Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T06:32:11.484Z Has data issue: false hasContentIssue false

7 - Body size and trophic cascades in lakes

Published online by Cambridge University Press:  02 December 2009

J. Iwan Jones
Affiliation:
Centre for Ecology and Hydrology UK
Erik Jeppesen
Affiliation:
National Environmental Research Institute; University of Aarhus Denmark
Alan G. Hildrew
Affiliation:
Queen Mary University of London
David G. Raffaelli
Affiliation:
University of York
Ronni Edmonds-Brown
Affiliation:
University of Hertfordshire
Get access

Summary

Introduction

Since its first appearance (Hairston, Smith & Slobodkin, 1960), the hypothesis that predation can structure communities has courted controversy (Shapiro, Lamarra & Lynch, 1975; Strong, 1992; McCann, Hastings & Strong, 1998). Nearly 50 years later there is still ongoing debate over the importance of predation relative to other factors limiting the growth of populations (Pace et al., 1999; Holt, 2000; Polis et al., 2000; Power, 2000), and the conditions that cause the effect of predation to cascade through the community (Polis & Strong, 1996; Schmitz, Krivan & Ovadia, 2004; Borer et al., 2005; Vander Zanden, Essington & Vadeboncoeur, 2005). With the discovery of predator impacts on the structure and dynamics of a diversity of real communities (Paine, 1980; Power, Matthews & Stewart, 1985; Carpenter & Kitchell, 1993), it became apparent that higher trophic levels could affect the biomass and dynamics of not only their prey, but of their prey's prey and, hence, the whole community. Earlier it was assumed that communities were typically pyramidal in structure, with declining biomass in each successive trophic level, and the dynamics of each trophic level dependent upon those of their prey and ultimately the primary producers/basal resources (Whittaker, 1961). It is now clear from habitats as diverse as Californian islands (Roemer, Donlan & Courchamp, 2002), the forests of Yellowstone Park (Ripple & Beschta, 2004) and the cod banks of the North Atlantic (Worm & Myers, 2003; Frank et al. 2005) that this assumption is not correct, such that nowadays the predictions of the trophic cascade influence how we manage our natural environment (Scheffer, 1998).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belgrano, A., Scharler, U. M., Dunne, J. & Ulanowicz, R. E. eds. (2005). Aquatic Food Webs: An Ecosystem Approach. Oxford: Oxford University Press.CrossRefGoogle Scholar
Borer, E. T., Seabloom, E. W., Shurin, J. B.et al. (2005). What determines the strength of a trophic cascade? Ecology, 86, 528–537.CrossRefGoogle Scholar
Brodersen, K. P. & Anderson, N. J. (2002). Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology, 47, 1137–1157.CrossRefGoogle Scholar
Carpenter, S. R. & Kitchell, J. F. (1993). The Trophic Cascade in Lakes. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
Carpenter, S. R. & Leavitt, P. R. (1991). Temporal variation in a paleolimnological record arising from a trophic cascade. Ecology, 72, 277–285.CrossRefGoogle Scholar
Carpenter, S. R. & Lodge, D. M. (1986). Effects of submersed macrophytes on ecosystem processes. Aquatic Botany, 26, 341–370.CrossRefGoogle Scholar
Carpenter, S. R., Kitchell, J. F. & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity: fish predation and herbivory can regulate lake ecosystems. Bioscience, 35, 634–639.CrossRefGoogle Scholar
Christoffersen, K. (2001). Predation on Daphnia pulex by Lepidurus arcticus. Hydrobiologia, 442, 223–229.CrossRefGoogle Scholar
Crowder, L. B. & Cooper, W. E. (1982). Habitat structural complexity and the interaction between bluegills and their prey. Ecology, 63, 1802–1813.CrossRefGoogle Scholar
Cuddington, K. & Yodzis, P. (2002). Predator-prey dynamics and movement in fractal environments. American Naturalist, 160, 119–134.Google ScholarPubMed
