Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-13T06:27:39.139Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  23 December 2009

J. Murray Roberts
Affiliation:
Scottish Association for Marine Science
Andrew Wheeler
Affiliation:
University College Cork
André Freiwald
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Stephen Cairns
Affiliation:
Smithsonian Institution, Washington DC
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Cold-Water Corals
The Biology and Geology of Deep-Sea Coral Habitats
, pp. 277 - 323
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbiati, M., Santangelo, G. and Novelli, S. (1993). Genetic variation within and between two Tyrrhenian populations of the Mediterranean alcyonarian Corallium rubrum. Marine Ecology Progress Series, 95, 245–250.CrossRefGoogle Scholar
Addison, J. A. and Hart, M. W. (2005). Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution, 59, 532–543.Google Scholar
Adkins, J. F., Boyle, E. A., Curry, W. B. and Lutringer, A. (2003). Stable isotopes in deep-sea corals and a new mechanism for ‘vital effects’. Geochimica et Cosmochimica Acta, 67, 1129–1143.CrossRefGoogle Scholar
Adkins, J. F., Cheng, H., Boyle, E. A., Druffel, E. R. M. and Edwards, R. L. (1998). Deep-sea coral evidence for rapid change in ventilation history of the deep north Atlantic 15,400 years ago. Science, 280, 725–728.CrossRefGoogle Scholar
Adkins, J. F., Henderson, G. M., Wang, S. -L., O'Shea, S. and Mokadem, F. (2004). Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth and Planetary Science Letters, 227, 481–490.CrossRefGoogle Scholar
Akhmetzhanov, A. M., Kenyon, N. H., Ivanov, M. K.et al. (2003). Giant carbonate mounds and current-swept seafloors on the slopes of the southern Rockall Trough. In European Margin Sediment Dynamics: Side-Scan Sonar and Seismic Images, ed. Mienert, J. and Weaver, P.. Berlin Heidelberg: Springer, pp. 203–209.Google Scholar
Alderslade, P. (1998). Revisionary systematics in the gorgonian family Isididae, with descriptions of numerous new taxa (Coelenterata: Octocorallia). Records of the Western Australian Museum, 55, 1–359.Google Scholar
Al-Horani, F. A., Al-Moghrabi, S. M. and Beer, D. (2003). The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Marine Biology, 142, 419–426.CrossRefGoogle Scholar
Allemand, D., Ferrier-Pagès, C., Furla, P.et al. (2004). Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. Comptes Rendus Palévol, 3, 453–467.CrossRefGoogle Scholar
Allemand, D. and Grillo, M.-C. (1992). Biocalcification mechanism in gorgonians: 45Ca uptake and deposition by the Mediterranean red coral Corallium rubrum. Journal of Experimental Zoology, 262, 237–246.CrossRefGoogle Scholar
Allemand, D., Tambutté, E., Girard, J. P. and Jaubert, J. (1998). Organic matrix synthesis in the scleractinian coral Stylophora pistillata: role in biomineralization and potential target of the organotin tributyltin. Journal of Experimental Biology, 201, 2001–2009.Google ScholarPubMed
Allison, P. A. and Briggs, D. E. G. (1993). Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology, 21, 527–530.2.3.CO;2>CrossRefGoogle Scholar
Allouc, J. (1987). Les paléocommunautés profondes sur fond rocheux du Plèistocéne Méditerranéen. Geobios, 20, 241–263.CrossRefGoogle Scholar
Allouc, J., Hilly, J., Ghanbaja, J. and Villemin, G. (1999). Biosedimentary process and the genesis of ferromanganese deposits. The example of hydrogenetic crusts and coatings from the West African margin and from the Mediterranean Sea. Geobios, 32, 769–790.CrossRefGoogle Scholar
Allwood, A. C., Walter, M. R., Kamber, B. S., Marshal, C. P. and Burch, I. W. (2006). Stromatolite reef from the early Archean era of Australia. Nature, 441, 714–718.CrossRefGoogle Scholar
Alvarez-Perez, G. (1997). New Eocene coral species from Igualada (Barcelona, NE of Spain). Boletin de la Real Sociedad Espanola de Historia Natural, Seccion Geologica, 91, 297–304.Google Scholar
Anderskouv, K., Damholt, T. and Surlyk, F. (2007). Late Maastrichtian chalk mounds, Stevns Klint, Denmark: combined physical and biogenic structures. Sedimentary Geology, 200, 57–72.CrossRefGoogle Scholar
Anderson, M. E. (2006). Studies on the Zoarcidae (Teleostei: Perciformes) of the southern hemisphere. XI. A new species of Pyrolycus from the Kermadec Ridge. Journal of the Royal Society of New Zealand, 36, 63–68.CrossRefGoogle Scholar
Anderson, P. A. V. (2004). Cnidarian neurobiology: what does the future hold?Hydrobiologia, 530–531, 107–116.CrossRefGoogle Scholar
Andrews, A. H., Cailliet, G. M., Kerr, L. A.et al. (2005). Investigations of age and growth for three deep-sea corals from the Davidson Seamount off central California. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 1021–1038.CrossRef
Andrews, A. H., Cordes, E. E., Mahoney, M. M.et al. (2002). Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia, 471, 101–110.CrossRefGoogle Scholar
Anthony, K. R. N. and Fabricius, K. E. (2000). Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of Experimental Marine Biology and Ecology, 252, 221–253.CrossRefGoogle ScholarPubMed
Armstrong, C. W. and Hove, S. (2008). The formation of policy for protection of cold-water coral off the coast of Norway. Marine Policy, 32, 66–73.CrossRefGoogle Scholar
Arnaud, P. M. and Zibrowius, H. (1979). L'association Pedicularia sicula-Errina aspera en Méditerranée (Gastropoda Prosobranchia et Hydrocorallia Stylasterina). Rapport de la Commission Internationale de la Mer Méditerranée, 25/26, 123–124.Google Scholar
Asgaard, U. (1968). Brachiopod palaeoecology in Middle Danian limestones at Fakse, Denmark. Lethaia, 1, 103–121.CrossRefGoogle Scholar
Auster, P. J. (2005). Are deep-water corals important habitat for fishes? In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 747–760.Google Scholar
Auster, P. J. (2007). Linking deep-water corals and fish populations. In Conservation and Adaptive Management of Seamount and Deep-sea Coral Ecosystems, ed. George, R. Y. and Cairns, S. D.. Miami: University of Miami, pp. 93–99.Google Scholar
Auster, P. J., Moore, J., Heinonen, K. B. and Watling, L. (2005). A habitat classification scheme for seamount landscapes: assessing the functional role of deep-water corals as fish habitat. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 761–769.Google Scholar
Baco, A. R., Clark, A. M. and Shank, T. M. (2006). Six microsatellite loci from the deep-sea coral Corallium lauuense (Octocorallia: Coralliidae) from the islands and seamounts of the Hawaiian archipelago. Molecular Ecology Notes, 6, 147–149.CrossRefGoogle Scholar
Baco, A. R. and Shank, T. M. (2005). Population genetic structure of the Hawaiian precious coral Corallium lauuense (Octocorallia: Coralliidae) using microsatellites. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 663–678.Google Scholar
Bailey, W., Shannon, P. M., Walsh, J. J. and Unnithan, V. (2003). The spatial distributions of faults and deep sea carbonate mounds in the Porcupine Basin, offshore Ireland. Marine and Petroleum Geology, 20, 509–522.CrossRefGoogle Scholar
Barker, S. (2007). Dissolution of deep-sea carbonates. In Encyclopedia of Quaternary Science, ed. Scott, A. E.. Oxford: Elsevier, pp. 1710–1722.Google Scholar
Barnett, T. P., Pierce, D. W., AchutaRao, K. M.et al. (2005). Penetration of human-induced warming into the world's oceans. Science, 309, 284–287.CrossRefGoogle ScholarPubMed
Barrier, P., Di Geronimo, I., Perna, R.et al. (1996). Taphonomy of deep-sea hard and soft bottom communities: the Pleistocene of Lazzàro (southern Italy). Communication de la Reunion de Tafonomia y Fossilzacion, 1996, 39–46.Google Scholar
Barrier, P., Zibrowius, H., Lozouet, P.et al. (1991). Une faune de fond dur du bathyal supérieur dans le Miocène Terminal des Cordillères Bétiques (Carboneras, SE Espagne). Mésogée, 51, 3–13.Google Scholar
Bartoli, G., Sarnthein, M., Weinelt, M.et al. (2005). Final closure of Panama and the onset of northern hemisphere glaciation. Earth and Planetary Science Letters, 237, 33–44.CrossRefGoogle Scholar
Bateman, I. J. and Langford, I. H. (1997). Non-users' willingness to pay for a National Park: an application and critique of the contingent valuation method. Regional Studies, 31, 571–582.CrossRefGoogle Scholar
Baums, I. B., Hughes, C. R. and Hellberg, M. E. (2005). Mendelian microsatellite loci for the Caribbean coral Acropora palmata. Marine Ecology Progress Series, 288, 115–127.CrossRefGoogle Scholar
Bayer, F. M. (1973). Colonial organization in octocorals. In Animal Colonies: Development and Functioning Through Time, ed. Boardman, R. S., Cheetham, A. H. and Oliver, W. A.. Stroudsburg, PA: Dowden, Hutchinson & Ross, Inc., pp. 69–93.Google Scholar
Bayer, F. M. (1981). Key to the genera of Octocorallia exclusive of Pennatulacea (Coelenterata: Anthozoa), with diagnoses of new taxa. Proceedings of the Biological Society of Washington, 94, 902–947.Google Scholar
Bayer, F. M. (2001). Octocoral research: past, present and future. Atoll Research Bulletin, 494, 81–106.CrossRefGoogle Scholar
Bayer, F. M. and Grasshoff, M. (1995). Two new species of the gorgonacean genus Ctenocella from deep reefs in the western Atlantic. Bulletin of Marine Science, 56, 625–652.Google Scholar
Bayer, F. M., Grasshoff, M. and Verseveldt, J. (ed.) (1983). Illustrated Trilingual Glossary of Morphological and Anatomical Terms Applied to Octocorallia. Leiden: E. J. Brill.
