of Geophysics and Space Physics, 10(1), 287–333CrossRefGoogle Scholar
Weertman, J. (1973). Can a water-filled crevasse reach the bottom surface of a glacier?International Association of Scientific Hydrology Publication 95, 139–145Google Scholar
Weertman, J. (1983). Creep deformation of ice. Annual Reviews of Earth and Planetary Science, 11, 215–240CrossRefGoogle Scholar
Weertman, J. and Birchfield, G. E. (1983). Stability of sheet water flow under a glacier. Journal of Glaciology, 29(103), 374–382CrossRefGoogle Scholar
Whillans, I. M. (1977). The equation of continuity and its application to the ice sheet near “Byrd” Station, Antarctica. Journal of Glaciology, 18(80), 359–371CrossRefGoogle Scholar
Whillans, I. M. and Tseng, Y.-H. (1995). Automatic tracking of crevasses on satellite images. Cold Regions Science and Technology, 23(2), 201–214CrossRefGoogle Scholar
Whillans, I. M. and Veen, C. J. 1993. New and improved determinations of velocity of Ice Streams B and C, West Antarctica. Journal of Glaciology, 39(133), 483–490CrossRefGoogle Scholar
WISC (2003). http://uwamrc.ssec.wisc.edu/amrc/iceberg.html
Wright, H. E., Jr. (1973). Tunnel valleys, glacial surges and subglacial hydrology of the Superior Lobe, Minnesota. In Black, R. F., Goldthwait, R. P. and Willman, G. B. (eds.) The Wisconsin Stage, Boulder, Colorado. Geological Society of America Memoir 136, 251–276CrossRef
Yarnal, B. (1984). Relationships between synoptic-scale atmospheric circulation and glacier mass balance in south-western Canada during the International Hydrological Decade. 1965–74. Journal of Glaciology, 30(105), 188–198CrossRefGoogle Scholar
Zwally, H. J. and Giovinetto, M. B. (2000). Spatial distribution of net surface mass balance on Greenland. Annals of Glaciology, 31, 126–132CrossRefGoogle Scholar
Allen, C. R., Kamb, W. B., Meier, M. F. and Sharp, R. P. (1960). Structure of lower Blue Glacier, Washington. Journal of Geology, 68(6), 601–625CrossRefGoogle Scholar
Alley, R. B. (1989a). Water pressure coupling of sliding and bed deformation: I. Water system. Journal of Glaciology, 35(119), 108–118CrossRefGoogle Scholar
Alley, R. B. (1989b). Water-pressure coupling of sliding and bed deformation: II. Velocity-depth profiles. Journal of Glaciology, 35(119), 119–129CrossRefGoogle Scholar
Alley, R. B. (1991). Deforming bed origin for the southern Laurentide till sheets?Journal of Glaciology, 37(125), 67–76CrossRefGoogle Scholar
Alley, R. B. (1992). Flow-law hypotheses for ice-sheet modeling. Journal of Glaciology, 38(129), 245–256CrossRefGoogle Scholar
Alley, R. B. and Whillans, I. M. (1991). Changes in the West Antarctic Ice Sheet. Science, 254(5034), 259–263CrossRefGoogle ScholarPubMed
Alley, R. B., Blankenship, D. D., Bentley, C. R. and Rooney, S. T. (1987a). Till beneath Ice Stream B 3. Till deformation: evidence and implications. Journal of Geophysical Research, 92(B9), 8921–8929CrossRefGoogle Scholar
Alley, R. B., Blankenship, D. D., Rooney, S. T. and Bentley, C. R. (1987b). Till beneath Ice Stream B 4. A coupled ice-till flow model. Journal of Geophysical Research, 92(B9), 8931–8940CrossRefGoogle Scholar
Alley, R. B.et al. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362(6420), 527–529CrossRefGoogle Scholar
Alley, R. B., Gow, A. J. and Messe, D. A. (1995). Mapping c-axis fabrics to study physical processes in ice. Journal of Glaciology, 41(137), 197–203CrossRefGoogle Scholar
Alley, R. B., Gow, A. J., Messe, D. A., Fitzpatrick, J. J., Waddington, E. D. and Bolzan, J. F. (1997). Grain-scale processes, folding, and stratigraphic disturbance in the GISP2 ice core. Journal of Geophysical Research, 102(C12), 26, 819–826, 830CrossRefGoogle Scholar
Anandakrishnan, S., Blankenship, D. D., Alley, R. B. and Stoffa, P. L. (1998). Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations. Nature, 394, 62–65CrossRefGoogle Scholar
Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S. and Valentine, V. B. (2002). Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297, 382–385Google ScholarPubMed
Ashley, G. M., Boothroyd, J. C. and Borns, H. W. Jr. (1991). Sedimentology of late Pleistocene (Laurentide) deglacial-phase deposits, eastern Maine; an example of a temperate marine grounded ice-sheet margin. Geological Society of America Special Paper 261, pp. 107–125CrossRefGoogle Scholar
Atkinson, B. K. (1984). Subcritical crack growth in geological materials. Journal of Geophysical Research, 89(B6), 4077–4144CrossRefGoogle Scholar
Atkinson, B. K. and Rawlings, R. D. (1981). Acoustic emission during stress corrosion cracking in rocks. In Simpson, D. W. and Richards, P. G. (eds.) Earthquake Prediction. An International Review (Ewing Series, 4). Washington, D.C.: American Geophysical Union, pp. 605–619CrossRef
Attig, J. W., Mickelson, D. M. and Clayton, L. (1989). Late Wisconsin landform distribution and glacier bed conditions in Wisconsin. Sedimentary Geology, 62(3–4), 399–405CrossRefGoogle Scholar
Baker, R. W. (1978). The influence of ice-crystal size on creep. Journal of Glaciology, 21(85), 485–500CrossRefGoogle Scholar
Baker, R. W. (1981). Textural and crystal-fabric anisotropies and the flow of ice masses. Science, 211(4486), 1043–1044CrossRefGoogle ScholarPubMed
Baker, R. W. (1982). A flow equation for anisotropic ice. Cold Regions Science and Technology, 6(3), 141–148CrossRefGoogle Scholar
Barnes, P., Tabor, D. and Walker, J. C. F. (1971). Friction and creep of polycrystalline ice. Proceedings of the Royal Society, London, A324(1557), 127–155CrossRefGoogle Scholar
Bell, R. E., Blankenship, D. D., Finn, C. A., Morse, D. L., Scambos, T. A., Brozenal, J. M. and Hodge, S. M. (1998). Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature, 394, 58–62CrossRefGoogle Scholar
Benoist, J.-P. (1979). The spectral power density and shadowing function of a glacial microrelief at the decimetre scale. Journal of Glaciology, 23(89), 57–66CrossRefGoogle Scholar
Benson, C. S. (1961). Stratigraphic studies in the snow and firn of the Greenland Ice Sheet. Folia Geographica Danica, 9, 13–37Google Scholar
Benson, C. S. (1962). Stratigraphic studies in the snow and firn of the Greenland Ice Sheet. U.S. Snow, Ice, and Permafrost Research EstablishmentResearch Report 70Google Scholar
Biegel, R. L., Sammis, C. G. and Dieterich, J. H. (1989). The frictional properties of simulated gouge having a fractal particle distribution. Journal of Structural Geology, 11(7), 827–846CrossRefGoogle Scholar
Bindschadler, R. A. and Scambos, T. A. (1991). Satellite-image-derived velocity field of an Antarctic ice stream. Science, 252(5003), 242–246CrossRefGoogle ScholarPubMed
Bindschadler, R. A. and Vornberger, P. (1998). Changes in the West Antarctic Ice Sheet since 1963 from declassified satellite photography. Science, 279, 689–692CrossRefGoogle ScholarPubMed
Bindschadler, R. A., King, M. A., Alley, R. B., Anandakrishnan, S. and Padman, L. (2003). Tidally controlled stick-slip discharge of a West Antarctic ice stream. Science, 301, 1087–1089CrossRefGoogle Scholar
Björnsson, H. (1992). Jökulhlaups in Iceland: prediction, characteristics, and simulation. Annals of Glaciology, 16, 95–106CrossRefGoogle Scholar
Blankenship, D. D., Bentley, C. R., Rooney, S. T. and Alley, R. B. (1986). Seismic measurements reveal a saturated, porous layer beneath an active Antarctic ice stream. Nature, 322(6074), 54–57CrossRefGoogle Scholar
Böðvarsson, G. (1955). On the flow of ice sheets and glaciers. Jökull, 5, 1–8Google Scholar
Boulton, G. S. and Hindmarsh, R. C. A. (1987). Sediment deformation beneath glaciers: rheology and geological consequences. Journal of Geophysical Research, 92(B9), 9059–9082CrossRefGoogle Scholar
Broecker, W. S. (1994). Massive iceberg discharges as triggers for global climate change. Nature, 372(6505), 421–424CrossRefGoogle Scholar
Brown, C. S., Meier, M. F. and Post, A. (1982). Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier. U.S. Geological Survey Professional Paper 1258-C, pp. C1–C13Google Scholar
Brown, N. L., Hallet, B. and Booth, D. B. (1987). Rapid soft-bed sliding of the Puget glacial lobe. Journal of Geophysical Research, 92(B9), 8985–8997CrossRefGoogle Scholar
Brugger, K. A. (1992). A comparative study of the response of Rabots Glaciär and Storglaciären to recent climatic change. Ph.D. thesis, University of Minnesota, 295 pages
Budd, W. F. (1969). The dynamics of ice masses. Australian National Antarctic Expeditions Scientific Reports, Series A (IV) Glaciology, Publication No. 108
Budd, W. F. and Jacka, T. H. (1989). A review of ice rheology for ice sheet modelling. Cold Regions Science and Technology, 16(2), 107–144CrossRefGoogle Scholar
Budd, W. F., Jensen, D. and Radok, U. (1971). Derived physical characteristics of the Antarctic Ice Sheet. Australian National Antarctic Expeditions Interim Reports, Series A (IV) Glaciology, Publication No. 120
Budd, W. F., Keage, P. L. and Bundy, N. A. (1979). Empirical studies of ice sliding. Journal of Glaciology, 23(89), pp. 157–170CrossRefGoogle Scholar
Butkovitch, T. R. (1954). The ultimate strength of ice. Snow, Ice, and Permafrost Research Establishment Research Report 11, 12 pagesGoogle Scholar
Canals, M., Urgeles, R. and Calafat, A. M. (2000). Deep sea-floor evidence of past ice streams off the Antarctic Peninsula. Geology, 28(1), 31–342.0.CO;2>CrossRefGoogle Scholar
Carnahan, B., Luther, H. A. and Wilkes, J. O. (1969). Applied Numerical Methods. New York: John Wiley and Sons, Inc.
Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of Heat in Solids. Oxford Clarendon Press. 510 pages
Clark, C. D. and Stokes, C. R. (2001). Extent and basal characteristics of the M'Clintock Channel Ice Stream. Quaternary International, 86, 81–101CrossRefGoogle Scholar
Clark, P. U. and Hansel, A. R. (1989). Clast ploughing, lodgement and glacier sliding over a soft glacier bed. Boreas, 18(3), 201–207CrossRefGoogle Scholar
Clark, P. U. and Walder, J. S. (1994). Subglacial drainage, eskers, and deforming beds beneath the Laurentide and Eurasian ice sheets. Geological Society of America Bulletin, 106(2), 304–3142.3.CO;2>CrossRefGoogle Scholar
Clayton, L. and Cherry, J. A. (1967). Pleistocene superglacial and ice-walled lakes of west-central North America. In Clayton, L. and Freers, T. F. (eds.) Glacial Geology of the Missouri Coteau and Adjacent Areas. N. Dakota Geological Survey Miscellaneous Series 30, pp. 47–52
Clayton, L. and Freers, T. F. (1967). Roadlog. In Clayton, L. and Freers, T. F. (eds.) Glacial Geology of the Missouri Coteau and Adjacent Areas. N. Dakota Geological Survey Miscellaneous Series 30, pp. 1–24
Cohen, D. (1998). Rheology of basal ice at Engabreen, Norway. Ph.D. thesis, University of Minnesota, 166 pages
Cohen, D. (2000). Rheology of ice at the bed of Engabreen, Norway. Journal of Glaciology, 46(155), 611–621CrossRefGoogle Scholar
Cook, E. R., D'Arrigo, R. D. and Briffa, K. R. (1998). A reconstruction of the North Atlantic Oscillation using tree-ring chronologies from North America and Europe. The Holocene, 8, 9–17CrossRefGoogle Scholar
Cullather, R. I., Bromwich, D. H. and Woert, M. L. (1996). Interannual variations in Antarctic precipitation related to El Niño-Southern Oscillation. Journal of Geophysical Research, 101(D14), 19, 109–19, 118CrossRefGoogle Scholar
Cutler, P. M., MacAyeal, D. R., Mickelson, D. M., Parizek, B. R. and Colgan, P. M. (2000). A numerical investigation of ice-lobe—permafrost interaction around the southern Laurentide ice sheet. Journal of Glaciology, 46(153), 311–325CrossRefGoogle Scholar
Cutler, P. M., Colgan, P. M. and Mickelson, D. M. (2002). Sedimentologic evidence for outburst floods from the Laurentide Ice Sheet margin in Wisconsin, USA: implications for tunnel-channel formation. Quaternary International, 90, 23–40CrossRefGoogle Scholar
Dahl-Jensen, D. and Gundestrup, N. S. (1987). Constitutive properties of ice at Dye 3, Greenland. International Association of Hydrological Sciences Publication 170 (Symposium at Vancouver 1987The physical basis for ice sheet modelling), pp. 31–43Google Scholar
Dahl-Jensen, D. and Johnsen, S. J. (1986). Palaeotemperatures still exist in the Greenland ice sheet. Nature, 320, 250–252CrossRefGoogle Scholar
Dansgaard, W. and Oeschger, H. (1989). Past environmental long-term records from the Arctic. The Environmental Record in Glaciers and Ice Sheets. Oeschger, H. and Langway Jr., C. C. (eds.) New York: Wiley, pp. 287–318
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J. and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220CrossRefGoogle Scholar
Deeley, R. M. and Parr, P. H. (1914). The Hintereis Glacier. Philosophical Magazine, 6, 153–176Google Scholar
Chapelle, S., Duval, P. and Baudet, B. (1995). Compressive creep of polycrystalline ice containing a liquid phase. Scripta Metallurgica et Materialia, 33(3), 447–450CrossRefGoogle Scholar
Demorest, M. (1941). Glacier flow and its bearing on the classification of glaciers. Geological Society of America Bulletin, 52(12), 2024–2025Google Scholar
Demorest, M. (1942). Glacier regimens and ice movement within glaciers. American Journal of Science, 240(1), 31–66Google Scholar
Drake, L. and Shreve, R. L. (1973). Pressure melting and regelation of ice by round wires. Proceedings of the Royal Society, London, A332(1588), 51–83CrossRefGoogle Scholar
Duval, P. (1977). The role of water content on the creep rate of polycrystalline ice. In Isotopes and impurities in snow and ice. Proceedings of the Grenoble Symposium, Aug.—Sept. 1975, International Association of Scientific Hydrology Publication 118, pp. 29–33
Duval, P. (1978). Anelastic behavior of polycrystalline ice. Journal of Glaciology, 21(85), 621–628CrossRefGoogle Scholar
Duval, P. and Castelnau, O. (1995). Dynamic recrystallization of ice in polar ice sheets. Journal de Physique IV, Colloque C3, supplement to Journal de Physique III, 5, C3-197–C3-205Google Scholar
Duval, P., Ashby, M. F. and Anderman, I. (1983). Rate-controlling processes in the creep of polycrystalline ice. Journal of Physical Chemistry, 87(21), 4066–4074CrossRefGoogle Scholar
Echelmeyer, K. and Wang, Z. (1987). Direct observation of basal sliding and deformation of basal drift at sub-freezing temperatures. Journal of Glaciology, 33(113), 83–98CrossRefGoogle Scholar
Elsberg, D. H., Harrison, W. D., Echelmeyer, K. A. and Krimmel, R. M. (2001). Quantifying the effects of climate and surface change on glacier mass balance. Journal of Glaciology, 47(159), 649–658CrossRefGoogle Scholar
Engelhardt, H. and Kamb, B. (1997). Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations. Journal of Glaciology, 43(144), 207–230CrossRefGoogle Scholar
Engelhardt, H. and Kamb, B. (1998). Basal sliding of ice stream B, West Antarctica. Journal of Glaciology, 44(147), 223–230Google Scholar
Engelhardt, H., Harrison, W. D. and Kamb, B. (1978). Basal sliding and conditions at the glacier bed as revealed by bore-hole photography. Journal of Glaciology, 20(84), 469–508CrossRefGoogle Scholar
Engelhardt, H., Humphrey, N., Kamb, B. and Fahnestock, M. (1990). Physical conditions at the base of a fast moving Antarctic ice stream. Science, 248(4951), 57–59CrossRefGoogle ScholarPubMed
Etchecopar, A. (1977). A plane kinematic model of progressive deformation in a polycrystalline aggregate. Tectonophysics, 39, 121–139CrossRefGoogle Scholar
Eyles, N., Salden, J. A. and Gilroy, S. (1982). A depositional model for stratigraphic complexes and facies superimposition in lodgement till. Boreas, 11(4), 317–333CrossRefGoogle Scholar
Fastook, J. L. and Chapman, J. E. (1989). A map-plane finite-element model: three modeling experiments. Journal of Glaciology, 35(119), 48–52CrossRefGoogle Scholar
Fastook, J. L. and Holmlund, P. (1994). A glaciological model of the Younger Dryas event in Scandinavia. Journal of Glaciology, 40(134), 125–131CrossRefGoogle Scholar
Fischer, U. H. and Clarke, G. K. C. (1994). Ploughing of subglacial sediment. Journal of Glaciology, 40(134), 97–106CrossRefGoogle Scholar
Fisher, D. A. (1987). Enhanced flow of Wisconsin ice related to solid conductivity through strain history and recrystallization. International Association of Scientific Hydrology Publication 170, pp. 45–51Google Scholar
Fisher, D. A. and Koerner, R. M. (1986). On the special rheological properties of ancient microparticle-laden Northern Hemisphere ice as derived from bore-hole and core measurements. Journal of Glaciology, 32(112), 501–510CrossRefGoogle Scholar
Fisher, D. A., Reeh, N. and Langley, K. (1985). Objective reconstructions of the late Wisconsinan Laurentide ice sheet and the significance of deformable beds. Gèographie Physique et Quaternaire, 39, 229–238CrossRefGoogle Scholar
Fountain, A. G. (1989). The storage of water in, and hydraulic characteristics of, the firn of South Cascade Glacier, Washington State, U.S.A.Annals of Glaciology, 13, 69–75CrossRefGoogle Scholar
Fowler, A. C. (1987). Sliding with cavity formation. Journal of Glaciology, 33(115), 255–267CrossRefGoogle Scholar
Fowler, A. C. and Larson, D. A. (1978). On the flow of polythermal glaciers: II. Surface wave analysis. Proceedings of the Royal Society, London, A70, 155–171Google Scholar
Funk, M. and Röthlisberger, H. (1989). Forecasting the effects of a planned reservoir which will partially flood the tongue of Unteraargletscher in Switzerland. Annals of Glaciology, 13, 76–81CrossRefGoogle Scholar
Gilpin, R. R. (1979). A model of the “liquid-like” layer between ice and a substrate with applications to wire regelation and particle migration. Journal of Colloid and Interface Science, 68(2), 235–251CrossRefGoogle Scholar
Giovinetto, M. B. and Zwally, H. J. (2000). Spatial distribution of net surface accumulation on the Antarctic ice sheet. Annals of Glaciology, 31, 171–178CrossRefGoogle Scholar
Glasstone, S., Laidler, K. J. and Eyring, H. (1941). The Theory of Rate Processes. New York: McGraw-Hill
Glen, J. W. (1955). The creep of polycrystalline ice. Proceedings of the Royal Society, London, A228 (1175), 519–538CrossRefGoogle Scholar
Glen, J. W. (1958). The flow law of ice. A discussion of the assumptions made in glacier theory, their experimental foundations and consequences. International Association of Scientific Hydrology, 47, 171–183Google Scholar
Glen, J. W. (1963). Contribution to the discussion. International Association of Scientific Hydrology Bulletin, 8, 2, 68Google Scholar