Declerck, S., Vandekerkhove, J., Johannson, L.et al. (2005). Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology, 86, 1905–1915.CrossRefGoogle Scholar
Diehl, S. (1988). Foraging efficiency of 3 fresh-water fishes: effects of structural complexity and light. Oikos, 53, 207–214.CrossRefGoogle Scholar
Diehl, S. (1992). Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology, 73, 1646–1661.CrossRefGoogle Scholar
Diehl, S. & Kornijów, R. (1997). Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In The Structuring Role of Submerged Macrophytes in Lakes, ed. Jeppesen, E., Søndergaard, Ma., Søndergaard, Mo. and Christoffersen, K.. New York: Springer-Verlag, pp. 24–46.Google Scholar
Dodds, W. K. (1991). Community interactions between the filamentous alga Cladophora glomerata (L.) Kuetzing, its epiphytes, and epiphyte grazers. Oecologia, 85, 572–580.CrossRefGoogle ScholarPubMed
Emmerson, M. C. & Raffaelli, D. (2004). Predator-prey body size, interaction strength and the stability of a real food web. Journal of Animal Ecology, 73, 399–409.CrossRefGoogle Scholar
Estes, J. A., Danner, E. M., Doak, D. F.et al. (2004). Complex trophic interactions in kelp forest ecosystems. Bulletin of Marine Science, 74, 621–638.Google Scholar
Frank, K. T., Petrie, B., Choi, J. S. & Leggett, W. C. (2005). Trophic cascades in a formerly cod-dominated ecosystem. Science, 308, 1621–1623.CrossRefGoogle Scholar
Frederiksborg County (2000). Bastrup Sø, tilstand og udvikling 1999. Frederiksborg County, Denmark. (In Danish.)
Grabowski, J. H. (2004). Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs. Ecology, 85, 995–1004.CrossRefGoogle Scholar
Grevstad, F. & Klepetka, B. (1992). The influence of plant architecture on the foraging efficiencies of a suite of ladybird beetles feeding on aphids. Oecologia, 92, 399–404.CrossRefGoogle ScholarPubMed
Grime, J. P. (1979). Plant Strategies and Vegetation Processes. Chichester, UK: John Wiley & Sons.Google Scholar
Gruner, D. S. (2004). Attenuation of top-down and bottom-up forces in a complex terrestrial community. Ecology, 85, 3010–3022.CrossRefGoogle Scholar
Hairston, N. G., Smith, F. E. & Slobodkin, L. G. (1960). Community structure, population control, and competition. American Naturalist, 94, 421–425.CrossRefGoogle Scholar
Hamback, P. A., Oksanen, L., Ekerholm, P.et al. (2004). Predators indirectly protect tundra plants by reducing herbivore abundance. Oikos, 106, 85–92.CrossRefGoogle Scholar
Hansson, L.-A., Annadotter, H., Bergman, E.et al. (1998). Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems, 1, 558–574.CrossRefGoogle Scholar
Heck, K. & Thoman, T. (1981). Experiments on predator-prey interactions in vegetated aquatic habitats. Journal of Experimental Marine Biology Ecology, 53, 125–134.CrossRefGoogle Scholar
Hildrew, A. G., Woodward, G., Winterbottom, J. H. & Orton, S. (2004). Strong density dependence in a predatory insect: large-scale experiments in a stream. Journal of Animal Ecology, 73, 448–458.CrossRefGoogle Scholar
Holt, R. D. (2000). Trophic cascades in terrestrial ecosystems. Reflections on Polis et al. Trends in Evolution and Ecology, 15, 444–445.CrossRefGoogle ScholarPubMed
Jeffries, M. (1993). Invertebrate colonisation of artificial pondweeds of differing fractal dimension. Oikos, 67, 142–148.CrossRefGoogle Scholar
Jeppesen, E. & Sammalkorpi, I. (2002). In Handbook of Restoration Ecology, ed. Perrow, M. and Davy, T.. Vol. 2. Cambridge: Cambridge University Press, pp. 297–324.CrossRefGoogle Scholar
Jeppesen, E., Lauridsen, T. L., Kairesalo, T. & Perrow, M. (1997). Impact of submerged macrophytes on fish-zooplankton relationships in lakes. In The Structuring Role of Submerged Macrophytes in Lakes, ed. Jeppesen, E., Søndergaard, Ma., Søndergaard, Mo. and Christoffersen, K.. New York: Springer-Verlag, pp. 91–115.Google Scholar