Bayer, F. M. and Macintyre, I. G. (2001). The mineral component of the axis and holdfast of some gorgonacean octocorals (Coelenterata: Anthozoa), with special reference to the family Gorgoniidae. Proceedings of the Biological Society of Washington, 114, 309–345.Google Scholar
Bayer, F. M. and Muzik, K. M. (1976). A new solitary octocoral, Taiaroa tauhou gen. et sp. nov. (Coelenterata: Protoalcyonaria) from New Zealand. Journal of the Royal Society of New Zealand, 6, 499–515.CrossRefGoogle Scholar
Bayer, F. M. and Owre, H. B. (1968). The Free-living Lower Invertebrates. London: The Macmillan Co.Google Scholar
Bayer, F. M. and Stefani, J. (1987). New and previously known taxa of isidids octocorals (Coelenterata: Gorgonacea), partly from Antarctic waters. Proceedings of the Biological Society of Washington, 100, 937–991.Google Scholar
Bayer, F. M and Stefani, J. (1988). A new species of Chrysogorgia (Octocorallia: Gorgonacea) from New Caledonia, with descriptions of some other species from the western Pacific. Proceedings of the Biological Society of Washington, 101, 257–279.Google Scholar
Bayer, F. M. and Stefani, J. (1989). Primnoidae (Gorgonacea) de Nouvelle-Caledonie. Bulletin Muséum National d'Histoire Naturelle, Zoologie Paris, 4th ser., 10, 449–518.Google Scholar
Beaulieu, S. E. (2002). Accumulation and fate of phytodetritus on the sea floor. In Oceanography and Marine Biology: An Annual Review, vol. 40, ed. Gibson, R. N., Barnes, M. and Atkinson, R. J. A.. CRC Press, pp. 171–232.Google Scholar
Beck, T. and Freiwald, A. (2006). Species Composition and Variability of Mound Communities with Special Reference to Mollusc Assemblages. EURODOM M7 Report.
Bednorz, A. (2007). Post-glacial development of a cold-water coral reef in the Trænadjupet, south of the Lofoten Islands. Unpublished Diploma thesis, Erlangen University.
Bell, N. and Smith, J. (1999). Coral growing on North Sea oil rigs. Nature, 402, 601.CrossRefGoogle Scholar
Berkes, F., Hughes, T. P., Steneck, R. S.et al. (2006). Globalization, roving bandits, and marine resources. Science, 311, 1557–1558.CrossRefGoogle ScholarPubMed
Berner, R. A. (2002). Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proceedings of the National Academy of Sciences of the United States of America, 99, 4172–4177.CrossRefGoogle ScholarPubMed
Berner, R. A. and Kothavala, Z. (2001). GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301, 182–204.CrossRefGoogle Scholar
Bernecker, M. and Weidlich, O. (1990). The Danian (Paleocene) coral limestone of Fakse, Denmark: a model for ancient aphotic, azooxanthellate coral mounds. Facies, 22, 103–138.CrossRefGoogle Scholar
Bernecker, M. and Weidlich, O. (2005). Azooxanthellate corals in the Late Maastrichtian–Early Paleocene of the Danish basin: bryozoan and coral mounds in a boreal shelf setting. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 3–25.Google Scholar
Bernecker, M. and Weidlich, O. (2006). Paleocene bryozoan and coral mounds of Fakse, Denmark: habitat preferences of isidid corals. Courier Forschungsinstitut Senckenberg, 257, 7–20.Google Scholar
Bett, B. J. (2001). UK Atlantic Margin Environmental Survey: introduction and overview of bathyal benthic ecology. Continental Shelf Research, 21, 917–956.CrossRefGoogle Scholar
Beu, A. G. (1967). Deep-water Pliocene Mollusca from Palliser Bay, New Zealand. Transactions of the Royal Society of New Zealand, 5, 89–122.Google Scholar
Beu, A. G. (1978). Habitat and relationships of Iphitella neozelanica (Dell) (Gastropoda: Epitoniidae). New Zealand Journal of Marine and Freshwater Research, 12, 391–396.CrossRefGoogle Scholar
Beuck, L. and Freiwald, A. (2005). Bioerosion patterns in a deep-water Lophelia pertusa (Scleractinia) thicket (Propeller Mound, northern Porcupine Seabight). In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 915–936.Google Scholar
Beuck, L., López Correa, M. and Freiwald, A. (2008). Biogeographical distribution of Hyrrokkin (Rosalinidae, Foraminifera) and its host-specific morphological and textural trace variability. In Current Developments in Bioerosion, ed. Wisshak, M. and Tapanila, L.. Berlin Heidelberg: Springer, pp. 329–360.Google Scholar
Beuck, L., Vertino, A., Stepina, E., Karolczak, M. and Pfannkuche, O. (2007). Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-computed tomography. Facies, 53, 157–176.CrossRefGoogle Scholar
Beyer, A., Schenke, H. W., Klenke, M. and Niederjasper, F. (2003). High resolution bathymetry of the eastern slope of the Porcupine Seabight. Marine Geology, 198, 27–54.CrossRefGoogle Scholar
Bickle, M., Chadwick, A., Huppert, H. E., Hallworth, M. and Lyle, S. (2007). Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth and Planetary Science Letters, 255, 164–176.CrossRefGoogle Scholar
Bindoff, N. L., Willebrand, J., Artale, V.et al. (2007). Observations: oceanic climate change and sea level. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M.et al. Cambridge, UK and New York, USA: Cambridge University Press, pp. 386–432.Google Scholar
Birkeland, C. (1997). Life and Death of Coral Reefs. New York: Chapman & Hall.CrossRefGoogle Scholar
Bjerager, M. and Surlyk, F. (2007a). Benthic palaeoecology of Danian deep-shelf bryozoan mounds in the Danish Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 250, 184–215.CrossRefGoogle Scholar
Bjerager, M. and Surlyk, F. (2007b). Danian cool-water bryozoan mounds at Stevns Klint, Denmark: a new class of non-cemented skeletal mounds. Journal of Sedimentary Research, 77, 634–660.CrossRefGoogle Scholar
Blamart, D., Rollion-Bard, C., Meibom, A.et al. (2007). Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: implications for biomineralization and paleo-pH. Geochemistry, Geophysics, Geosystems, 8, Q12001, doi:12010.11029/12007GC001686.CrossRefGoogle Scholar
Bluhm, H. (2001). Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor. Deep-Sea Research Part II, 48, 3841–3868.CrossRefGoogle Scholar
Boekschoten, G. J. (1970). On bryozoan borings from the Danian at Fakse, Denmark. Geological Journal, Special Issue, 3, 43–48.Google Scholar
Boetius, A. and Suess, E. (2004). Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chemical Geology, 205, 291–310.CrossRefGoogle Scholar
Borowski, C. (2001). Physically disturbed deep-sea macrofauna in the Peru Basin, southeast Pacific, revisited 7 years after the experimental impact. Deep-Sea Research Part II, 48, 3809–3839.CrossRefGoogle Scholar
Bosence, D. (1979). The factors leading to aggregation and reef formation in Serpula vermicularis L. In Biology and Systematics of Colonial Organisms, ed. Larwood, G. and Rosen, B.. London and New York: Academic Press, pp. 299–318.Google Scholar
Bouchet, P., Rocroi, J. P., Fryda, J.et al. (2005). A nomenclator and classification of gastropod family-group names. Malacologia, 47, 1–368.Google Scholar
Brachert, T. C., Dullo, W.-C. and Stoffers, P. (1987). Diagenesis of siliceous sponge limestones from the Pleistocene of the Tyrrhenian Sea (Mediterranean Sea). Facies, 17, 41–50.CrossRefGoogle Scholar
Brewer, P. G., Friederich, C., Peltzer, E. T. and Orr, F. M. (1999). Direct experiments on the ocean disposal of fossil fuel CO2. Science, 284, 943–945.CrossRefGoogle ScholarPubMed
Broecker, W. S. (1987). Unpleasant surprises in the greenhouse. Nature, 328, 123–126.CrossRefGoogle Scholar
Broecker, W. S. (1997). Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance?Science, 278, 1582–1588.CrossRefGoogle ScholarPubMed
Broecker, W. S. (2006). Was the Younger Dryas triggered by a flood?Science, 312, 1146–1148.CrossRefGoogle ScholarPubMed
Broecker, W. S. and Kunzig, R. (2008). Fixing Climate: What Past Climate Changes Reveal About the Current Threat – and How to Counter it. New York: Hill and Wang.Google Scholar
Broecker, W. S., Thurber, D. L., Goddard, J.et al. (1968). Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments. Science, 159, 297–300.CrossRefGoogle ScholarPubMed
Bromley, R. G. (2005). Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 895–914.Google Scholar
Bromley, R. G. and D'Alessandro, A. (1984). The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Rivista Italiana di Paleontologia e Stratigrafia, 90, 227–296.Google Scholar
Bromley, R. G. and Surlyk, F. (1973). Borings produced by brachiopod pedicles fossil and recent. Lethaia, 6, 349–365.CrossRefGoogle Scholar
Brooke, S. and Stone, R. (2007). Reproduction of deep-water hydrocorals (Family Stylasteridae) from the Aleutian Islands, Alaska. Bulletin of Marine Science, 81, 519–532.Google Scholar
Brooke, S. and Young, C. M. (2003). Reproductive ecology of a deep-water scleractinian coral, Oculina varicosa, from the southeast Florida shelf. Continental Shelf Research, 23, 847–858.CrossRefGoogle Scholar
