Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-09T09:28:15.994Z Has data issue: false hasContentIssue false

10 - Numerical Models of Three-dimensional Convection

Published online by Cambridge University Press:  15 December 2009

Gerald Schubert
Affiliation:
University of California, Los Angeles
Donald L. Turcotte
Affiliation:
Cornell University, New York
Peter Olson
Affiliation:
The Johns Hopkins University
Get access

Summary

Introduction

Numerical models of convection are solutions to the equations of continuity, motion, temperature and state obtained through a variety of approaches including finite difference, finite element, finite volume, Galerkin and spectral-transform techniques. Early numerical models of mantle convection were two dimensional, either planar or axisymmetric (e.g., Richter, 1973; Moore and Weiss, 1973; Houston and De Bremaecker, 1975; Parmentier and Turcotte, 1978; Lux et al., 1979; Schubert and Zebib, 1980). As discussed in Chapter 9, two-dimensional models provide insights into mantle convection and are useful to explore complex and nonlinear effects of material behavior. However, they cannot simulate the actual style of mantle convection, which is fully three dimensional. The main features of mantle convection, linear slabs, quasi-cylindrical plumes, and toroidal motion are fundamentally three dimensional in nature. In addition, two-dimensional modes of convection are often unstable to three-dimensional disturbances even at relatively low Rayleigh number (Busse, 1967; Richter, 1978; Travis et al., 1990a). Three-dimensional numerical models of thermal convection in rectangular (Cserepes et al., 1988; Houseman, 1988; Travis et al., 1990a, b; Cserepes and Christensen, 1990; Christensen and Harder, 1991; Ogawa et al., 1991) and spherical (Baumgardner, 1985, 1988; Machetel et al., 1986; Glatzmaier, 1988; Glatzmaier et al., 1990; Bercovici et al., 1989a, b, c, 1991, 1992; Schubert et al., 1990) geometries began to appear in the late 1980s and provided a more realistic picture of the form of convection in the mantle. At present, three-dimensional numerical models of mantle convection are widely carried out and ever-increasing computational power permits inclusion of increasingly realistic material properties and behavior into the models.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×