Gogineni, S., Chuah, T., Allen, C., Jezek, K. and Moore, R. K. (1998). An improved coherent radar depth sounder. Journal of Glaciology, 44(148), 659–669CrossRefGoogle Scholar
Gold, L. W. (1958). Some observations on the dependence of strain on stress for ice. Canadian Journal of Physics, 36(10), 1265–1275CrossRefGoogle Scholar
Goldthwait, R. P. (1951). Development of end moraines in east-central Baffin Island. Journal of Geology, 59(6), 567–577CrossRefGoogle Scholar
Gow, A. J. and Williamson, T. (1976). Rheological implications of the internal structure and crystal fabrics of the West Antarctic ice sheet as revealed by deep core drilling at Byrd Station. Geological Society of America Bulletin, 87, 1665–16772.0.CO;2>CrossRefGoogle Scholar
Gravenor, C. P. (1955). The origin and significance of prairie mounds. American Journal of Science, 253, 475–481CrossRefGoogle Scholar
Gravenor, C. P. and Kupsch, W. O. (1959). Ice disintegration features in western Canada. Journal of Geology, 67, 48–67CrossRefGoogle Scholar
Griffith, A. A. (1924). Theory of rupture. Proc. First International Congress Applied Mechanics, Delft, 55–63Google Scholar
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. and Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP 2 and GRIP Greenland ice cores. Nature, 366, 552–554CrossRefGoogle Scholar
Grove, J. M. (1988). The Little Ice Age. London: Methuen
Haefeli, R. (1962). The ablation gradient and the retreat of a glacier tongue. In Symposium of Obergurgl, International Association of Scientific Hydrology, Publication 58, 49–59
Hallet, B. (1976a). Deposits formed by subglacial precipitation of CaCO3. Geological Society of America Bulletin, 87(7), 1003–10152.0.CO;2>CrossRefGoogle Scholar
Hallet, B. (1976b). The effect of subglacial chemical processes on sliding. Journal of Glaciology, 17(76), 209–221CrossRefGoogle Scholar
Hallet, B. (1979a). A theoretical model of glacial abrasion. Journal of Glaciology, 23(89), 39–50Google Scholar
Hallet, B. (1979b). Subglacial regelation water film. Journal of Glaciology, 23(89), 321–334CrossRefGoogle Scholar
Hallet, B. (1996). Glacial quarrying: a simple theoretical model. Annals of Glaciology, 22, 1–8CrossRefGoogle Scholar
Hallet, B. and Anderson, R. S. (1980). Detailed glacial geomorphology of a proglacial bedrock area at Castleguard Glacier, Alberta, Canada. Zeitschrift fur Gletscherkunde und Glazialgeologie, 16, 171–184Google Scholar
Hallet, B., Lorrain, R. D. and Souchez, R. A. (1978). The composition of basal ice from a glacier sliding over limestones. Geological Society of America Bulletin, 89(2), 314–3202.0.CO;2>CrossRefGoogle Scholar
Hamilton, W. C. and Ibers, J. A. (1968). Hydrogen Bonding in Solids; Methods of Molecular Structure Determination. New York: W. A. Benjamin
Hanson, B. (1995). A fully three-dimensional finite-element model applied to velocities on Storglaciären, Sweden. Journal of Glaciology, 41(137), 91–102CrossRefGoogle Scholar
Hanson, B. and Hooke, R. LeB. (2000). A model study of the forces involved in glacier calving. Journal of Glaciology, 46(153), 188–194CrossRefGoogle Scholar
Hanson, B., Hooke, R. LeB. and Grace, E. M. Jr. (1998). Short-term velocity and water-pressure measurements down-glacier from a riegel, Storglaciären, Sweden. Journal of Glaciology, 44(147), 359–367CrossRefGoogle Scholar
Harper, J. T., Humphrey, N. F., Pfeffer, W. T., Huzurbazar, S. V., Bahr, D. B. and Welch, B. C. (2001). Spatial variability in the flow of a valley glacier: deformation of a large array of boreholes. Journal of Geophysical Research, 106(B5), 8547–8562CrossRefGoogle Scholar
Harrison, W. D. (1972). Temperature of a temperate glacier. Journal of Glaciology, 11(61), 15–29CrossRefGoogle Scholar
Harrison, W. D., Elsberg, D. H., Echelmeyer, K. A. and Krimmel, R. M. (2001). On the characterization of glacier response by a single time-scale. Journal of Glaciology, 47(159), 659–664CrossRefGoogle Scholar
Hättestrand, C. and Kleman, J. (1999). Ribbed moraine formation. Quaternary Science Reviews, 18, 43–61CrossRefGoogle Scholar
Hausmann, M. R. (1990). Engineering Principles of Ground Modification. New York: McGraw-Hill
Hays, J. D., Imbrie, J. and Shackleton, N. S. (1976). Variations in the Earth's orbit: Pacemaker of the ice ages. Science, 194(4270), 1121–1132CrossRefGoogle ScholarPubMed
Heinrich, H. (1988). Origin and consequences of ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29, 141–152CrossRefGoogle Scholar
Hobbs, P. V. (1974). Ice Physics. New York: Oxford Clarendon Press
Hock, R. and Hooke, R. LeB. (1993). Further tracer studies of internal drainage in the lower part of the ablation area of Storglaciären, Sweden. Geological Society of America Bulletin, 105(4), 537–5462.3.CO;2>CrossRefGoogle Scholar
Hodge, S. M. (1974). Variations in sliding of a temperate glacier. Journal of Glaciology, 13(69), 349–369CrossRefGoogle Scholar
Hodge, S. M., Trabant, D. C., Krimmel, R. M., Heinrichs, T. A., March, R. S. and Joshberger, E. G. (1998). Climate variations and changes in mass balance of three glaciers in western North America. Journal of Climate, 11, 2161–21792.0.CO;2>CrossRefGoogle Scholar
Holmlund, P. (1987). Mass balance of Storglaciären during the 20th century. Geografiska Annaler, 69A(3–4), 439–447Google Scholar
Holmlund, P. (1988). Internal geometry and evolution of moulins, Storglaciären, Sweden. Journal of Glaciology, 34(117), 242–248CrossRefGoogle Scholar
Hong, S., Candelone, J-P., Patterson, C. C. and Boutron, C. F. (1994). Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science, 265, 1841–1843CrossRefGoogle ScholarPubMed
Hooke, R. LeB. (1970). Morphology of the ice-sheet margin near Thule, Greenland. Journal of Glaciology, 9(57), 303–324CrossRefGoogle Scholar
Hooke, R. LeB. (1973a). Flow near the margin of the Barnes Ice Cap and the development of ice-cored moraines. Geological Society of America Bulletin, 84(12), 3929–39482.0.CO;2>CrossRefGoogle Scholar
Hooke, R. LeB. (1973b). Structure and flow in the margin of Barnes Ice Cap, Baffin Island, N. W. T., Canada. Journal of Glaciology, 12(66), 423–438CrossRefGoogle Scholar
Hooke, R. LeB. (1976). Pleistocene ice at the base of the Barnes Ice Cap, Baffin Island, N. W. T., Canada. Journal of Glaciology, 17(75), 49–60CrossRefGoogle Scholar
Hooke, R. LeB. (1977). Basal temperatures in polar ice sheets: a qualitative review. Quaternary Research, 7(1), 1–13CrossRefGoogle Scholar
Hooke, R. LeB. (1981). Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Reviews of Geophysics and Space Physics, 19(4), 664–672CrossRefGoogle Scholar
Hooke, R. LeB. (1984). On the role of mechanical energy in maintaining subglacial conduits at atmospheric pressure. Journal of Glaciology, 30(105), 180–187CrossRefGoogle Scholar
Hooke, R. LeB. (1989). Englacial and subglacial hydrology: a qualitative review. Arctic and Alpine Research, 21(3), 221–233CrossRefGoogle Scholar
Hooke, R. LeB. (1991). Positive feedbacks associated with the erosion of glacial cirques and overdeepenings. Geological Society of America Bulletin, 103(8), 1104–11082.3.CO;2>CrossRefGoogle Scholar
Hooke, R. LeB. and Clausen, H. B. (1982). Wisconsin and Holocene δO variations, Barnes Ice Cap, Canada. Geological Society of America Bulletin, 93(8), 784–7892.0.CO;2>CrossRefGoogle Scholar
Hooke, R. LeB. and Elverhøi, A. (1996). Sediment flux from a fjord during glacial periods, Isfjorden, Spitsbergen. Global and Planetary Change, 12, 237–249CrossRefGoogle Scholar
Hooke, R. LeB. and Hanson, B. H. (1986). Borehole deformation experiments, Barnes Ice Cap, Canada. Cold Regions Science and Technology, 12(3), 261–276CrossRefGoogle Scholar
Hooke, R. LeB. and Hudleston, P. J. (1978). Origin of foliation in glaciers. Journal of Glaciology, 20(83), 285–299CrossRefGoogle Scholar
Hooke, R. LeB. and Hudleston, P. J. (1980). Ice fabrics in a vertical flowplane, Barnes Ice Cap, Canada. Journal of Glaciology, 25(92), 195–214CrossRefGoogle Scholar
Hooke, R. LeB. and Hudleston, P. J. (1981). Ice fabrics from a borehole at the top of the South Dome, Barnes Ice Cap, Baffin Island. Geological Society of America Bulletin, 92(5), 274–2812.0.CO;2>CrossRefGoogle Scholar
Hooke, R. LeB. and Iverson, N. R. (1995). Grain size distribution in deforming subglacial tills: role of grain fracture. Geology, 23(1), 57–602.3.CO;2>CrossRefGoogle Scholar
Hooke, R. LeB. and Pohjola, A. (1994). Hydrology of a segment of a glacier situated in an overdeepening, Storglaciären, Sweden. Journal of Glaciology, 40(134), 140–148CrossRefGoogle Scholar
Hooke, R. LeB., Dahlin, B. B. and Kauper, M. T. (1972). Creep of ice containing dispersed fine sand. Journal of Glaciology, 11(63), 327–336CrossRefGoogle Scholar
Hooke, R. LeB., Alexander, E. C. Jr. and Gustafson, R. J. (1980). Temperature profiles in Barnes Ice Cap, Baffin Island, Canada, and heat flux from the subglacial terrane. Canadian Journal of Earth Sciences, 17(9), 1174–1188CrossRefGoogle Scholar