Brooke, S. and Young, C. M. (2005). Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Marine Biology, 146, 665–675.CrossRefGoogle Scholar
Brotzen, F. (1959). On Tylocidaris species (Echinodermata) and the stratigraphy of the Danian of Sweden, with a bibliography of the Danian and the Paleocene. Geological Society of Sweden, Series C, 571, 1–81.Google Scholar
Brugler, M. R. and France, S. C. (2007). The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria: Anthozoa: Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. Molecular Phylogenetics and Evolution, 42, 776–788.CrossRefGoogle Scholar
Bryan, T. L. and Metaxas, A. (2006). Distribution of deep-water corals along the North American continental margins: relationships with environmental factors. Deep-Sea Research Part I, 53, 1865–1879.CrossRefGoogle Scholar
Bryan, T. L. and Metaxas, A. (2007). Predicting suitable habitat for deep-water gorgonian corals on the Atlantic and Pacific continental margins of North America. Marine Ecology Progress Series, 330, 113–126.CrossRefGoogle Scholar
Buddemeier, R. W. and Fautin, D. G. (1996). Global CO2 and evolution among the Scleractinia. Bulletin de l'Institut Oceanographique, 14, 33–38.Google Scholar
Buhl-Mortensen, L. and Mortensen, P. B. (2004a). Crustaceans associated with the deep-water gorgonian Paragorgia arborea (L., 1758) and Primnoa resedaeformis (Gunnerus, 1763). Journal of Natural History, 38, 1233–1247.CrossRefGoogle Scholar
Buhl-Mortensen, L. and Mortensen, P. B. (2004b). Gorgonophilus canadensis n. gen., sp. (Copepoda: Lamippidae), a gall forming endoparasite in the octocoral Paragorgia arborea (L., 1758) from the northwest Atlantic. Symbiosis, 37, 155–168.Google Scholar
Buhl-Mortensen, L. and Mortensen, P. B. (2004c). Symbiosis in deep-water corals. Symbiosis, 37, 33–61.Google Scholar
Buhl-Mortensen, L. and Mortensen, P. B. (2005). Distribution and diversity of species associated with deep-sea gorgonian corals off Atlantic Canada. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 849–879.Google Scholar
Burdon-Jones, C. and Tambs-Lyche, H. (1960). Observations on the fauna of the North Brattholmen stone-coral reef near Bergen. Årbok for Universitetet i Bergen – Mathematisk-Naturvidenskabelig Serie, 4, 1–24.Google Scholar
Burgess, S. N. and Babcock, R. C. (2005). Reproductive ecology of three reef-forming, deep-sea corals in the New Zealand region. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 701–713.Google Scholar
Burton, E. St. J. (1933). Faunal horizons of the Barton Beds in Hampshire. Proceedings of the Geologist's Association, 44, 131–167.CrossRefGoogle Scholar
Busquets, P., Alvarez, G., Sole Porta, N. and Urquiola, M. M. (1994). Low sedimentation rate aphotic shelves with Dendrophyllia bioherms and sponges: Bartonian of the easternmost sector of the Ebro Basin. Courier Forschungsinstitut Senckenberg, 172, 265–273.Google Scholar
Cairns, S. D. (1979). The deep-water Scleractinia of the Caribbean Sea and adjacent waters. Studies on the Fauna of Curaçao and other Caribbean Islands, 180, 1–341.Google Scholar
Cairns, S. D. (1981). Marine flora and fauna of the northeastern United States. Scleractinia. NOAA Technical Report NMFS Circular, 438, 1–14.Google Scholar
Cairns, S. D. (1982). Antarctic and Subantarctic Scleractinia. Antarctic Research Series, 34, 1–74.Google Scholar
Cairns, S. D. (1983). A generic revision of the Stylasterina (Coelenterata: Hydrozoa). Part 1. Description of the genera. Bulletin of Marine Science, 33, 427–508.Google Scholar
Cairns, S. D. (1984). New records of ahermatypic corals (Scleractinia) from the Hawaiian Islands and Line Islands. Occasional Papers of the Bishop Museum, 25, 1–30.Google Scholar
Cairns, S. D. (1986). A revision of the northwestern Atlantic Stylasteridae (Coelenterata: Hydrozoa). Smithsonian Contributions to Zoology, 418, 1–131.Google Scholar
Cairns, S. D. (1992a). A generic revision of the Stylasteridae (Coelenterata: Hydrozoa). Part 3. Keys to the genera. Bulletin of Marine Science, 49, 538–545.Google Scholar
Cairns, S. D. (1992b). Worldwide distribution of the Stylasteridae (Cnidaria: Hydrozoa). Scientia Marina, 56, 125–130.Google Scholar
Cairns, S. D. (1994). Scleractinia of the temperate North Pacific. Smithsonian Contributions to Zoology, 557, 1–150.Google Scholar
Cairns, S. D. (1995). The marine fauna of New Zealand: Scleractinia (Cnidaria: Anthozoa). New Zealand Oceanographic Institute Memoir, 103, 1–210.Google Scholar
Cairns, S. D. (2001a). A brief history of taxonomic research on azooxanthellate Scleractinia (Cnidaria: Anthozoa). Bulletin of the Biological Society of Washington, 10, 191–203.Google Scholar
Cairns, S. D. (2001b). A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria: Scleractinia). Smithsonian Contributions to Zoology, 615, 1–75.CrossRefGoogle Scholar
Cairns, S. D. (2007). Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bulletin of Marine Science, 81, 311–322.Google Scholar
Cairns, S. D. and Bayer, F. M. (2005). A review of the genus Primnoa (Octocorallia: Gorgonacea: Primnoidae), with the description of two new species. Bulletin of Marine Science, 77, 225–256.Google Scholar
Cairns, S. D., Hoeksema, B. W. and Land, J. (1999). Appendix: List of extant stony corals. Atoll Research Bulletin, 459, 13–46.Google Scholar
Cairns, S. D. and Keller, N. B. (1993). New taxa and distributional records of azooxanthellate Scleractinia (Cnidaria, Anthozoa) from the tropical south-western Indian Ocean, with comments on their zoogeography and ecology. Annals of the South African Museum, 103, 213–292.Google Scholar
Cairns, S. D. and Macintyre, I. G. (1992). Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria: Hydrozoa). Palaios, 7, 96–107.CrossRefGoogle Scholar
Cairns, S. D. and Parker, S. A. (1992). Review of the Recent Scleractinia (stony corals) of South Australia, Victoria, and Tasmania. Records of the South Australian Museum, Monograph Series, 3, 1–82.Google Scholar
Cairns, S. D. and Stanley, G. D. (1982). Ahermatypic coral banks: living and fossil counterparts. Proceedings of the 4th International Coral Reef Symposium, Manila, The Philippines, 1, 611–618.Google Scholar
Calcinai, B., Arillo, A., Cerrano, C. and Bavestrello, G. (2003). Taxonomy-related differences in the excavating micro-patterns of boring sponges. Journal of the Marine Biological Association of the United Kingdom, 83, 37–39.CrossRefGoogle Scholar
Caldeira, K. and Wickett, M. E. (2003). Anthropogenic carbon and ocean pH. Nature, 425, 365.CrossRefGoogle ScholarPubMed
Campbell, H. J., Andrews, P. B., Beu, A. G.et al. (1993). Cretaceous–Cenozoic geology and biostratigraphy of the Chatham Islands, New Zealand. Institute of Geological and Nuclear Sciences Monograph, 2, 1–269.Google Scholar
Cao, L., Fairbanks, R. G., Mortlock, R. A. and Risk, M. J. (2007). Radiocarbon reservoir age of high latitude North Atlantic surface water during the last deglacial. Quaternary Science Reviews, 26, 732–742.CrossRefGoogle Scholar
Carlson, A. E., Clark, P. U., Haley, B. A.et al. (2007). Geochemical proxies of North American freshwater routing during the Younger Dryas cold event. Proceedings of the National Academy of Sciences of the United States of America, 104, 6556–6561.CrossRefGoogle ScholarPubMed
Casey, R. (1961). The stratigraphical palaeontology of the Lower Greensand. Palaeontology 3, 487–621.Google Scholar
Cedhagen, T. (1994). Taxonomy and biology of Hyrrokkin sarcophaga gen. et sp. n., a parasitic foraminiferan (Rosalinidae). Sarsia, 79, 65–82.CrossRefGoogle Scholar
Chen, C. A., Odorico, D. M., Ten Lohuis, M., Veron, J. E. N. and Miller, D. J. (1995). Systematic relationships within the Anthozoa (Cnidaria, Anthozoa) using the 5′-end of the 28S rDNA. Molecular Phylogenetics and Evolution, 4, 175–183.CrossRefGoogle ScholarPubMed
Cheng, H., Adkins, J., Edwards, R. L. and Boyle, E. A. (2000). U-Th dating of deep-sea corals. Geochimica et Cosmochimica Acta, 64, 2401–2416.CrossRefGoogle Scholar
Chevalier, J. P. (1961). Recherches sur les Madréporaires et le formations récifales miocènes de la Méditerranée occidentale. Mémoires de la Societé Géologique de France, 93, 1–562.Google Scholar
Chevalier, J.-P. and Beauvais, L. (1987). Ordre Scléractiniares, Chapter XI. Systématique. In Traité de Zoologie: Cnidaires, Anthozoaires, vol. 3, ed. Grassé, P.. Paris: Masson, pp. 679–753.Google Scholar
Church, R. and Buffington, E. C. (1969). California black coral. Oceans, 1, 41–44.Google Scholar
Clark, M. R., Tittensor, D., Rogers, A. D.et al. (2006). Seamounts, deep-sea corals and fisheries: vulnerability of deep-sea corals to fishing on seamounts beyond areas of national jurisdiction. Cambridge, UK: UNEP/WCMC.