Jeppesen, E., Jensen, J. P., Windolf, J.et al. (1998). Changes in nitrogen retention in shallow eutrophic lakes following a decline in density of cyprinids. Archiv für Hydrobiologie, 142, 129–152.CrossRefGoogle Scholar
Jeppesen, E., Christoffersen, K., Landkildehus, F.et al. (2001). Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic Char (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia, 442, 329–337.CrossRefGoogle Scholar
Jeppesen, E., Søndergaard, M., Christoffersen, K., Theil-Nielsen, J. & Jürgens, K. (2002). Cascading trophic interactions in the littoral zone: an enclosure experiment in shallow Lake Stigsholm, Denmark. Archiv für Hydrobiologie, 153, 533–555.CrossRefGoogle Scholar
Jeppesen, E., Jensen, J. P., Jensen, C.et al. (2003a). The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: A study of 466 lakes from the temperate zone to the arctic. Ecosystems, 6, 313–325.CrossRefGoogle Scholar
Jeppesen, E., Jensen, J. P., Lauridsen, T. L.et al. (2003b). Sub-fossils in the surface sediment as proxies for community structure and dynamics of zooplankton lakes: a study of 150 lakes from Denmark, New Zealand, the Faroe Islands and Greenland. Hydrobiologia, 491, 321–330.CrossRefGoogle Scholar
Jeppesen, E., Jensen, J. P., Sondergaard, M.et al. (2004). Impact of fish predation on cladoceran body weight distribution and zooplankton grazing in lakes during winter. Freshwater Biology, 49, 432–447.CrossRefGoogle Scholar
Jiang, L. & Morin, P. J. (2005). Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity. American Naturalist, 165, 350–363.Google ScholarPubMed
Johnson, A. R., Hatfield, C. & Milne, B. (1995). Simulated diffusion dynamics in river networks. Ecological Modelling, 83, 311–325.CrossRefGoogle Scholar
Jones, J. I. & Sayer, C. D. (2003). Does the fish–invertebrate–periphyton cascade precipitates plant loss in shallow lakes? Ecology, 84, 2155–2167.CrossRefGoogle Scholar
Jones, J. I. & Waldron, S. (2003). Combined stable isotope and gut contents analysis of food webs in plant dominated, shallow lakes. Freshwater Biology, 48, 1396–1407.CrossRefGoogle Scholar
Jonsson, T., Cohen, J. E. & Carpenter, S. R. (2005). Food webs, body size, and species abundance in ecological community description. Advances in Ecological Research, 36, 1–84.CrossRefGoogle Scholar
Keddy, P. (2000). Wetland Ecology Principles and Conservation. Cambridge: Cambridge University Press.Google Scholar
Lauridsen, T., Jeppesen, E., Landkildehus, F., Christoffersen, K. & Søndergaard, M. (2001). Horizontal distribution of cladocerans in arctic Greenland lakes. Hydrobiologia, 442, 107–116.CrossRefGoogle Scholar
Liboriussen, L. & Jeppesen, E. (2003). Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology, 48, 418–431.CrossRefGoogle Scholar
Lodge, D. M., Cronin, G., van Donk, E. & Froelich, A. J. (1997). The impact of herbivory on plant standing crop: comparisons among biomes, between vascular and nonvascular plants, and among freshwater herbivore taxa. In The Structuring Role of Submerged Macrophytes in Lakes, ed. Jeppesen, E., Søndergaard, Ma., Søndergaard, Mo. and Christoffersen, K.. New York: Springer-Verlag, pp. 149–174.Google Scholar
McCann, K. S., Hastings, A. & Strong, D. R. (1998). Trophic cascades and trophic trickles in pelagic food webs. Proceedings of the Royal Society of London Series B-Biological Sciences, 265, 205–209.CrossRefGoogle Scholar
McIntosh, A. R. & Townsend, C. R. (1996). Interactions between fish, grazing invertebrates and algae in a New Zealand stream: A trophic cascade mediated by fish induced changes to grazer behaviour? Oecologia, 108, 174–181.CrossRefGoogle Scholar
Micheli, F. (1999). Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science, 285, 1396–1398.CrossRefGoogle ScholarPubMed
Møller, P. H. (1998). Engelsholm sø. In Sørestaurering i Danmark: metoder, erfaringer og anbefalinger, ed. Søndergaard, M., Jeppesen, E. and Jensen, J. P.. Miljøstyrelsen: Miljønyt 28, pp. 145–153. (In Danish.)Google Scholar