Hooke, R. LeB., Gould, J. E. and Brzozowski, J. (1983). Near-surface temperatures near and below the equilibrium line on polar and subpolar glaciers. Zeitschrift für Gletscherkunde und Glazialgeologie, 19(1), 1–25Google Scholar
Hooke, R. LeB., Johnson, G. W., Brugger, K. A., Hanson, B. and Holdsworth, G. (1987). Changes in mass balance, velocity, and surface profile along a flow line on Barnes Ice Cap, 1970–1984. Canadian Journal of Earth Sciences, 24(8), 1550–1561CrossRefGoogle Scholar
Hooke, R. LeB., Calla, P., Holmlund, P., Nilsson, M. and Stroeven, A. (1989). A three-year record of seasonal variations in surface velocity, Storglaciären, Sweden. Journal of Glaciology, 35(120), 235–247CrossRefGoogle Scholar
Hooke, R. LeB., Laumann, T. and Kohler, J. (1990). Subglacial water pressures and the shape of subglacial conduits. Journal of Glaciology, 36(122), 67–71CrossRefGoogle Scholar
Hooke, R. LeB., Pohjola, V., Jansson, P. and Kohler, J. (1992). Intra-seasonal changes in deformation profiles revealed by borehole studies, Storglaciären, Sweden. Journal of Glaciology, 38(130), 348–358CrossRefGoogle Scholar
Hooke, R. LeB., Hanson, B., Iverson, N. R., Jansson, P. and Fischer, U. H. (1997). Rheology of till beneath Storglaciären, Sweden. Journal of Glaciology, 43(143), 172–179CrossRefGoogle Scholar
Hooyer, T. S. and Iverson, N. R. (2002). Flow mechanism of the Des Moines Lobe of the Laurentide ice sheet. Journal of Glaciology, 48(163), 575–586CrossRefGoogle Scholar
Houghton, J. T., et al. (2001). Climate Change 2001: The Scientific Basis. Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, 881 pages
Howell, D., Behringer, R. P. and Veje, C. (1999). Stress fluctuations in a 2D granular Couette experiment: a continuous transition. Physical Review Letters, 82(96), 5241–5244CrossRefGoogle Scholar
Huang, M., Ohtomo, M. and Wakahama, G. (1985). Transition in preferred orientation of polycrystalline ice from repeated recrystallization. Annals of Glaciology, 6, 263–264Google Scholar
Hudleston, P. J. (1976). Recumbent folding in the base of the Barnes Ice Cap, Baffin Island, Northwest Territories, Canada. Geological Society of America Bulletin, 87(12), 1678–16832.0.CO;2>CrossRefGoogle Scholar
Hudleston, P. J. and Hooke, R. LeB. (1980). Cumulative deformation in the Barnes Ice Cap and implications for the development of foliation. Tectonophysics, 66, 127–146CrossRefGoogle Scholar
Hughes, T. (1987). Ice dynamics and deglaciation models when ice sheets collapsed, In Ruddiman, W. F. and Wright, H. E., Jr. (eds.) North American and adjacent oceans during the last deglaciation. The Geology of North America K-3. Boulder Colorado: Geological Society of America
Hughes, T. (1992). Abrupt climate change related to unstable ice-sheet dynamics: toward a new paradigm. Palaeogeography, Palaeoclimatology, Palaeoecology, 97, 203–234CrossRefGoogle Scholar
Hulbe, C., Joughin, I., Morse, D. and Bindschadler, R. A. (2000). Tributaries to West Antarctic ice streams: characteristics deduced from numerical modelling of ice flow. Annals of Glaciology, 31, 184–190CrossRefGoogle Scholar
Hull, D. (1969). Introduction to Dislocations. New York: Pergamon Press
Humphrey, N. F. and Raymond, C. F. (1994). Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982–83. Journal of Glaciology, 40(136), 539–552CrossRefGoogle Scholar
Humphrey, N. F., Kamb, B., Fahnestock, M. and Engelhardt, H. (1993). Characteristics of the bed of the lower Columbia Glacier, Alaska: Journal of Geophysical Research, 98(B1), 837–846CrossRefGoogle Scholar
Hutter, K. (1981). The effect of longitudinal strain on the shear stress of an ice sheet. In defense of using stretched coordinates. Journal of Glaciology, 27(95), 39–56CrossRefGoogle Scholar
Hutter, K. (1983). Theoretical Glaciology. Tokyo, Japan: D. Reidel Publishing, 510 pagesCrossRef
Huybrechts, Ph.). (1990). A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Climate Dynamics, 5, 79–92CrossRefGoogle Scholar
Huybrechts, Ph. (2002). Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews, 21(1–3), 203–231CrossRefGoogle Scholar
Huybrechts, Ph. and T'Siobbel, S. (1995). Thermomechanical modeling of northern hemisphere ice sheets with a two-level mass balance parameterization. Annals of Glaciology, 21, 111–117CrossRefGoogle Scholar
Huybrechts, Ph., Payne, T. and The EISMINT Intercomparison Group. (1996). The EISMINT benchmarks for testing ice-sheet models. Annals of Glaciology, 23, 1–12CrossRefGoogle Scholar
Huybrechts, Ph., Steinhage, D., Wilhelms, F. and Bamber, J. (2000). Balance velocities and measured properties of the Antarctic ice sheet from a new compilation of gridded data for modelling. Annals of Glaciology, 30, 52–60CrossRefGoogle Scholar
Iken, A. (1981). The effect of subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model. Journal of Glaciology, 27(97), 407–421CrossRefGoogle Scholar
Iken, A. and Bindschadler, R. A. (1986). Combined measurements of subglacial water pressure and surface velocity of Findelen-gletscher, Switzerland: conclusions about the drainage system and sliding mechanism. Journal of Glaciology, 32(110), 101–119CrossRefGoogle Scholar
Iken, A. and Truffer, M. (1997). The relationship between subglacial water pressure and velocity of Findelengletscher during its advance and retreat. Journal of Glaciology, 43(144), 328–338CrossRefGoogle Scholar
Irons, B. M. and Shrive, N. G. (1987). Numerical Methods in Engineering and Applied Science: Numbers are Fun. New York: John Wiley & Sons, 248 pages
Iverson, N. (1989). Theoretical and experimental analyses of glacial abrasion and quarrying. Ph.D. thesis, University of Minnesota, Minneapolis, 233 pages
Iverson, N. (1991). Potential effects of subglacial water-pressure fluctuations on quarrying. Journal of Glaciology, 37(125), 27–36CrossRefGoogle Scholar
Iverson, N. (1993). Regelation of ice through debris at glacier beds: Implications for sediment transport. Geology, 21(6), 559–5622.3.CO;2>CrossRefGoogle Scholar
Iverson, N. and Iverson, R. M. (2001). Distributed shear of subglacial till due to Coulomb slip. Journal of Glaciology, 47(158), 481–488CrossRefGoogle Scholar
Iverson, N., Hanson, B., Hooke, R. LeB. and Jansson, P. (1995). Flow mechanics of glaciers on soft beds. Science, 267(5194), 80–81CrossRefGoogle Scholar
Iverson, N., Hooyer, T. S. and Hooke, R. LeB. (1996). A laboratory study of sediment deformation: stress heterogeneity and grain-size evolution. Annals of Glaciology, 22, 167–175CrossRefGoogle Scholar
Iverson, N., Hooyer, T. S. and Baker, R. W. (1998). Ring-shear studies of till deformation: Coulomb-plastic behavior and distributed strain in glacier beds. Journal of Glaciology, 44(148), 634–642CrossRefGoogle Scholar
Iverson, N., Cohen, D., Hooyer, T. S., Fischer, U. H., Jackson, M., Moore, P. L., Lappegard, G. and Kohler, J. (2003). Effects of basal debris on glacier flow. Science, 301, 81–84CrossRefGoogle ScholarPubMed
Jacka, T. H. (1984). Laboratory studies on the relationship between ice crystal size and flow rate. Cold Regions Science and Technology, 10(1), 31–42CrossRefGoogle Scholar
Jacka, T. H. and Maccagnan, M. (1984). Ice crystallographic and strain rate changes with strain in compression and extension. Cold Regions Science and Technology, 8(3), 269–286CrossRefGoogle Scholar
Jacobel, R. W., Scambos, T. A., Raymond, C. F. and Gades, A. M. (1996). Changes in the configuration of ice stream flow from the West Antarctic Ice Sheet. Journal of Geophysical Research, 101(B3), 5499–5504CrossRefGoogle Scholar
Jansson, E. P. (1995). Water pressure and basal sliding on Storglaciären, northern Sweden. Journal of Glaciology, 41(138), 232–240CrossRefGoogle Scholar
Jezek, K. C., Alley, R. B. and Thomas, R. H. (1985). Rheology of glacier ice. Science, 227(4692), 1335–1337CrossRefGoogle ScholarPubMed
Jóhannesson, T., Raymond, C. F. and Waddington, E. (1989). Time-scale for adjustment of glaciers to changes in mass balance. Journal of Glaciology, 35(121), 355–369CrossRefGoogle Scholar
Johnsen, S. J., Dansgaard, W., Clausen, H. B. and Langway, C. C. Jr. (1972). Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature, 235(5339), 429–434CrossRefGoogle Scholar
Johnson, A. (1960). Variation in surface elevation of the Nisqually glacier Mt. Rainier, Washington. International Association of Scientific Hydrology Bulletin, 19, 54–60CrossRefGoogle Scholar
Johnson, M. D. (1999). Spooner Hills, northwest Wisconsin: High-relief hills carved by subglacial meltwater of the Superior Lobe. In Mickelson, D. M. and Attig, J. W. (eds.) Glacial Processes Past and Present. Boulder, Colorado, Geological Society of America Special Paper 337, 83–92
Johnson, W. and Mellor, P. B. (1962). Plasticity for Mechanical Engineers. London, Princeton: Van Nostrand, Ltd., 412 pages. (There is also a 1973 edition, in which the relevant pages are 44–49.)