Coates, A. G. and Kauffman, E. G. (1973). Stratigraphy, paleontology and paleoenvironment of a Cretaceous coral thicket, Lamy, New Mexico. Journal of Paleontology, 47, 953–968.Google Scholar
Cohen, A. L., Gaetani, G. A., Lundälv, T., Corliss, B. H. and George, R. Y. (2006). Compositional variability in a cold-water scleractinian, Lophelia pertusa: new insights into ‘vital effects’. Geochemistry, Geophysics, Geosystems, 7, Q12004 doi: 10.1029/2006GC001354.CrossRefGoogle Scholar
Cohen, A. L. and McConnaughey, T. A. (2003). Geochemical perspectives on coral mineralization. In Biomineralization, vol. 54, ed. Dove, P. M., Yoreo, J. and Weiner, S.. Washington, DC: Mineralogical Society of America, pp. 151–187.Google Scholar
Coles, G. P., Ainsworth, N. R., Whatley, R. C. and Jones, R. W. (1996). Foraminifera and Ostracoda from Quaternary carbonate mounds associated with gas seepage in the Porcupine Basin, offshore western Ireland. Revista Espanõla de Micropaleontologia, 28, 113–151.Google Scholar
Coll, J. C., Leone, P. A., Bowden, B. F.et al. (1995). Chemical aspects of mass spawning in corals. II. (–)-Epi-thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria: Octocorallia). Marine Biology, 123, 137–143.CrossRefGoogle Scholar
Collignon, M. (1931). Paleontologie de Madagaskar. XVI. La faune du Cenomanian a fossile pyriteux du nord de Madagaskar. Annales de Paleontologie, 20, 43–53.Google Scholar
Colman, J. G., Gordon, D. M., Lane, A. P., Forde, M. J. and Fitzpatrick, J. J. (2005). Carbonate mounds off Mauritania, Northwest Africa: status of deep-water corals and implications for management of fishing and oil exploration activities. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M., Berlin Heidelberg: Springer, pp. 417–441.Google Scholar
Colman, S. M. (2007). Conventional wisdom and climate history. Proceedings of the National Academy of Sciences of the United States of America, 104, 6500–6501.CrossRefGoogle ScholarPubMed
Constantz, B. R. (1986). Coral skeleton construction a physiochemically dominated process. Palaios, 1, 152–157.CrossRefGoogle Scholar
Conway, K. W., Krautter, M., Barrie, J. V. and Neuweiler, M. (2001). Hexactinellid sponge reefs on the Canadian continental shelf: a unique ‘Living Fossil’. Geoscience Canada, 28, 71–77.Google Scholar
Conway, K. W., Krautter, M., Barrie, J. V.et al. (2005). Sponge reefs in the Queen Charlotte Basin, Canada: controls on distribution, growth and development. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 605–621.Google Scholar
Copely, J. T. P., Tyler, P. A., Sheader, M., Murton, B. J. and German, C. R. (1996). Megafauna from sublitorral to abyssal depths along the Mid-Atlantic Ridge south of Iceland. Oceanologica Acta, 19, 549–559.Google Scholar
Cordes, E. E., McGinley, M. P., Podowski, E. L.et al. (2008). Coral communities of the deep Gulf of Mexico. Deep-Sea Research Part I, 55, 777–787.CrossRefGoogle Scholar
Costantini, F. and Abbiati, M. (2006). Development of microsatellite markers for the Mediterranean gorgonian coral Corallium rubrum. Molecular Ecology Notes, 6, 521–523.CrossRefGoogle Scholar
Costello, M. J., McCrea, M., Freiwald, A.et al. (2005). Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 771–805.Google Scholar
Cryer, M., Hartill, B. and O'Shea, S. (2002). Modification of marine benthos by trawling: toward a generalization for the deep ocean?Ecological Applications, 12, 1824–1839.CrossRefGoogle Scholar
Cubelio, S. S., Tsuchida, S. and Watanabe, S. (2007). Vent associated Munidopsis (Decapoda: Anomura: Galatheidae) from Brothers Seamount, Kermadec Arc, Southwest Pacific, with description of one new species. Journal of Crustacean Biology, 27, 513–519.CrossRefGoogle Scholar
Cuif, J.-P. (1981). Microstructure versus morphology in the skeleton of Triassic scleractinian corals. Acta Palaeontologica Polonica, 25, 361–374.Google Scholar
Cuif, J.-P. and Dauphin, Y. (2005a). The Environment Recording Unit in coral skeletons: a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences, 2, 61–73.CrossRefGoogle Scholar
Cuif, J.-P. and Dauphin, Y. (2005b). The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale. Journal of Structural Biology, 150, 319–331.CrossRefGoogle ScholarPubMed
Cutler, P. M., Burr, G. S. and Bloom, A. L. (2003). Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth and Planetary Science Letters, 206, 253–271.CrossRefGoogle Scholar
Dahlgren, K. I. T. and Vorren, T. O. (2003). Sedimentary environment and glacial history during the last 40 ka of the Vøring continental margin, mid-Norway. Marine Geology, 193, 93–127.CrossRefGoogle Scholar
Daly, M., Brugler, M. R. Cartwright, P. et al. (2007). The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa, 1668, 127–182.Google Scholar
Daly, M., Fautin, D. G. and Cappola, V. A. (2003). Systematics of the Hexacorallia (Cnidaria: Anthozoa). Zoological Journal of the Linnean Society, 139, 419–437.CrossRefGoogle Scholar
Davies, A. J., Roberts, J. M. and Hall-Spencer, J. (2007). Preserving deep-sea natural heritage: emerging issues in offshore conservation and management. Biological Conservation, 138, 299–312.CrossRefGoogle Scholar
Davies, A. J., Wisshak, M., Orr, J. C. and Roberts, J. M. (2008). Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep-Sea Research Part I, 55, 1048–1062.CrossRefGoogle Scholar
Davies, P. S. (1984). The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs, 2, 181–186.Google Scholar
Angelis d'Ossat, G. and Neviani, A. (1897). Corallari e briozoi neogenici. Bolletino della Società Geologia Italiana, 15, 571–594.Google Scholar
Bary, A. (1879). Die Erscheinung der Symbiose. In Versammlung der Naturforscher und Ärzte zu Cassel, LI, Tageblätter, pp. 1–30.
Delaney, J. R. and Chave, A. D. (2000). NEPTUNE: a fiber-optic ‘telescope’ to inner space, Oceanus, 42, 10–11.Google Scholar
Mol, B., Henriet, J.-P. and Canals, M. (2005). Development of coral banks in Porcupine Seabight: do they have Mediterranean ancestors? In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M., Berlin Heidelberg: Springer, pp. 515–533.Google Scholar
Mol, B., Kozachenko, M., Wheeler, A.et al. (2007). Thérèse Mound: a case study of coral bank development in the Belgica Mound Province, Porcupine Seabight. International Journal of Earth Sciences, 96, 103–120.CrossRefGoogle Scholar
Mol, B., Rensbergen, P., Pillen, S.et al. (2002). Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Marine Geology, 188, 193–231.CrossRefGoogle Scholar
Deng, Z. and Kong, L. (1984). Middle Triassic corals and sponges from southern Guizhou and eastern Yunnan. Acta Paleontologica Sinica, 23, 489–504.Google Scholar
Santo, E. M. and Jones, P. J. S. (2007). The Darwin Mounds: from undiscovered coral to the development of an offshore marine protected area regime. In Conservation and Adaptive Management of Seamount and Deep-sea Coral Ecosystems, ed. George, R. Y. and Cairns, S. D.. Miami: University of Miami, pp. 147–156.Google Scholar
Deuser, W. G. (1986). Seasonal and interannual variations in deep-water particle fluxes in the Sargasso Sea and their relation to surface hydrography. Deep-Sea Research Part A, 33, 225–246.CrossRefGoogle Scholar
Diercks, A. R. and Asper, V. L. (1997). In situ settling speeds of marine snow aggregates below the mixed layer: Black Sea and Gulf of Mexico. Deep-Sea Research Part I, 44, 385–398.CrossRefGoogle Scholar
Di Geronimo, I. (1979). Il Pleistocene in facies batiale di Valle Palione (Grammichele, Catania). Bolletino Malacologico, 15, 85–156.Google Scholar
Di Geronimo, I., Messina, C., Rosso, A.et al. (2005). Enhanced biodiversity in the deep: Early Pleistocene coral communities from southern Italy. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 61–86.Google Scholar
Dodds, L. A., Roberts, J. M., Taylor, A. C. and Marubini, F. (2007). Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. Journal of Experimental Marine Biology and Ecology, 349, 205–214.CrossRefGoogle Scholar
Donovan, S. K. and Jakobsen, S. L. (2004). An unusual crinoid-barnacle association in the type area of the Danian (Paleocene), Denmark. Lethaia, 37, 407–415.CrossRefGoogle Scholar
Dons, C. (1944). Norges korallrev. Det Kongelige Norske Videnskabers Selskabs Forhandlinger, 16, 37–82.Google Scholar
Dorschel, B., Hebbeln, D., Foubert, A., White, M. and Wheeler, A. J. (2007a). Hydrodynamics and cold-water coral facies distribution related to recent sedimentary processes at Galway Mound west of Ireland. Marine Geology, 244, 184–195.CrossRefGoogle Scholar
Dorschel, B., Hebbeln, D., Rüggeberg, A., Dullo, W.-C. and Freiwald, A. (2005). Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth and Planetary Science Letters, 233, 33–44.CrossRefGoogle Scholar
Dorschel, B., Hebbeln, D., Rüggeberg, A. and Dullo, W.-C. (2007b). Carbonate budget of a cold-water coral carbonate mound: Propeller Mound, Porcupine Seabight. International Journal of Earth Sciences, 96, 73–83.CrossRefGoogle Scholar
Douglas, A. E. (1994). Symbiotic Interactions. Oxford: Oxford University Press.Google Scholar
Droser, M. L., Hampt, G. and Clements, S. J. (1993). Environmental patterns in the origin and diversification of rugose and deep-water scleractinian corals. Courier Forschungsinstitut Senckenberg, 164, 47–54.Google Scholar