Moore, J. C., Deruiter, P. C. & Hunt, H. W. (1993). Influence of productivity on the stability of real and model-ecosystems. Science, 261, 906–908.CrossRefGoogle ScholarPubMed
Moore, J. C., Berlow, E. L., Coleman, D. C.et al. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters, 7, 584–600.CrossRefGoogle Scholar
Moran, M. D. & Scheidler, A. R. (2002). Effects of nutrients and predators on an old-field food chain: interactions of top-down and bottom-up processes. Oikos, 98, 116–124.CrossRefGoogle Scholar
Moss, B. (1990). Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia, 200/201, 367–377.CrossRefGoogle Scholar
Nelson, W. G. & Bensdorff, E. (1990). Fish predation and habitat complexity: are complexity thresholds real? Journal of Experimental Marine Biology and Ecology, 141, 183–194.CrossRefGoogle Scholar
Neutel, A. M., Heesterbeek, J. A. P. & Ruiter, P. C. (2002). Stability in real food webs: weak links in long loops. Science, 296, 1120–1123.CrossRefGoogle ScholarPubMed
Oksanen, L. (1983). Trophic exploitation and arctic phytomass patterns. American Naturalist, 122, 45–52.CrossRefGoogle Scholar
Oksanen, L., Fretwell, S. D., Arruda, J. & Niemela, P. (1981). Exploitation ecosystems in gradients of primary productivity. American Naturalist, 118, 240–261.CrossRefGoogle Scholar
Okun, N. & Mehner, T. (2005). Interactions between juvenile roach or perch and their invertebrate prey in littoral reed versus open water enclosures. Ecology of Freshwater Fishes, 14, 150–160.CrossRefGoogle Scholar
Pace, M. L., Cole, J. J., Carpenter, S. R. & Kitchell, J. F. (1999). Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution, 14, 483–488.CrossRefGoogle ScholarPubMed
Paine, R. T. (1980). Food webs: linkage, interaction strength and community infrastructure. Journal of Animal Ecology, 49, 667–685.CrossRefGoogle Scholar
Perrow, M. R., Meijer, M.-L., Dawidowicz, P. & Coops, H. (1997). Biomanipulation in shallow lakes: state of the art. Hydrobiologia, 342/343, 355–365.CrossRefGoogle Scholar
Persson, L. (1999). Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos, 85, 385–397.CrossRefGoogle Scholar
Persson, L. & Eklöv, P. (1995). Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology, 76, 763–784.CrossRefGoogle Scholar
Polis, G. A. (1999). Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos, 89, 3–15.CrossRefGoogle Scholar
Polis, G. A. & Strong, D. R. (1996). Food web complexity and community dynamics. American Naturalist, 147, 813–846.CrossRefGoogle Scholar
Polis, G. A., Sears, A. L. W., Huxel, G. R., Strong, D. R. & Maron, J. (2000). When is a trophic cascade a trophic cascade? Trends in Ecology and Evolution, 15, 473–475.CrossRefGoogle ScholarPubMed
Power, M. E. (2000). What enables trophic cascades? Commentary on Polis et al. Trends in Ecology and Evolution, 15, 443–444.CrossRefGoogle ScholarPubMed
Power, M. E., Matthews, W. J. & Stewart, A. J. (1985). Grazing minnows, piscivorous bass, and stream algae: dynamics of a strong interaction. Ecology, 66, 1448–1456.CrossRefGoogle Scholar
Preisser, E. L. (2003). Field evidence for a rapidly cascading underground food web. Ecology, 84, 869–874.CrossRefGoogle Scholar
Raffaelli, D. (2002). Ecology – from Elton to mathematics and back again. Science, 296, 1035.CrossRefGoogle Scholar
Ripple, W. J. & Beschta, R. L. (2004). Wolves and the ecology of fear: can predation risk structure ecosystems? Bioscience, 54, 755–766.CrossRefGoogle Scholar
Roemer, G. W., Donlan, C. J. & Courchamp, F. (2002). Golden eagles, feral pigs, and insular carnivores: how exotic species turn native predators into prey. Proceedings of the National Academy of Sciences of the United States of America, 99, 791–796.CrossRefGoogle ScholarPubMed