Jones, S. J. and Chew, H. A. M. (1983). Effect of sample and grain size on the compressive strength of ice. Annals of Glaciology, 4, 129–132CrossRefGoogle Scholar
Joughin, I., Gray, L., Bindschadler, R., Price, S., Morse, D., Hulbe, C., Mattar, K. and Werner, C. (1999). Tributaries of West Antarctic ice streams revealed by RADARSAT interferometry. Science, 286, 283–286CrossRefGoogle ScholarPubMed
Kamb, B. (1965). Structure of Ice VI. Science, 150(3693), 205–209CrossRefGoogle ScholarPubMed
Kamb, B. (1970). Sliding motion of glaciers: theory and observation. Reviews of Geophysics and Space Physics, 8(4), 673–728CrossRefGoogle Scholar
Kamb, B. (1972). Experimental recrystallization of ice under stress. In Heard, H. C., Borg, I. Y., Carter, N. L. and Raleigh, C. B. (eds.) Flow and Fracture of Rocks. American Geophysical Union Geophysical Monograph 16, 211–241
Kamb, B. (1987). Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. Journal of Geophysical Research, 92(B9), 9083–9100CrossRefGoogle Scholar
Kamb, B. (1991). Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion. Journal of Geophysical Research, 96(B10), 16, 585–16, 595CrossRefGoogle Scholar
Kamb, B. (2001). Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. In Alley, R. B. and Bindschadler, R. A. (eds.) The West Antarctic ice sheet: behavior and environment. Antarctic Research Series, 77, 157–201CrossRef
Kamb, B. and LaChapelle, E. (1964). Direct observation of the mechanism of glacier sliding over bedrock. Journal of Glaciology, 5(38), 159–172CrossRefGoogle Scholar
Kamb, B., Raymond, C. F., Harrison, W. D., Engelhardt, H., Echelmeyer, K. A., Humphrey, N., Brugman, M. M. and Pfeffer, T. (1985). Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science, 227(4686), 469–479CrossRefGoogle ScholarPubMed
Kanninen, M. F. and Popelar, C. H. (1985). Advanced Fracture Mechanics. New York: Oxford University Press. 563 pages
Kaspari, S., Mayewski, P. A., Dixon, D. A., Spikes, V. B., Sneed, S. B., Handley, M. J. and Hamilton, G. S. (2004). Climate variability in West Antarctica derived from annual accumulation rate records from ITASE firn/ice cores. Annals of Glaciology (in press)CrossRefGoogle Scholar
Kell, G. S. (1967). Precise representation of volume properties of water at one atmosphere, Journal of Chemical and Engineering Data, 12, 66–69CrossRefGoogle Scholar
Kendall, K. (1978). The impossibility of comminuting small particles by compression. Nature, 272, 710–711CrossRefGoogle Scholar
Kenneally, J. (2003). Crevassing and calving of glacial ice. Ph. D. thesis, University of Maine, Orono. 145 pages
Ketcham, W. M. and Hobbs, P. V. (1969). An experimental determination of the surface energies of ice. Philosophical Magazine, 8th Series, 19(162), 1161–1173CrossRefGoogle Scholar
Kinosita, S. (1962). Transformation of snow into ice by plastic compression. Low Temperature Science, A20, 131–157Google Scholar
Kleman, J. and Borgström, I. (1994). Glacial landforms indicative of a partly frozen bed. Journal of Glaciology, 40(135), 255–264CrossRefGoogle Scholar
Kleman, J. and Hättestrand, C. (1999). Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum. Nature, 402, 63–66CrossRefGoogle Scholar
Krabill, W., Abdalati, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R., Wright, W. and Yungel, J. (2000). Greenland ice sheet: high-elevation balance and peripheral thinning. Science 289, 428–430CrossRefGoogle ScholarPubMed
Kuhn, M. (1981). Climate and glaciers. International Association of Scientific Hydrology, Publication 131, 3–20Google Scholar
Kuhn, M. (1989). The response of the equilibrium line altitude to climate fluctuations: Theory and observations. In Oerlemans, J. (ed.), Glacier Fluctuations and Climatic Change. Dordrecht: Kluwer Academic Publishers, pp. 407–417CrossRef
Lambe, T. W. and Whitman, R. V. (1969). Soil Mechanics. New York: John Wiley, 553 pages
Lawn, B. (1993). Fracture of Brittle Solids 2nd edition. Cambridge: Cambridge University Press, 378 pages
Lawson, D. E., Strasser, J. C., Evenson, E. B., Alley, R. B., Larson, G. J. and Arcone, S. A. (1998). Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: I. Field evidence. Journal of Glaciology, 44(148), 547–562CrossRefGoogle Scholar
Leonard, K. C. and Fountain, A. G. (2003). Map-based methods for estimating glacier equilibrium line altitudes. Journal of Glaciology, 49(166), 329–336CrossRefGoogle Scholar
Leonard, K. C., Bell, R. E. and Studinger, M. (2003). (Abstract.) The influence of subglacial topography on accumulation rates at Lake Vostok. American Geophysical Union Annual Meeting, December 7–12, 2003Google Scholar
Li, J., Jacka, T. H. and Budd, W. F. (1996). Deformation rates in combined compression and shear for ice which is initially isotropic and after the development of strong anisotropy. Annals of Glaciology, 23, 247–252Google Scholar
Lighthill, M. J. and Whitham, G. B. (1955). On kinematic waves, I. Flood movement in long rivers. Proceedings of the Royal Society, London, A229(1178), 281–316CrossRefGoogle Scholar
Liu, C.-H., Nagel, S. R., Schecter, D. A., Coppersmith, S. N., Majumdar, S., Narayan, O. and Witten, T. A. (1995). Force fluctuations in bead packs. Science, 269(5223), 513–515CrossRefGoogle ScholarPubMed
Liu, H., Jezek, K. C. and Li, B. (1999). Development of an Antarctic DEM database by integrating cartographic and remotely sensed data: a GIS approach. Journal of Geophysical Research, 104(B10), 23 199–23 213CrossRefGoogle Scholar
Lliboutry, L. (1964). Traité de Glaciologie, Vol. 1. Paris: Masson and Co.