Druffel, E. R. M. (1997). Geochemistry of corals: proxies of past ocean chemistry, ocean circulation, and climate. Proceedings of the National Academy of Sciences of the United States of America, 94, 8354–8361.CrossRefGoogle ScholarPubMed
Druffel, E. R. M., Griffin, S., Witter, A.et al. (1995). Gerardia: bristlecone pine of the deep sea?Geochimica et Cosmochimica Acta, 59, 5031–5036.CrossRefGoogle Scholar
Druffel, E. R. M., King, L. L., Belastock, R. A. and Buesseler, K. O. (1990). Growth-rate of a deep-sea coral using Pb-210 and other isotopes. Geochimica et Cosmochimica Acta, 54, 1493–1500.CrossRefGoogle Scholar
Duineveld, G. C. A., Lavaleye, M. S. S. and Berghuis, E. M. (2004). Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Marine Ecology Progress Series, 277, 13–23.CrossRefGoogle Scholar
Duineveld, G. C. A., Lavaleye, M. S. S., Bergman, M. J. N., Stigter, H. and Mienis, F. (2007). Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near-bottom particle supply and current regime. Bulletin of Marine Science, 81, 449–467.Google Scholar
Duncan, P. M. (1870). On the Madreporaria dredged up in the expeditions of H.M.S. ‘Porcupine’. Proceedings of the Royal Society of London, 18, 289–301.CrossRefGoogle Scholar
Duncan, P. M. (1873). A description of the Madreporaria dredged up during the expeditions of H.M.S. Porcupine in 1869 and 1870. Part 1. Transactions of the Zoological Society of London, 8, 303–344.CrossRefGoogle Scholar
Duncan, P. M. (1878). A description of the Madreporaria dredged up during the expeditions of H.M.S. Porcupine in 1869 and 1870. Part 2. Transactions of the Zoological Society of London, 10, 235–249.Google Scholar
Duncan, P. M. (1877). On the rapidity of growth and variability of some Madreporaria on an Atlantic Cable, with remarks upon the rate of accumulation of foraminiferal deposits. Proceedings of the Royal Society of London, 26, 133–137.CrossRefGoogle Scholar
Duncan, P. M. (1880). Sind fossil corals and Alcyonaria. Memoirs of the Geological Survey of India, Palaeontologica Indica Series, 7 and 14, 1–110.Google Scholar
Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks, ed. Ham, W. E.. Tulsa: Memoirs of the American Association of Petroleum Geology, 1, pp. 108–121.Google Scholar
Dunn, D. F. (1982). Cnidaria. In Synopsis and Classification of Living Organisms, ed. Parker, S. P.. New York: McGraw-Hill Book Co., pp. 669–706.Google Scholar
Ellis, J. (1755). An Essay Towards a Natural History of the Corallines, and other Marine Productions of the Like Kind, Commmonly Found on the Coasts of Great Britain and Ireland. London: A. Millar, J. Rivington and R. & J. Dodsley.Google Scholar
Eltgroth, S. F., Adkins, J. F., Robinson, L. F., Southon, J. and Kashgarian, M. (2006). A deep-sea coral record of North Atlantic radiocarbon through the Younger Dryas: evidence for intermediate water/deepwater reorganization. Paleoceanography, 21, PA4207, doi: 10.1029/2005PA001192.CrossRefGoogle Scholar
Embry, E. F., III and Klovan, J. E. (1972). Absolute water depth limits of late Devonian paleoecological zones. Geologische Rundschau, 61, 672–686.CrossRefGoogle Scholar
Emiliani, C., Hudson, J. H., Shinn, E. A., George, R. Y. and Lidz, B. (1978). Oxygen and carbon isotopic growth records in a reef coral from the Florida Keys and a deep-sea coral from the Blake Plateau. Science, 202, 627–629.CrossRefGoogle Scholar
Endean, R. (1973). Population explosions of Acanthaster planci and associated destruction of hermatypic corals in the Indo-West Pacific region. In Biology and Geology of Coral Reefs, Vol. II: Biology, ed. Jones, O. A. and Endean, R., New York: Academic Press, pp. 389–438.Google Scholar
Erez, J. (1978). Vital effect on stable-isotope composition seen in Foraminifera and coral skeletons. Nature, 273, 199–202.CrossRefGoogle Scholar
Erwin, D. H. (1994). The Permo–Triassic extinction. Nature, 367, 231–236.CrossRefGoogle Scholar
Etnoyer, P. and Morgan, L. E. (2005). Habitat-forming deep-sea corals in the Northeast Pacific Ocean. In Cold-water Corals and Ecosystems. ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 331–342.Google Scholar
Etnoyer, P. and Morgan, L. E. (2007). Predictive habitat model for deep gorgonians needs better resolution: comment on Bryan & Metaxas (2007). Marine Ecology Progress Series, 339, 311–312.CrossRefGoogle Scholar
Ezaki, Y. (1998). Paleozoic Scleractinia: progenitors or extinct experiments?Paleobiology, 24, 227–234.Google Scholar
Ezaki, Y. (2000). Palaeoecological and phylogenetic implications of a new scleractiniamorph genus from Permian sponge reefs, south China. Palaeontology, 43, 199–217.CrossRefGoogle Scholar
Fadlallah, Y. H. (1983). Sexual reproduction, development and larval biology in scleractinian corals. Coral Reefs, 2, 129–150.CrossRefGoogle Scholar
Fairbanks, G. (1989). A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637–642.CrossRefGoogle Scholar
Fallon, S. J. and Guilderson, T. P. (2008). Surface water processes in the Indonesian Throughflow as documented by a high-resolution coral Δ14C record. Journal of Geophysical Research, 113, C09001 doi: 10.1029/2008JC004722.CrossRefGoogle Scholar
Fauth, J. E., Bernardo, J., Camara, M.et al. (1996). Simplifying the jargon of community ecology: a conceptual approach. American Naturalist, 147, 282–286.CrossRefGoogle Scholar
Fautin, D. G. and Mariscal, R. N. (1991). Chapter 6. Cnidaria: Anthozoa. In Microscopic Anatomy of Invertebrates, Volume 2, Placozoa, Porifera, Cnidaria, and Ctenophora. Wiley-Liss, Inc., pp. 267–358.Google Scholar
Feely, R. A., Fabry, V. J. and Guinotte, J. M. (2008). Ocean acidification of the North Pacific Ocean. PICES Press, 16, 22–25.Google Scholar
Fensome, R. A., Williams, G. L., MacRae, R. A., Moldowan, J. M. and Taylor, F. J. R. (1998). The early Mesozoic radiation of dinoflagellates. Paleobiology, 22, 329–338.CrossRefGoogle Scholar
Fernholm, B. (1991). Eptatretus eos: a new species of hagfish (Myxinidae) from the Tasman Sea. Japanese Journal of Icthyology, 38, 115–118.Google Scholar
Fernholm, B. and Quattrini, A. M. (2008). A new species of hagfish (Myxinidae: Eptatretus) associated with deep-sea coral habitat in the western North Atlantic. Copeia, 1, 126–132.CrossRefGoogle Scholar
Fietzke, J. and Eisenhauer, A. (2006). Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7, Q08009, doi: 10.1029/2006GC001243.CrossRefGoogle Scholar
Filkorn, H. F. (1994). Fossil scleractinian corals from James Ross Basin, Antarctica. Antarctic Research Series, 65, 1–96.Google Scholar
Filkorn, H. F. and Pantoja Alor, J. P. (2004). A new early Cretaceous coral (Anthozoa: Scleractinia: Dendrophylliina) and its evolutionary significance. Journal of Paleontology, 78, 501–512.2.0.CO;2>CrossRefGoogle Scholar
Firestone, R. B., West, A., Kennett, J. P.et al. (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences of the United States of America, 104, 16016–16021.CrossRefGoogle ScholarPubMed
Flint, H. C., Waller, R. G. and Tyler, P. A. (2007). Reproductive ecology of Fungiacyathus marenzelleri from 4100 m depth in the northeast Pacific Ocean. Marine Biology, 151, 843–849.CrossRefGoogle Scholar
Floris, S. (1972). Scleractinian corals from the Upper Cretaceous and Lower Tertiary of Nugssuaq, West Greenland. Meddeleser om Grønland, 196, 1–132.Google Scholar
Flügel, E. (2002). Triassic reef patterns. SEPM Special Publication, 72, 391–463.Google Scholar
Flügel, E. (2004). Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Berlin Heidelberg: Springer.CrossRefGoogle Scholar
Folk, R. L. (1974). The natural history of crystalline calcium carbonate: effects of magnesium content and salinity. Journal of Sedimentary Petrology, 44, 40–53.Google Scholar
Försterra, G., Beuck, L., Häussermann, V. and Freiwald, A. (2005). Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (Paleo)-bathymetric implications. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 937–977.Google Scholar
Fosså, J. H., Lindberg, B., Christensen, O.et al. (2005). Mapping of Lophelia reefs in Norway: experiences and survey methods. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 359–391.Google Scholar
Fosså, J. H., Mortensen, P. B. and Furevik, D. M. (2000). Lophelia-korallrev langs norskekysten forekomst og tilstand. Fisken og Havet, 2, 1–94.Google Scholar
Fosså, J. H., Mortensen, P. B. and Furevik, D. M. (2002). The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiologia, 471, 1–12.CrossRefGoogle Scholar
Foster, A. B. (1980). Environmental variation in skeletal morphology within the Caribbean reef corals Montastrea annularis and Siderastrea siderea. Bulletin of Marine Science, 30, 678–709.Google Scholar
Foubert, A., Beck, T., Wheeler, A. J.et al. (2005). New view of the Belgica Mounds, Porcupine Seabight, NE Atlantic: preliminary results from the Polarstern ARK-XIX/3a ROV cruise. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 403–415.Google Scholar
Fraiser, M. L. and Bottjer, D. J. (2007). Elevated atmospheric CO2 and the delayed biotic recovery from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 164–175.CrossRefGoogle Scholar