Romare, P., Berg, S., Lauridsen, T. & Jeppesen, E. (2003). Spatial and temporal distribution of fish and zooplankton in a shallow lake. Freshwater Biology, 48, 1353–1362.CrossRefGoogle Scholar
Sandby, K. (1998). Arreskov Sø. In Sørestaurering i Danmark: metoder, erfaringer og anbefalinger, ed. Søndergaard, M., Jeppesen, E. and Jensen, J. P.. Miljøstyrelsen: Miljønyt 28, pp. 105–115. (In Danish.)Google Scholar
Sarnelle, O. & Knapp, R. A. (2005). Nutrient recycling by fish versus zooplankton grazing as drivers of the trophic cascade in alpine lakes. Limnology and Oceanography, 50, 2032–2042.CrossRefGoogle Scholar
Scheffer, M. (1998). Ecology of Shallow Lakes. London: Chapman & Hall.Google Scholar
Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B. & Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology and Evolution, 8, 275–279.CrossRefGoogle ScholarPubMed
Schindler, D. E. & Scheuerell, M. D. (2002). Habitat coupling in lake ecosystems. Oikos, 98, 177–189.CrossRefGoogle Scholar
Schmitz, O. J., Krivan, V. & Ovadia, O. (2004). Trophic cascades: the primacy of trait-mediated indirect interactions. Ecology Letters, 7, 153–163.CrossRefGoogle Scholar
Shapiro, J., Lamarra, V. & Lynch, M. (1975). Biomanipulation: an ecosystem approach to lake restoration. In Proceedings of a Symposium on Water Quality Management through Biological Control, ed. Brezonik, P. L. and Fox, J. L.. Gainesville: University of Florida, pp. 85–96.Google Scholar
Sinclair, A. R. E., Krebs, C. J., Fryxell, J. M.et al. (2000). Testing hypotheses of trophic level interactions: a boreal forest ecosystem. Oikos, 89, 313–328.CrossRefGoogle Scholar
Strong, D. R. (1992). Are trophic cascades all wet – differentiation and donor-control in speciose ecosystems. Ecology, 73, 747–754.CrossRefGoogle Scholar
Strong, D. R., Kaya, H. K., Whipple, A. V.et al. (1996). Entomopathogenic nematodes: natural enemies of root-feeding caterpillars on bush lupine. Oecologia, 108, 167–173.CrossRefGoogle ScholarPubMed
Svanbäck, R. & Eklöv, P. (2002). Effects of habitat and resources on morphology and ontogenetic growth trajectories in perch. Oecologia, 131, 61–70.CrossRefGoogle ScholarPubMed
Timms, R. M. & Moss, B. (1984). Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish in a shallow wetland ecosystem. Limnology and Oceanography, 29, 472–486.CrossRefGoogle Scholar
Townsend, C. R. (1988). Fish, fleas and phytoplankton. New Scientist, 118, 67–70.Google Scholar
Turner, J. T. & Tester, P. A. (1997). Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnology and Oceanography, 42, 1203–1214.CrossRefGoogle Scholar
Zanden, Vander M. J., Essington, T. E. & Vadeboncoeur, Y. (2005). Is pelagic top-down control in lakes augmented by benthic energy pathways? Canadian Journal of Fisheries and Aquatic Sciences, 62, 1422–1431.CrossRefGoogle Scholar
Whittaker, R. H. (1961). Experiments with radiophosphorus tracer in aquarium microcosms. Ecological Monographs, 31, 157–188.CrossRefGoogle Scholar
Willby, N. J., Pygott, J. R. & Eaton, J. W. (2001). Inter-relationships between standing crop, biodiversity and trait attributes of hydrophytic vegetation in artificial waterways. Freshwater Biology, 46, 883–902.CrossRefGoogle Scholar
Winfield, I. J. (1986). The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythropthalmus, and perch, Perca fluviatilis. Journal of Fish Biology, 29, 37–48.CrossRefGoogle Scholar
Woodward, G. & Hildrew, A. G. (2001). Invasion of a stream food web by a new top predator. Journal of Animal Ecology, 70, 273–288.CrossRefGoogle Scholar
Woodward, G., Speirs, D. C. & Hildrew, A. G. (2005). Quantification and resolution of a complex, size-structured food web. Advances in Ecological Research, 36, 85–135.CrossRefGoogle Scholar
Worm, B. & Myers, R. A. (2003). Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology, 84, 162–173.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×