Lliboutry, L. (1968). General theory of subglacial cavitation and sliding of temperate glaciers. Journal of Glaciology, 7(49), 21–58CrossRefGoogle Scholar
Lliboutry, L. (1970). Ice flow law from ice sheet dynamics. Proceedings of the International Symposium on Antarctic Glaciological Exploration, Hanover, NH, 3–7 September, 1968; International Association of Scientific Hydrology, Publication 86, 216–228
Lliboutry, L. (1971). Permeability, brine content, and temperature of temperate ice. Journal of Glaciology, 10(58), 15–30CrossRefGoogle Scholar
Lliboutry, L. (1975). Loi de glissement d'un glacier sans cavitation. Annals of Geophysics, 31(2), 207–226Google Scholar
Lliboutry, L. (1976). Physical processes in temperate glaciers. Journal of Glaciology, 16(74), 151–158CrossRefGoogle Scholar
Lliboutry, L. (1983). Modifications to the theory of intraglacial waterways for the case of subglacial ones. Journal of Glaciology, 29(102), 216–226CrossRefGoogle Scholar
Loewe, F. (1970). Screen temperatures and 10 m temperatures. Journal of Glaciology, 9(56), 263–268CrossRefGoogle Scholar
MacAyeal, D. R. (1989). Large scale ice flow over a viscous basal sediment: Theory and application to Ice Stream B, Antarctica. Journal of Geophysical Research, 94(B4), 4071–4087CrossRefGoogle Scholar
MacAyeal, D. R. (1993a). A low-order model of the Heinrich event cycle. Paleoceanography, 8(6), 767–773CrossRefGoogle Scholar
MacAyeal, D. R. (1993b). Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography, 8(6), 775–784CrossRefGoogle Scholar
Mandl, G., Jong, L. N. J. and Maltha, A. 1977. Shear zones in granular material – an experimental study of their structure and mechanical genesis. Rock Mechanics, 9(2–3), 95–144CrossRefGoogle Scholar
Mantua, N. J. and Hare, S. R. (2002). The Pacific decadal oscillation. Journal of Oceanography, 58, 35–44CrossRefGoogle Scholar
Marshall, S. J., Tarasov, L., Clarke, G. K. C. and Peltier, W. R. (2000). Glaciological reconstruction of the Laurentide Ice Sheet: physical processes and modeling challenges. Canadian Journal of Earth Sciences, 37, 769–793CrossRefGoogle Scholar
Martinerie, P., Raynaud, D., Etheridge, D. M., Barnola, J. M. and Mazaudier, D. (1992). Physical and climatic parameters which influence the air content in polar ice. Earth and Planetary Science Letters, 112(1/4), 1–13CrossRefGoogle Scholar
Matsuda, M. and Wakahama, G. (1978). Crystallographic structure of polycrystalline ice. Journal of Glaciology, 21(85), 607–620CrossRefGoogle Scholar
Matthews, J. B. (1981). The seasonal circulation of Glacier Bay, Alaska fjord system. Estuarine, Coastal, and Shelf Science, 12, 679–700CrossRefGoogle Scholar
Matthews, W. H. (1974). Surface profiles of the Laurentide ice sheet in its marginal areas. Journal of Glaciology, 13(67), 37–43CrossRefGoogle Scholar
Maxwell, K. D. (2002). Pacific decadal oscillation and Arizona precipitation (available on-line from http://www.wrh.noaa.gov/wrhq/02TAs/0208/)
Meier, M. F. (1961). Mass budget of South Cascade Glacier. 1957–1960. U.S. Geological Survey Professional Paper 424-B, pp. 206–211Google Scholar
Meier, M. F. (1962). Proposed definitions for glacier mass balance terms. Journal of Glaciology, 4(33), 252–263CrossRefGoogle Scholar
Meier, M. F. (1965). Glaciers and climate. In Wright Jr., H. E. and Frey, D. G. (eds.). The Quaternary of the United States. Princeton: Princeton University Press, pp. 795–805CrossRef
Meier, M. F., Rasmussen, L. A., Krimmel, R. M., Olsen, R. W. and Frank, D. (1985). Photogrametric determination of surface altitude, terminus position, and ice velocity of Columbia Glacier, Alaska. U.S. Geological Survey Professional Paper 1258-F, pp. F1–F40Google Scholar
Meier, M. F., Lundstrom, S., Stone, D., Kamb, B., Engelhardt, H., Humphrey, N., Dunlap, W. W., Fahnestock, M., Krimmel, R. M. and Rasmussen, L. A. (1994). Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier: 1. Observations. Journal of Geophysical Research, 99(B8), 15, 219–215, 229CrossRefGoogle Scholar
Mellor, M. and Testa, R. (1969). Effect of temperature on the creep of ice. Journal of Glaciology, 8(52), 131–145CrossRefGoogle Scholar
Menzies, J. and Shilts, W. W. (1996). Subglacial environments. In Menzies, J. (ed.) Past Glacial Environments – Sediments, Forms, and Techniques. Glacial Environments, Vol. 2. Oxford: Butterworth-Heinemann, pp. 15–136
Mickelson, D. M. (1987). Central Lowlands. In Graf, W. L., (ed.) Geomorphic Systems of North America. Boulder, CO: Geological Society of America, Centennial Special Volume 2, pp. 111–118CrossRef
Mitchell, J. K. (1993). Fundamentals of Soil Behavior (2nd edition). New York: John Wiley
Mitchell, J. K., Campanella, R. G. and Singh, A. (1968). Soil creep as a rate process. Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers, 94(SM1), 231–253Google Scholar
Montagnat, M. and Duval, P. (2000). Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization. Earth and Planetary Science Letters, 183, 179–186CrossRefGoogle Scholar
Mooers, H. D. (1989). On the formation of tunnel valleys of the Superior Lobe, Central Minnesota. Quaternary Research, 32, 24–35CrossRefGoogle Scholar
Mooers, H. D. (1990a). A glacial-process model: the role of spatial and temporal variations in glacier thermal regime. Geological Society of America Bulletin, 102(2), 243–2512.3.CO;2>CrossRefGoogle Scholar
Mooers, H. D. (1990b). Ice marginal thrusting of drift and bedrock: thermal regime subglacial aquifers, and glacial surges. Canadian Journal of Earth Sciences, 27(6), 849–862CrossRefGoogle Scholar
Moran, S. R., Clayton, L., Hooke, R. LeB., Fenton, M. M. and Andriashek, L. D. (1980). Glacier bed landforms of the prairie region of North America. Journal of Glaciology, 25(93), 457–476CrossRefGoogle Scholar
Morse, D. L., Waddington, E. D. and Steig, E. J. (1998). Ice age storm trajectories from radar stratigraphy at Taylor Dome, Antarctica. Geophysical Research Letters, 25(17), 3383–3386CrossRefGoogle Scholar
Müller, F. (1962). Zonation in the accumulation area of the glaciers of Axel Heiberg Island, N. W. T., Canada. Journal of Glaciology, 4(33), 302–318CrossRefGoogle Scholar
Murozumi, M., Chow, T. J. and Patterson, C. (1969). Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochimica et Cosmochimica Acta, 33, 1247–1294CrossRefGoogle Scholar
Nadai, A. (1950). Theory of Flow and Fracture of Solids, Volume 1, 2nd edition. New York: McGraw Hill, 572 pages
Nakase, A. and Kamei, T. (1986). Influence of strain rate on undrained shear strength characteristics of Ko-consolidated cohesive soils. Soils and Foundations, 26, 85–95CrossRefGoogle Scholar
Nereson, N. A., Raymond, C. F., Waddington, E. D. and Jacobel, R. W. (1998). Migration of the Siple Dome ice divide, West Antarctica. Journal of Glaciology, 44(148), 643–652CrossRefGoogle Scholar
Ng, F. S. L. (1999). A mathematical model of wide subglacial water drainage channels. In Wettlaufer, J. S., Dash, J. G. and Untersteiner, N. (eds.) Ice Physics and the Natural Environment. NATO ASI Series I: Global Environmental Change 56. Berlin: Springer-Verlag, 325–327
Ng, F. S. L. (2000a). Canals under sediment-based ice sheets. Annals of Glaciology, 30, 146–152CrossRefGoogle Scholar
Ng, F. S. L. (2000b). Coupled ice—till deformation near subglacial channels and cavities. Journal of Glaciology, 46(155), 580–598CrossRefGoogle Scholar
Ng, F. S. L. and Hallet, B. (2002). Patterning mechanisms in subglacial carbonate dissolution and deposition. Journal of Glaciology, 48(162), 386–400CrossRefGoogle Scholar
NOAA (2003). http://www.cpc.ncep.noaa.gov/products/winter_outlook/naoschem_both.gif
Nye, J. F. (1951). The flow of glaciers and ice sheets as a problem in plasticity. Proceedings of the Royal Society, London, A207(1091), 554–572CrossRefGoogle Scholar
Nye, J. F. (1952a). Reply to Mr. Joel E. Fisher's comments. Journal of Glaciology, 2(11), 52–53CrossRefGoogle Scholar
Nye, J. F. (1952b). Mechanics of glacier flow. Journal of Glaciology, 2(12), 82–93CrossRefGoogle Scholar
Nye, J. F. (1953). The flow law of ice from measurements in glacier tunnels, laboratory experiments, and the Jungfraufirn borehole experiment. Proceedings of the Royal Society, London, A219(1139), 477–489CrossRefGoogle Scholar
Nye, J. F. (1957). The distribution of stress and velocity in glaciers and ice sheets. Proceedings of the Royal Society, London, A239(1216), 113–133CrossRefGoogle Scholar
Nye, J. F. (1960). The response of glaciers and ice sheets to seasonal and climatic changes. Proceedings of the Royal Society, London, A256(1287), 559–584CrossRefGoogle Scholar
Nye, J. F. (1963a). On the theory of the advance and retreat of glaciers. Geophysical Journal of the Royal Astronomical Society, 7(4), 432–456Google Scholar
Nye, J. F. (1963b). The response of glaciers to changes in the rate of nourishment and wastage. Proceedings of the Royal Society, London, A257(1360), 87–112CrossRefGoogle Scholar
Nye, J. F. (1965a). The flow of a glacier in a channel of rectangular, elliptic, or parabolic cross section. Journal of Glaciology, 5(41), 661–690CrossRefGoogle Scholar
Nye, J. F. (1965b). A numerical method for inferring the budget history of a glacier from its advance and retreat. Journal of Glaciology, 5(41), 589–607CrossRefGoogle Scholar
Nye, J. F. (1969). The calculation of sliding of ice over a wavy surface using a Newtonian viscous approximation. Proceedings of the Royal Society, London, A311(1506), 445–467CrossRefGoogle Scholar