France, S. C., Rosel, P. E., Agenbroad, J. E., Mullineaux, L. S. and Kocher, T. D. (1996). DNA sequence variation of mitochondrial large-subunit rRNA provides support for a two-subclass organization of the Anthozoa (Cnidaria). Molecular Marine Biology and Biotechnology, 5, 15–28.Google Scholar
Frank, N., Lutringer, A., Paterne, M.et al. (2005). Deep-water corals of the northeastern Atlantic margin: carbonate mound evolution and upper intermediate water ventilation during the Holocene. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 113–133.Google Scholar
Frank, N., Paterne, M., Ayliffe, L.et al. (2004). Eastern North Atlantic deep-sea corals: tracing upper intermediate water Δ14C during the Holocene. Earth and Planetary Science Letters, 219, 297–309.CrossRefGoogle Scholar
Fraser, R. H. and Currie, D. J. (1996). The species richness–energy hypothesis in a system where historical factors are thought to prevail: coral reefs. American Naturalist, 148, 138–159.CrossRefGoogle Scholar
Frederiksen, R., Jensen, A. and Westerberg, H. (1992). The distribution of the scleractinian coral Lophelia pertusa around the Faroe Islands and the relation to internal tidal mixing. Sarsia, 77, 157–171.CrossRefGoogle Scholar
Freiwald, A. (2002). Reef-forming cold-water corals. In Ocean Margin Systems, ed. Wefer, G., Billett, D., Hebbeln, D.et al. Berlin Heidelberg: Springer, pp. 365–385.Google Scholar
Freiwald, A., Fosså, J. H., Grehan, A., Koslow, T. and Roberts, J. M. (2004). Cold-water Coral Reefs. Cambridge, UK: UNEP/WCMC.Google Scholar
Freiwald, A., Henrich, R. and Pätzold, J. (1997a). Anatomy of a deep-water coral reef mound from Stjernsund, west Finnmark, Northern Norway. SEPM Special Publication, 56, 141–162.Google Scholar
Freiwald, A., Hühnerbach, V., Lindberg, B., Wilson, J. B. and Campbell, J. (2002). The Sula Reef complex, Norwegian Shelf. Facies, 47, 179–200.CrossRefGoogle Scholar
Freiwald, A., Reitner, J. and Krutschinna, J. (1997b). Microbial alteration of the deep-water coral Lophelia pertusa: early postmortem processes. Facies, 36, 223–226.Google Scholar
Freiwald, A. and Wilson, J. B. (1998). Taphonomy of modern deep, cold-temperate water coral reefs. Historical Biology, 13, 37–52.CrossRefGoogle Scholar
Freiwald, A., Wilson, J. B. and Henrich, R. (1999). Grounding Pleistocene icebergs shape recent deep-water coral reefs. Sedimentary Geology, 125, 1–8.CrossRefGoogle Scholar
Freudenthal, T. and Wefer, G. (2007). Scientific drilling with the sea floor drill rig MeBo. Scientific Drilling, 5, 63–66.CrossRefGoogle Scholar
Furla, P., Galgani, I., Durand, I. and Allemand, D. (2000). Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. Journal of Experimental Biology, 203, 3445–3457.Google ScholarPubMed
Gage, J. D. (2003). Food inputs, utilization, carbon flow and energetics. In Ecosystems of the Deep Oceans, vol. 28, ed. Tyler, P. A.. Amsterdam: Elsevier Science BV, pp. 313–380.Google Scholar
Gage, J. D., Hughes, D. J. and Gonzalez Vecino, J. L. (2002). Sieve size influence in estimating biomass, abundance and diversity in samples of deep-sea macrobenthos. Marine Ecology Progress Series, 225, 97–107.CrossRefGoogle Scholar
Gage, J. D. and Tyler, P. A. (1991). Deep-sea Biology: A Natural History of Organisms at the Deep-sea Floor. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Gass, S. E. and Roberts, J. M. (2006). The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: colony growth, recruitment and environmental controls on distribution. Marine Pollution Bulletin, 52, 549–559.CrossRefGoogle ScholarPubMed
Gass, S. E. and Willison, J. H. (2005). An assessment of the distribution of deep-sea corals in Atlantic Canada by using both scientific and local forms of knowledge. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 223–245.Google Scholar
Gattuso, J.-P., Allemand, D. and Frankignoulle, M. (1999). Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. American Zoologist, 39, 160–183.CrossRefGoogle Scholar
Geddes, P. (1882). On the nature and functions of the ‘yellow cells’ of radiolarians and coelenterates. Proceedings of the Royal Society of Edinburgh, 11, 377–396.CrossRefGoogle Scholar
Genin, A., Dayton, P. K., Lonsdale, P. F. and Spiess, F. N. (1986). Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature, 322, 59–61.CrossRefGoogle Scholar
Gerrodette, T. (1979). Equatorial submergence in a solitary coral, Balanophyllia elegans, and the critical life stage excluding the species from shallow water in the south. Marine Ecology Progress Series, 1, 227–235.CrossRefGoogle Scholar
Gerth, H. (1933). Neue Beiträge zur Kenntnis der Korallenfauna des Tertiärs von Java. I: Die Korallen des Eocen und des älteren Neogen. Wetenschappelijke Mededeelingen, 25, 1–45.Google Scholar
Gianni, M. (2004). High Seas Bottom Fisheries and their Impact on the Biodiversity of Vulnerable Deep-sea Ecosystems. WWF, Conservation International, NRDC, IUCN.
Gibson, M. E. (1981). The plight of Allopora. Sea Frontiers, 27, 211–218.Google Scholar
Gili, J. M., Coma, R., Orejas, C., Lopez-Gonzalez, P. J. and Zabala, M. (2001). Are Antarctic suspension-feeding communities different from those elsewhere in the world?Polar Biology, 24, 473–485.CrossRefGoogle Scholar
Gill, V. (2007). Treasures from the deep. Chemistry World, 4, 38–42.Google Scholar
Giovannoni, S. and Stingl, U. (2007). The importance of culturing bacterioplankton in the ‘omics’ age. Nature Reviews Microbiology, 5, 820–826.CrossRefGoogle Scholar
Girone, A., Nolf, D. and Cappetta, H. (2006). Pleistocene fish otoliths from the Mediterranean Basin: a synthesis. Geobios, 39, 651–671.CrossRefGoogle Scholar
Glover, A. G. and Smith, C. R. (2003). The deep-sea floor ecosystem: current status and prospects of anthopogenic change by the year 2025. Environmental Conservation, 30, 219–241.CrossRefGoogle Scholar
Goldberg, W. M., Hopkins, T. L., Holl, S. M.et al. (1994). Chemical composition of the sclerotized black coral skeleton (Coelenterata, Antipatharia): a comparison of two species. Comparative Biochemistry and Physiology B – Biochemistry & Molecular Biology, 107, 633–643.CrossRefGoogle Scholar
Goldstein, S. J., Lea, D. W., Chakraborty, S., Kashgarian, M. and Murrell, M. T. (2001). Uranium-series and radiocarbon geochronology of deep-sea corals: implications for Southern Ocean ventilation rates and the oceanic carbon cycle. Earth and Planetary Science Letters, 193, 167–182.CrossRefGoogle Scholar
Gooday, A. J. (2002). Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. Journal of Oceanography, 58, 305–332.CrossRefGoogle Scholar
Goodfriend, G. A. (1997). Aspartic acid racemization and amino acid composition of the organic endoskeleton of the deep-water colonial anemone Gerardia: determination of longevity from kinetic experiments. Geochimica et Cosmochimica Acta, 61, 1931–1939.CrossRefGoogle Scholar
Gordon, J. D. M. (2001). Deep-water fisheries at the Atlantic Frontier. Continental Shelf Research, 21, 987–1003.CrossRefGoogle Scholar
Goreau, T. F. (1959). The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biological Bulletin, 116, 59–75.CrossRefGoogle Scholar
Goreau, T. F. (1961). Problems of growth and calcium deposition in reef corals. Endeavour, 20, 32–39.CrossRefGoogle Scholar
Gori, A., Linares, C., Rossi, S., Coma, R. and Gili, J. M. (2007). Spatial variability in reproductive cycle of the gorgonians Paramuricea clavata and Eunicella singularis (Anthozoa, Octocorallia) in the Western Mediterranean Sea. Marine Biology, 151, 1571–1584.CrossRefGoogle Scholar
Gosse, P. H. (1860). Actinologia Britannica. A History of the British Sea-Anemones and Corals. London: Van Voorst.CrossRefGoogle Scholar
Goud, J. and Hoeksema, B. W. (2001). Pedicularia vanderlandi spec. nov., a symbiotic snail (Caenogastropoda: Ovulidae) on the hydrocoral Distichopora vervoorti Cairns and Hoeksema, 1998 (Hydrozoa: Stylasteridae), from Bali, Indonesia. Zoologische Verhandelingen (Leiden) 334, 77–97.Google Scholar
Gradstein, F. M., Ogg, J. G. and Smith, A. G. (2004). A Geologic Time Scale. Cambridge University Press.Google Scholar
Grasmueck, M., Eberli, G. P., Viggiano, D. A.et al. (2006). Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the Straits of Florida. Geophysical Research Letters, 33, L23616, doi: 10.1029/2006GL027734.CrossRefGoogle Scholar
Grasshoff, M. (1980). Isididae aus dem Pliozän und Pleistozän von Sizilien (Cnidaria: Octocorallia). Senckenbergiana Lethaea, 60, 435–447.Google Scholar
Grassle, J. F. and Maciolek, N. J. (1992). Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. American Naturalist, 139, 313–341.CrossRefGoogle Scholar
Greene, H. G., Yoklavich, M. M., Starr, R. M.et al. (1999). A classification scheme for deep seafloor habitats. Oceanologica Acta, 22, 663–678.CrossRefGoogle Scholar
Grehan, A. J., Unnithan, V., Olu Le Roy, K. and Opderbecke, J. (2005). Fishing impacts on Irish deepwater coral reefs: making a case for coral conservation. In Benthic Habitats and the Effects of Fishing, ed. Barnes, P. W. and Thomas, J. P.. American Fisheries Society Symposium, 41, 819–832.Google Scholar
Griffin, S. and Druffel, E. R. M. (1989). Sources of carbon to deep-sea corals. Radiocarbon, 31, 533–543.CrossRefGoogle Scholar
