Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T08:01:02.580Z Has data issue: false hasContentIssue false

19 - Neurobehavioural aspects of deep hemisphere stroke

from PART I - CLINICAL MANIFESTATIONS

Published online by Cambridge University Press:  17 May 2010

José M. Ferro
Affiliation:
University of Lisbon Faculty of Medicine, Portugal
Julien Bogousslavsky
Affiliation:
Université de Lausanne, Switzerland
Louis R. Caplan
Affiliation:
Harvard Medical School
Get access

Summary

Introduction

The discussion of the role of subcortical structures in language and other higher nervous functions begins with the famous polemic opposing Dejerine (a corticalist) to Pierre Marie, who described several anatomico-clinical cases of subcortical strokes causing aphasia, and claimed that damage to an area including the insula and external capsule was crucial to the production of anarthria. However, during the next decades, few authors attributed any role to the thalamus or to other subcortical structures in relation to symbolic and cognitive behaviour. Since the widespread use of modern neuroimaging techniques, it has become evident that aphasia and other ‘cortical’ syndromes can result from lesions limited to subcortical structures. Both single-photon-emission computed tomography (SPECT) and positron-emission tomography (PET) have shown that subcortical strokes are accompanied by important abnormalities of cortical metabolism and perfusion. Magnetic resonance (MR) can demonstrate cortical lesions that were not apparent on CT. These facts raise the question as to whether neurobehavioural disturbances seen after subcortical strokes are due to subcortical damage perse or are related to functional cortical inactivation (diaschisis), to cortical hypoperfusion or to subtle concomitant cortical lesions.

Subcortical aphasia–striatocapsular aphasia

Damasio et al. (1982) and Naeser et al. (1982) described the first patients with subcortical aphasia correlated with CT. Transcortical motor aphasia produced by small ischemic lesions of the basal ganglia, was first described by Wallesch et al. (1983). All of those authors stressed the difficulty of classifying subcortical aphasia in terms of the classic cortical aphasia syndromes (Table 19.1).

Type
Chapter
Information
Stroke Syndromes , pp. 252 - 263
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×