Nye, J. F. (1973a). The motion of ice past obstacles. In Whalley, E., Jones, S. J. and Gold, L. W. (eds.), The Physics and Chemistry of Ice. Ottawa: Royal Society of Canada, pp. 387–394
Nye, J. F. (1973b). Water at the bed of a glacier. IUGG-AIHS Symposium on the Hydrology of Glaciers, Cambridge, September 7–13, 1969. International Association of Scientific Hydrology, Publication 95, pp. 189–194
Nye, J. F. and Frank, F. C. (1973). Hydrology of intergranular veins in a temperate glacier. IUGG-AIHS Symposium on the Hydrology of Glaciers, Cambridge, September 7–13, 1969. International Association of Scientific Hydrology, Publication 95, pp. 157–161
Nye, J. F. and Mae, S. (1972). The effect of non-hydrostatic stress on intergranular water veins and lenses in ice. Journal of Glaciology, 11(61), 81–101CrossRefGoogle Scholar
Parker, G. (1979). Hydraulic geometry of active gravel rivers. Journal of the Hydraulics Division, American Society of Civil Engineers, 105(HY9), 1185–1201Google Scholar
Paterson, W. S. B. (1971). Temperature measurements in Athabasca Glacier, Alberta, Canada. Journal of Glaciology, 10(60), 339–349CrossRefGoogle Scholar
Paterson, W. S. B. (1977). Secondary and tertiary creep of glacier ice as measured by borehole closure rates. Reviews of Geophysics and Space Physics, 15(1), 47–55CrossRefGoogle Scholar
Paterson, W. S. B. (1991). Why ice-age ice is sometimes “soft”. Cold Regions Science and Technology, 20, 75–98CrossRefGoogle Scholar
Paterson, W. S. B. (1994). Physics of Glaciers (3rd edition). New York: Pergamon Press
Paterson, W. S. B.et al. (1977). An oxygen-isotope climate record from Devon Island ice cap, arctic Canada, Nature, 266, 508–511Google Scholar
Patterson, C. J. (1997). Southern Laurentide ice lobes were created by ice streams: Des Moines lobe in Minnesota, USA. Sedimentary Geology, 111, 247–261CrossRefGoogle Scholar
Patterson, C. J. (2002). Toward a unified explanation for subglacial tunnel formation. Geological Society of America Abstracts with Programs, 36(6), 59–3Google Scholar
Patterson, C. J. and Hooke, R. LeB. (1995). Physical environment of drumlin formation. Journal of Glaciology, 41(137), 30–38CrossRefGoogle Scholar
Payne, A. J., Huybrechts, P., Abe-Ouchi, A., Calov, R., Fastook, J. L., Greve, R., Marshall, S. J., Marsiat, I., Ritz, C., Tarasov, L. and Thomassen, M. P. A. (2000). Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. Journal of Glaciology, 46(153), 227–238CrossRefGoogle Scholar
Philberth, K. and Federer, B. (1971). On the temperature profile and age profile in the central part of cold ice sheets. Journal of Glaciology, 10(58), 3–14CrossRefGoogle Scholar
Pimienta, P. and Duval, P. (1987). Rate controlling processes in the creep of polar glacier ice. Journal de Physique, 48. Colloque C1, Supplement to no. 3, pp. C1-243–C1-248Google Scholar
Ramsay, J. G. and Graham, R. H. (1970). Strain variation in shear belts. Canadian Journal of Earth Sciences, 7, 786–813CrossRefGoogle Scholar
Rasmussen, E. M. (1984). El Niño: The ocean/atmosphere connection. Oceanus, 27(2), 5–12Google Scholar
Rasmussen, L. A. and Meier, M. F. (1982). Continuity equation model of the predicted drastic retreat of Columbia Glacier, Alaska. U.S. Geological Survey Professional Paper 1258-F, pp. A1–A23Google Scholar
Ratcliffe, E. H. (1962). Thermal conductivity of ice: new data on the temperature coefficient. Philosophical Magazine, 8th Series, 7, 1197–1203CrossRefGoogle Scholar
Raymond, C. F. (1971). Flow in a transverse section of Athabasca Glacier, Alberta, Canada. Journal of Glaciology, 10(58), 55–84CrossRefGoogle Scholar
Raymond, C. F. (1973). Inversion of flow measurements for stress and rheological parameters in a valley glacier. Journal of Glaciology, 12(64), 19–44CrossRefGoogle Scholar
Raymond, C. F. (1983). Deformation in the vicinity of ice divides. Journal of Glaciology, 29(103), 357–373CrossRefGoogle Scholar
Raymond, C. F. (2000). Energy balance of ice streams. Journal of Glaciology, 46(155), 665–674CrossRefGoogle Scholar
Raymond, C. F. and Harrison, W. D. (1975). Some observations on the behavior of liquid and gas phases in temperate glacier ice. Journal of Glaciology, 14(71), 213–234CrossRefGoogle Scholar
Raymond, C. F. and Harrison, W. D. (1988). Evolution of Variegated Glacier, U.S.A., prior to its surge. Journal of Glaciology, 34(117), 154–165CrossRefGoogle Scholar
Raymond, C. F., Echelmeyer, K. A., Whillans, I. M., and Doake, C. S. M. (2001). Ice stream shear margins. In The West Antarctic Ice Sheet: Behavior and Environment. Antarctic Research Series, 77, 137–155Google Scholar
Raynaud, D. and Whillans, I. M. (1982). Air content of the Byrd core and past changes in the West Antarctic Ice Sheet. Annals of Glaciology, 3, 269–273CrossRefGoogle Scholar
Raynaud, D., Jouzel, J., Barnola, J.-M., Chappellaz, J., Delmas, R. J. and Lorius, C. (1993). The ice core record of greenhouse gases. Science, 259(5097), 926–934CrossRefGoogle Scholar
Reeh, N. (1968). On the calving of ice from floating glaciers and ice shelves. Journal of Glaciology, 7(50), 215–232CrossRefGoogle Scholar
Retzlaff, R. and Bentley, C. R. (1993). Timing of stagnation of Ice Streams A, West Antarctica, from short-pulse radar studies of buried surface crevasses. Journal of Glaciology, 39(133), 553–561CrossRefGoogle Scholar
Retzlaff, R., Lord, N. and Bentley, C. R. (1993). Airborne-radar studies: Ice streams A, B and C, West Antarctica. Journal of Glaciology, 39(133), 495–506CrossRefGoogle Scholar
Rigsby, G. P. (1958). Effect of hydrostatic pressure on velocity of shear deformation of single ice crystals. Journal of Glaciology, 3(24), 273–278CrossRefGoogle Scholar
Rist, M. A., Sammonds, P. R., Murrell, S. A. F., Meredith, P. G., Doake, C. S. M., Oerter, H. and Matsuki, K. (1999). Experimental and theoretical fracture mechanics applied to Antarctic ice and surface crevassing. Journal of Geophysical Research, 104(B2), 2973–2987CrossRefGoogle Scholar
Robin, G. deQ. (1955). Ice movement and temperature distribution in glaciers and ice sheets. Journal of Glaciology, 2(18), 523–532CrossRefGoogle Scholar
Robin, G. deQ. (1970). Stability of ice sheets as deduced from deep temperature gradients. International Symposium on Antarctic Glaciological Exploration (ISAGE), Hanover, NH, September 3–7, 1968. International Association of Scientific Hydrology, Publication 86, pp. 141–151Google Scholar
Robin, G. deQ. (1976). Is the basal ice of a temperate glacier at the pressure melting point?Journal of Glaciology, 16(74), 183–195CrossRefGoogle Scholar
Röthlisberger, H. (1972). Water pressure in intra- and subglacial channels. Journal of Glaciology, 11(62), 177–204Google Scholar
Röthlisberger, H. and Iken, A. (1981). Plucking as an effect of water-pressure variations at the glacier bed. Annals of Glaciology, 2, 57–62CrossRefGoogle Scholar
Russell-Head, D. S. and Budd, W. F. (1979). Ice-sheet flow properties derived from bore-hole shear measurements combined with ice-core studies. Journal of Glaciology, 24(90), 117–130CrossRefGoogle Scholar
Sammis, C. G., King, G. and Biegel, R. (1987). The kinematics of gouge deformation. Pure and Applied Geophysics, 125(5), 777–812CrossRefGoogle Scholar
Scambos, T. A., Hulbe, C., Fahnestock, M. and Bohlander, J. (2000). The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 46(154), 516–530CrossRefGoogle Scholar
Schytt, V. (1968). Notes on glaciological activities in Kebnekaise, Sweden during 1966 and 1967. Geografiska Annaler, 50, 111–120CrossRefGoogle Scholar
Seaberg, S. Z., Seaberg, J. Z., Hooke, R. LeB. and Wiberg, D. W. (1988). Character of the englacial and subglacial drainage system in the lower part of the ablation area of Storglaciären, Sweden, as revealed by dye-trace studies. Journal of Glaciology, 34(117), 217–227CrossRefGoogle Scholar
Segall, P. (1984). Rate-dependent extensional deformation resulting from crack growth in rock. Journal of Geophysical Research, 89(B6), 4185–4195CrossRefGoogle Scholar
Shabtaie, S. and Bentley, C. R. (1988). Ice-thickness map of the West Antarctic ice streams by radar sounding. Annals of Glaciology, 11, 126–136CrossRefGoogle Scholar
Sharp, M. (1982). Modification of clasts in lodgement tills by glacial erosion. Journal of Glaciology, 28(100), 475–481CrossRefGoogle Scholar
Shreve, R. L. (1972). Movement of water in glaciers. Journal of Glaciology, 11(62), 205–214CrossRefGoogle Scholar
Shreve, R. L. (1984). Glacier sliding at subfreezing temperatures. Journal of Glaciology, 30(106), 341–347CrossRefGoogle Scholar
Shreve, R. L. (1985a). Esker characteristics in terms of glacier physics, Katahdin esker system, Maine. Geological Society of America Bulletin, 96(5), 639–6462.0.CO;2>CrossRefGoogle Scholar
Shreve, R. L. (1985b). Late Wisconsin ice-surface profile calculated from esker paths and types, Katahdin esker system, Maine. Quaternary Research, 23(1), 27–37CrossRefGoogle Scholar
Shreve, R. L. and Sharp, R. P. (1970). Internal deformation and thermal anomalies in lower Blue Glacier, Mount Olympus, Washington, USA. Journal of Glaciology, 9(55), 65–86CrossRefGoogle Scholar
Shumskii, P. A. (1964). Principles of Structural Glaciology. New York: Dover
Sih, G. C. (1973). Handbook of Stress-Intensity Factors; Stress-Intensity Factor Solutions and Formulas for Reference. Bethlehem, PA: Institute of Fracture and Solid Mechanics, Leigh University