Grigg, R. W. (1974). Distribution and abundance of precious corals in Hawaii. Proceedings of the 2nd International Coral Reef Symposium, Brisbane, Australia, 2, 235–240.Google Scholar
Grigg, R. W. (1976). Fishery management of precious and stony corals in Hawaii. Sea Grant Technical Report. University of Hawaii.Google Scholar
Grigg, R. W. (1993). Precious coral fisheries of Hawaii and the US Pacific islands. US National Marine Fisheries Service Marine Fisheries Review, 55, 50–60.Google Scholar
Grigg, R. W. (2002). Precious corals in Hawaii: discovery of a new bed and revised management measures for existing beds. US National Marine Fisheries Service Marine Fisheries Review, 64, 13–20.Google Scholar
Grimmelikhuijzen, C. J. P., Williamson, M. and Hansen, G. N. (2002). Neuropeptides in cnidarians. Canadian Journal of Zoology–Revue Canadienne de Zoologie, 80, 1690–1702.CrossRefGoogle Scholar
Grosberg, R. and Cunningham, C. W. (2001). Genetic structure in the sea: from populations to communities. In Marine Community Ecology, ed. Bertness, M. D., Gaines, S. D. and Hay, M. E.. Sunderland, MA: Sinauer Associates, Inc., pp. 61–84.Google Scholar
Grottoli, A. G. and Eakin, C. M. (2007). A review of modern coral δ18O and Δ14C proxy records. Earth-Science Reviews, 81, 67–91.CrossRefGoogle Scholar
Gruszczynski, M. A., Hoffman, A., Malkowski, K., Tatur, A. and Halas, S. (1990). Some geochemical aspects of life and burial environments of late Jurassic scleractinian corals from northern Poland. Neues Jahrbuch für Geologie und Paläontologie Monatsheft, 11, 673–686.Google Scholar
Grygier, M. J. (1982). Introcornia conjugans n. gen. n. sp. parasitic in a Japanese ahermatypic coral (Crustacea: Ascothoracida: Petrarcidae). Senckenbergiana Biologica, 63, 419–426.Google Scholar
Grygier, M. J. (1990). Introcornia (Crustacea: Ascothoracida: Petrarcidae) parasitic in an ahermatypic coral from Saint Paul Island, Indian Ocean. Vie et Milieu, 40, 313–318.Google Scholar
Grygier, M. J. and Newman, W. A. (1985). Motility and calcareous parts in extant and fossil Acrothoracica (Crustacea: Cirripedia), based primarily upon new species burrowing in the deep-sea scleractinian coral Enallopsammia. Transactions of the San Diego Society of Natural History, 21, 1–22.CrossRefGoogle Scholar
Guinotte, J. M., Orr, J., Cairns, S.et al. (2006). Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals?Frontiers in Ecology and the Environment, 4, 141–146.CrossRefGoogle Scholar
Gunnerus, J. E. (1768). Om nogle Norske coraller. Det Kongelige Norske Videnskabers Selskabs Skrifter, 4, 38–73.Google Scholar
Gutt, J. and Starmans, A. (1998). Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biology, 20, 229–247.CrossRefGoogle Scholar
Halfar, J. and Fujita, R. M. (2007). Danger of deep-sea mining. Science, 316, 987.CrossRefGoogle ScholarPubMed
Hall-Spencer, J., Allain, V. and Fosså, J. H. (2002). Trawling damage to Northeast Atlantic ancient coral reefs. Proceedings of the Royal Society of London Series B–Biological Sciences, 269, 507–511.CrossRefGoogle ScholarPubMed
Hall-Spencer, J. M., Pike, J. and Munn, C. B. (2007). Diseases affect cold-water corals too: Eunicella verrucosa (Cnidaria: Gorgonacea) necrosis in SW England. Diseases of Aquatic Organisms, 76, 87–97.CrossRefGoogle ScholarPubMed
Halpern, B. S. (2003). The impact of marine reserves: do reserves work and does reserve size matter?Ecological Applications, 13, S117–S137.CrossRefGoogle Scholar
Harasewych, M. G. and Sedberry, G. R. (2006). Rediscovery, range extension, and redescription of Calliostoma torrei Clench and Aguayo, 1940 (Gastropoda: Vetigastropoda: Calliostomatidae). The Nautilus, 120, 39–44.Google Scholar
Harmelin, J. G. (1990). Interactions between small sciaphilous scleractinians and epizoans in the northern Mediterranean, with particular reference to bryozoans. Marine Ecology – Pubblicazioni della Stazione Zoologica di Napoli I, 11, 351–364.CrossRefGoogle Scholar
Harrison, P. L. and Wallace, C. C. (1990). Reproduction, dispersal and recruitment of scleractinian corals. In Ecosystems of the World: Coral Reefs, ed. Dubinsky, Z.. New York: Elsevier Science, pp. 133–207.Google Scholar
Hartl, D. L. and Clark, A. G. (1997). Principles of Population Genetics. Sunderland, MA: Sinauer Associates, Inc.Google Scholar
Heifetz, J. (2002). Coral in Alaska: distribution, abundance, and species associations. Hydrobiologia, 471, 19–28.CrossRefGoogle Scholar
Heifetz, J., Wing, B. L., Stone, R. P., Malecha, P. W. and Courtney, D. L. (2005). Corals of the Aleutian Islands. Fisheries Oceanography, 14, 131–138.CrossRefGoogle Scholar
Heikoop, J. M., Hickmott, D. D., Risk, M. J., Shearer, C. K. and Atudorei, V. (2002). Potential climate signals from the deep-sea gorgonian coral Primnoa resedaeformis. Hydrobiologia, 471, 117–124.CrossRefGoogle Scholar
Heindel, K. (2004). Palökologische Untersuchungen an einem Karbonat Mound: Propeller Mound/Porcupine Seabight. Unpublished Diploma thesis, Erlangen University.
Hellberg, M. E., Burton, R. S., Neigel, J. E. and Palumbi, S. R. (2002). Genetic assessment of connectivity among marine populations. Bulletin of Marine Science, 70, 273–290.Google Scholar
Helm, C. and Kosma, R. (2006). Reconstruction of the unusual Late Cretaceous hexactinellid sponge Aphrocallistes alveolites (Roemer, 1841). Paläontologische Zeitschrift, 80, 22–33.CrossRefGoogle Scholar
Helm, C. and Schülke, I. (2003). An almost complete specimen of the Late Cretaceous (Campanian) octocoral ‘Isis’ ramosa (Voigt) (Gorgonacea) from the Lower Saxony Basin, northwest Germany. Cretaceous Research, 24, 35–40.CrossRefGoogle Scholar
Henriet, J.-P, Mol, B., Pillen, S.et al. (1998). Gas hydrate crystals may help build reefs. Nature, 391, 648–649.CrossRefGoogle Scholar
Henriet, J.-P., Mol, B., Vanneste, M., Huvenne, V. and Rooij, D. (2001). Carbonate mounds and slope failures in the Porcupine Basin: a development model involving past fluid venting. In The Petroleum Exploration of Ireland's Offshore Basins, ed. Shannon, P. M., P. D. W. Haughton and Corcoran, D. V.. London: Geological Society of London Special Publication, 188, 375–383.Google Scholar
Henriet, J.-P., Guidard, S. and ,the ODP ‘Proposal 573’ Team (2003). Carbonate mounds as a possible example for microbial activity in geological processes. In Ocean Margin Systems, ed. Wefer, G., Billett, D., Hebbeln, D.et al. Berlin Heidelberg: Springer, pp. 439–455.Google Scholar
Henry, L.-A. and Roberts, J. M. (2007). Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep-Sea Research Part I, 54, 654–672.CrossRefGoogle Scholar
Herbinger, C. M., Reith, M. E. and Jackson, T. R. (2003). DNA markers and aquaculture genetics. In Molecular Genetics of Marine Organisms, ed. Fingerman, M. and Nagabhushanam, R.. Enfield, USA: Science Publishers, Inc., pp. 367–419.Google Scholar
Hillis, D. M. and Dixon, M. T. (1991). Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66, 410–453.CrossRefGoogle ScholarPubMed
Hind, A., Gurney, W. S. C., Heath, M. and Bryant, A. D. (2000). Overwintering strategies in Calanus finmarchicus. Marine Ecology Progress Series, 193, 95–107.CrossRef
Hirzel, A. H., Hausser, J., Chessel, D. and Perrin, N. (2002). Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data?Ecology, 83, 2027–2036.CrossRefGoogle Scholar
Hirzel, A. H., Posse, B., Oggier, P. A.et al. (2004). Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture. Journal of Applied Ecology, 41, 1103–1116.CrossRefGoogle Scholar
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J.et al. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–1742.CrossRefGoogle ScholarPubMed
Høie, H., Andersson, C., Folkvord, A. and Karlsen, Ø. (2004). Precision and accuracy of stable isotope signals in otoliths of pen-reared cod (Gadus morhua) when sampled with a high-resolution micromill. Marine Biology, 144, 1039–1049.CrossRefGoogle Scholar
Hovland, M. (1990). Do carbonate reefs form due to fluid seepage?Terra Nova, 2, 8–18.CrossRefGoogle Scholar
Hovland, M. (2005). Pockmark-associated coral reefs at the Kristin field off Mid-Norway. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 623–632.Google Scholar
Hovland, M. (2008). Deep Water Coral Reefs: Unique Biodiversity Hot-spots. Chichester: Springer-Praxis.Google Scholar
Hovland, M., Croker, P. F. and Martin, M. (1994a). Fault-associated seabed mounds (carbonate knolls?) off western Ireland and north-west Australia. Marine and Petroleum Geology, 11, 232–245.CrossRefGoogle Scholar
Hovland, M., Farestveit, R. and Mortensen, P. B. (1994b). Large cold-water coral reefs off mid-Norway: a problem for pipe-laying. Oceanology International, 3, 35–40.Google Scholar
Hovland, M. and Mortensen, P. B. (1999). Norske korallrev og prosesser i havbunnen. Bergen: John Grieg Forlag.Google Scholar
Hovland, M., Mortensen, P., Brattegard, T., Strass, P. and Rokoengen, K. (1998). Ahermatypic coral banks off mid-Norway: evidence for a link with seepage of light hydrocarbons. Palaios, 13, 189–200.CrossRefGoogle Scholar
Hovland, M. and Risk, M. (2003). Do Norwegian deep-water coral reefs rely on seeping fluids?Marine Geology, 198, 83–96.CrossRefGoogle Scholar