Skempton, A. W. (1985). Residual strength of clays in landslides, folded strata, and the laboratory. Géotechnique, 25(1), 3–18CrossRefGoogle Scholar
Sokolnikoff, I. S. and Redheffer, R. M. (1958). Mathematics of Physics and Modern Engineering. New York: McGraw Hill, 810 pages
Sommerfeld, R. and LaChapelle, E. (1970). The classification of snow metamorphism. Journal of Glaciology, 9(55), 3–17CrossRefGoogle Scholar
Souchez, R. A. and Lorrain, R. D. (1978). Origin of the basal ice layer from Alpine glaciers indicated by its chemistry. Journal of Glaciology, 20(83), 319–328CrossRefGoogle Scholar
Strang, G. and Fix, G. J. (1973). An Analysis of the Finite-Element Method. New York: Prentice Hall, 306 pages
Stone, G. H. (1899). The Glacial Gravels of Maine and their Associated Deposits. U.S. Geological Survey Monograph 34, 499 pages
Taylor, L. D. (1963). Structure and fabric on the Burroughs Glacier, south-east Alaska. Journal of Glaciology, 4(36), 731–752CrossRefGoogle Scholar
Tarasov, L. and Peltier, W. R. (1999). Impact of thermomechanical ice sheet coupling on a model of the 100 kyr ice age cycle. Journal of Geophysical Research, 105(D4), 9517–9545CrossRefGoogle Scholar
Thomas, R. H. (1973a). The creep of ice shelves: theory. Journal of Glaciology, 12(64), 45–53CrossRefGoogle Scholar
Thomas, R. H. (1973b). The creep of ice shelves: Interpretation of observed behavior. Journal of Glaciology, 12(64), 55–70CrossRefGoogle Scholar
Thomas, R. H., Akins, T., Csatho, B., Fahnestock, M., Gogineni, P., Kim, C. and Sonntag, J. (2000). Mass balance of the Greenland ice sheet at high elevations. Science, 289, 426–428CrossRefGoogle ScholarPubMed
Thompson, L. G., Mosley-Thompson, E., Dansgaard, W. and Grootes, P. M. (1986). The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya Ice Cap. Science, 234(4774), 361–364CrossRefGoogle ScholarPubMed
Tresca, M. H. (1864). Mémoire sur l'écoulement des corps solides soumis à de fortes pressions. Comptes Rendus des Séances de l'Academie des Sciences, Paris, 59, 754–758Google Scholar
Truffer, M., Harrison, W. D. and Echelmeyer, K. A. (2000). Glacier motion dominated by processes deep in underlying till. Journal of Glaciology, 46(153), 213–221CrossRefGoogle Scholar
Truffer, M., Echelmeyer, K. A. and Harrison, W. D. (2001). Implications of till deformation on glacier dynamics. Journal of Glaciology, 47(156), 123–134CrossRefGoogle Scholar
Tulaczyk, S. (1999). Ice sliding over weak, fine-grained tills: Dependence of ice-till interactions on till granulometry. In Mickelson, D. M. and Attig, J. W. (eds.) Glacial Processes Past and Present. Boulder, Colorado: Geological Society of America Special Paper 337, pp. 159–177CrossRef
Tulaczyk, S., Kamb, B., Scherer, R. and Engelhardt, H. (1998). Sedimentary processes at the base of a West Antarctic ice stream: constraints from textural and compositional properties of subglacial debris. Journal of Sedimentary Research, 68, 487–496CrossRefGoogle Scholar
Tulaczyk, S., Kamb, W. B. and Engelhardt, H. F. (2000a). Basal mechanics of Ice Stream B, West Antarctica 1. Till mechanics. Journal of Geophysical Research, 105(B1), 463–481CrossRefGoogle Scholar
Tulaczyk, S., Kamb, W. B. and Engelhardt, H. F. (2000b). Basal mechanics of Ice Stream B, West Antarctica 2. Undrained plastic bed model. Journal of Geophysical Research, 105(B1), 483–494CrossRefGoogle Scholar
Tulaczyk, S., Kamb, W. B. and Engelhardt, H. F. (2001a). Estimates of effective stress beneath a modern West Antarctic ice stream from till preconsolidation and void ratio. Boreas, 30, 101–114CrossRefGoogle Scholar
Tulaczyk, S., Scherer, R. P. and Clark, C. D. (2001b). A ploughing model for the origin of weak tills beneath ice streams: a qualitative treatment. Quaternary International, 86, 59–70CrossRefGoogle Scholar
Ussing, N. V. (1903). On Jyllands hedesletter og teorierne om deres dannelse. [On Jyllands meltwater outwash plains and theories of their origin.]Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger, 2, 99–165Google Scholar
Vallon, M., Petit, J.-R. and Fabre, B. (1976). Study of an ice core to bedrock in the accumulation zone of an alpine glacier. Journal of Glaciology, 17(75), 13–28CrossRefGoogle Scholar
Van Beaver, H. G. (1971). The significance of the distribution of clasts within the Great Pond esker and adjacent till. MS thesis, University of Maine, Orono, 61 pages
Veen, C. J. (1996). Tidewater calving. Journal of Glaciology, 42(141), 375–385CrossRefGoogle Scholar
Veen, C. J. (1998). Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Regions Science and Technology, 27, 31–47CrossRefGoogle Scholar
Veen, C. J. (2002). Calving glaciers. Progress in Physical Geography, 26(1), 96–122CrossRefGoogle Scholar
Veen, C. J. and Whillans, I. M. (1989). Force budget: I. Theory and numerical methods. Journal of Glaciology, 35(119), 53–60CrossRefGoogle Scholar
Veen, C. J. and Whillans, I. M. (1994). Development of fabric in ice. Cold Regions Science and Technology, 22, 171–195CrossRefGoogle Scholar
Wal, R. S. W. and Oerlemans, J. (1995). Response of valley glaciers to climatic change and kinematic waves: a study with a numerical ice flow model. Journal of Glaciology, 41(137), 142–152Google Scholar
Vaughan, D. G. (1993). Relating the occurrence of crevasses to surface strain rates. Journal of Glaciology, 39(132), 255–266CrossRefGoogle Scholar
Waite, A. H. and Schmidt, S. J. (1961). Gross errors in height indication from pulsed radar altimeters operating over thick ice or snow. Institute of Radio Engineers International Convention Record, 5, 38–53Google Scholar
Walder, J. S. (1982). Stability of sheet flow of water beneath temperate glaciers and implications for glacier surging. Journal of Glaciology, 28(99), 273–293CrossRefGoogle Scholar
Walder, J. S. and Fowler, A. (1994). Channelized subglacial drainage over a deformable bed. Journal of Glaciology, 40(134), 3–15CrossRefGoogle Scholar
Walder, J. S. and Hallet, B. (1979). Geometry of former subglacial water channels and cavities. Journal of Glaciology, 23(89), 335–346CrossRefGoogle Scholar
Walters, R. and Meier, M. F. (1989). Variability of Glacier Mass Balances in Western North America. American Geophysical Union, Geophysical Monograph 55, pp. 365–374CrossRef
Walters, R. A., Joshberger, E. G. and Driedger, C. L. (1988). Columbia Bay, Alaska: an “upside down” estuary. Estuarine, Coastal, and Shelf Science, 26, 607–617CrossRefGoogle Scholar
Warren, C. R., Glasser, N. F., Harrison, S., Winchester, V., Kerr, A. and Rivera, A. (1995). Characteristics of tide-water calving at Glaciar San Rafael, Chile. Journal of Glaciology, 41(138), 273–289CrossRefGoogle Scholar
Weertman, J. (1957a). On sliding of glaciers. Journal of Glaciology, 3(21), 33–38CrossRefGoogle Scholar
Weertman, J. (1957b). Deformation of floating ice shelves. Journal of Glaciology, 3(21), 38–42CrossRefGoogle Scholar
Weertman, J. (1964). Glacier sliding. Journal of Glaciology, 5(39), 287–303CrossRefGoogle Scholar
Weertman, J. (1972). General theory of water flow at the base of a glacier or ice sheet. Reviews of Geophysics and Space Physics, 10(1), 287–333CrossRefGoogle Scholar
Weertman, J. (1973). Can a water-filled crevasse reach the bottom surface of a glacier?International Association of Scientific Hydrology Publication 95, 139–145Google Scholar
Weertman, J. (1983). Creep deformation of ice. Annual Reviews of Earth and Planetary Science, 11, 215–240CrossRefGoogle Scholar
Weertman, J. and Birchfield, G. E. (1983). Stability of sheet water flow under a glacier. Journal of Glaciology, 29(103), 374–382CrossRefGoogle Scholar
Whillans, I. M. (1977). The equation of continuity and its application to the ice sheet near “Byrd” Station, Antarctica. Journal of Glaciology, 18(80), 359–371CrossRefGoogle Scholar
Whillans, I. M. and Tseng, Y.-H. (1995). Automatic tracking of crevasses on satellite images. Cold Regions Science and Technology, 23(2), 201–214CrossRefGoogle Scholar
Whillans, I. M. and Veen, C. J. 1993. New and improved determinations of velocity of Ice Streams B and C, West Antarctica. Journal of Glaciology, 39(133), 483–490CrossRefGoogle Scholar
WISC (2003). http://uwamrc.ssec.wisc.edu/amrc/iceberg.html
Wright, H. E., Jr. (1973). Tunnel valleys, glacial surges and subglacial hydrology of the Superior Lobe, Minnesota. In Black, R. F., Goldthwait, R. P. and Willman, G. B. (eds.) The Wisconsin Stage, Boulder, Colorado. Geological Society of America Memoir 136, 251–276CrossRef
Yarnal, B. (1984). Relationships between synoptic-scale atmospheric circulation and glacier mass balance in south-western Canada during the International Hydrological Decade. 1965–74. Journal of Glaciology, 30(105), 188–198CrossRefGoogle Scholar
Zwally, H. J. and Giovinetto, M. B. (2000). Spatial distribution of net surface mass balance on Greenland. Annals of Glaciology, 31, 126–132CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Roger LeB. Hooke, University of Maine, Orono
  • Book: Principles of Glacier Mechanics
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614231.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Roger LeB. Hooke, University of Maine, Orono
  • Book: Principles of Glacier Mechanics
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614231.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Roger LeB. Hooke, University of Maine, Orono
  • Book: Principles of Glacier Mechanics
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614231.020
Available formats
×