Hovland, M. and Thomsen, E. (1997). Cold-water corals: are they hydrocarbon seep related?Marine Geology, 137, 159–164.CrossRefGoogle Scholar
Hugenholtz, P., Goebel, B. M. and Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 180, 4765–4774.Google ScholarPubMed
Husebø, A., Nøttestad, L., Fosså, J. H., Furevik, D. M. and Jørgensen, S. B. (2002). Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia, 471, 91–99.CrossRefGoogle Scholar
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology, 22, 415–427.CrossRefGoogle Scholar
Huvenne, V. A. I., Bailey, W. R., Shannon, P. M.et al. (2007). The Magellan mound province in the Porcupine Basin. International Journal of Earth Sciences, 96, 85–101.CrossRefGoogle Scholar
Huvenne, V. A. I., Beyer, A., Haas, H.et al. (2005). The seabed appearance of different coral bank provinces in the Porcupine Seabight, NE Atlantic: results from sidescan sonar and ROV seabed mapping. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 535–569.Google Scholar
Huvenne, V. A. I., Mol, B. and Henriet, J.-P. (2003). A 3D seismic study of the morphology and spatial distribution of buried coral banks in the Porcupine Basin, SW of Ireland, Marine Geology, 198, 5–25.CrossRefGoogle Scholar
Hyman, L. H. (1940). The Invertebrates: Volume 1. Protozoa through Ctenophora. New York: McGraw Hill Book Co.Google Scholar
Iken, K., Brey, T., Wand, U., Voigt, J. and Junghans, P. (2001). Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Progress in Oceanography, 50, 383–405.CrossRefGoogle Scholar
Ingemann Schnetler, K. and Petit, R. E. (2006). Revision of the gastropod family Cancellariidae from the Danian (Early Paleocene) of Fakse, Denmark. Cainozoic Research, 4, 97–108.Google Scholar
,IODP Expedition Scientists (2005). Modern carbonate mounds: Porcupine drilling. International Ocean Drilling Program.Google Scholar
Isa, Y. and Yamazato, K. (1984). The distribution of carbonic anhydrase in a staghorn coral, Acropora hebes (Dana). Galaxea, 3, 25–36.Google Scholar
Jablonski, D. (2005). Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. Journal of Experimental Zoology Part B – Molecular and Developmental Evolution, 304, 504–519.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., Kirby, M. X., Berger, W. H.et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–638.CrossRefGoogle ScholarPubMed
Jakobsen, S. L. (2003). A new preparatory approach of decapod and thoracican crustaceans from the Middle Danian at Fakse, Denmark. Contributions to Zoology, 72, 141–145.Google Scholar
James, N. P. (1974). Diagenesis of scleractinian corals in the subaerial vadose environment. Journal of Sedimentary Petrology, 48, 785–799.Google Scholar
Jennings, S. and Kaiser, M. (1998). The effects of fishing on marine ecosystems. Advances in Marine Biology, 34, 201–352.CrossRefGoogle Scholar
Jensen, A. and Frederiksen, R. (1992). The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinaria) on the Faroe shelf. Sarsia, 77, 53–69.CrossRefGoogle Scholar
Johnson, R. G. (1964). The community approach to paleoecology. In Approaches to Paleoecology, ed. Imbrie, J. and Newell, N. D.. New York: Wiley, pp. 107–134.Google Scholar
Jones, C. G., Lawton, J. H. and Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.CrossRefGoogle Scholar
Jones, G. P., Milicich, M. J., Emslie, M. J. and Lunow, C. (1999). Self-recruitment in a coral reef fish population. Nature, 402, 802–804.CrossRefGoogle Scholar
Jonsson, L. G., Nilsson, P. G., Floruta, F. and Lundälv, T. (2004). Distributional patterns of macro- and megafauna associated with a reef of the cold-water coral Lophelia pertusa on the Swedish west coast. Marine Ecology Progress Series, 284, 163–171.CrossRefGoogle Scholar
Joubin, M. L. (1922). Les coraux de mer profonde nuisibles aux chalutiers. Office Scientifique et Technique des Pêches Maritimes. Notes et Mémoires, 18, 5–16.Google Scholar
Kano, A., Ferdelman, T. G., Williams, T.et al. (2007). Age constraints on the origin and growth history of a deep-water coral mound in NE Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology, 35, 1051–1054.CrossRefGoogle Scholar
Kaszemeik, K. and Freiwald, A. (2002). Lophelia pertusa (Scleractinia): from skeletal structures to growth patterns and morphotypes. Atlantic Coral Ecosystem Study, Unpublished Report.
Kear, D. and Schofield, J. C. (1978). Geology of the Ngaruawahia subdivision. New Zealand Geological Survey Bulletin, 88, 1–168.Google Scholar
Keller, N. B. (1976). The deep-sea madreporarian corals of the genus Fungiacyathus from the Kurile-Kamchatka, Aleutian Trenches and other regions of the world oceans. Trudy Institut Okeanologii, 99, 31–44 (in Russian).Google Scholar
Keller, N. B. (1978). Morphological and ontogenetic characteristics of deep water corals. Trudy Institut Okeanologii, 113, 44–50 (in Russian).Google Scholar
Keller, N. B. (1985). Coral populations of underwater ridges in the North Pacific and Atlantic Oceans. Oceanology, 25, 1021–1024 (pp. 784–786 of published English translation).Google Scholar
Keller, N. B. (1998). Spatial distribution of the azooxanthellate Scleractinia (Cnidaria, Anthozoa). Oceanology, 38, 206–210.Google Scholar
Keller, N. B. and Pasternak, F. A. (1996). Fauna of corals on the Antarctic continental slope and an estimation of its role in the formation of present deep-sea ocean bottom fauna. Oceanology, 36, 548–552.Google Scholar
Kellogg, C. A. (2008). Microbial ecology of Lophelia pertusa in the northern Gulf of Mexico. In Characterization of Northern Gulf of Mexico Deepwater Hard Bottom Communities with Emphasis on Lophelia Coral: Lophelia Reef Megafaunal Community Structure, Biotopes, Genetics, Microbial Ecology, and Geology (2004–2006), ed. Sulak, K. J., Randall, M. T., Luke, K. E., Norem, A. D. and Miller, J. M.. US Geological Survey & US Minerals Management Service.Google Scholar
Kenyon, N. H., Akhmetzhanov, A. M., Wheeler, A. J.et al. (2003). Giant carbonate mud mounds in the southern Rockall Trough. Marine Geology, 195, 5–30.CrossRefGoogle Scholar
Kershaw, S., Li, Y., Crasquin-Soleau, S.et al. (2007). Earliest Triassic microbialites in the South China block and other areas: controls on their growth and distribution. Facies, 53, 409–425.CrossRefGoogle Scholar
Khan, A. S., Sumaila, U. R., Watson, R., Munro, G. and Pauly, D. (2006). The nature and magnitude of global non-fuel fisheries subsidies. In Catching More Bait: A Bottom-up Re-estimation of Global Fisheries Subsidies, vol. 14, ed. Sumaila, U. R. and Pauly, D.. Fisheries Centre, the University of British Columbia, Vancouver, Canada, pp. 5–37.Google Scholar
Kiessling, W. and Baron-Szabo, R. C. (2004). Extinction and recovery patterns of scleractinian corals at the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 214, 195–223.CrossRefGoogle Scholar
Kiessling, W., Flügel, E. and Golonka, J. (eds.) (2002). Phanerozoic reef patterns. SEPM Special Publication, 72, 1–775.Google Scholar
Kiørboe, T. (2001). Formation and fate of marine snow: small-scale processes with large-scale implications. Scientia Marina, 65, 57–71.CrossRefGoogle Scholar
Kiriakoulakis, K., Bett, B. J., White, M. and Wolff, G. A. (2004). Organic biogeochemistry of the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic. Deep-Sea Research Part I, 51, 1937–1954.CrossRefGoogle Scholar
Kiriakoulakis, K., Fisher, E., Wolff, G. A.et al. (2005). Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 715–729.Google Scholar
Kiriakoulakis, K., Freiwald, A., Fisher, E. and Wolff, G. A. (2007). Organic matter quality and supply to deep-water coral/mound systems of the NW European continental margin. International Journal of Earth Sciences, 96, 159–170.CrossRefGoogle Scholar
Kirkland, B. L., Dickson, J. A. D., Wood, R. A. and Land, L. S. (1998). Microbialite and microstratigraphy: the origin of encrustations in the Capitan Formation, Guadalupe Mountains, Texas and New Mexico. Journal of Sedimentary Petrology, 68, 956–969.CrossRefGoogle Scholar
Kitahara, M. V. (2007). Species richness and distribution of azooxanthellate Scleractinia in Brazilian waters. Bulletin of Marine Science, 81, 497–518.Google Scholar
Kitchingman, A. and Lai, S. (2004). Inferences on potential seamount locations from mid-resolution bathymetric data. In Seamounts: Biodiversity and Fisheries, ed. Morato, T. and Pauly, D.. Fisheries Centre Research Reports, 12, 25–32.
Kleypas, J. A., Feely, R. A., Fabry, V. J.et al. (2006). Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA and the US Geological Survey.
Klitgaard, A. B. and Tendal, O. S. (2001). ‘Ostur’ – ‘cheese bottoms’ – sponge dominated areas in Faroese shelf and slope waters. In Marine Biological Investigations and Assemblages of Benthic Invertebrates from the Faroe Islands, ed. Bruntse, G. and Tendal, O. S.. Kaldbak: Kaldbak Marine Biological Laboratory, pp. 13–21.Google Scholar
Klitgaard, A. B., Tendal, O. S. and Westerberg, H. (1997). Mass occurrences of large sponges (Porifera) in Faroe Island (NE Atlantic) shelf and slope areas: characteristics, distribution and possible causes. In The Responses of Marine Organisms to their Environments, ed. Hawkins, L. E. and Hutchinson, S., with Jensen, A. C., Sheader, M. and Williams, J. A.. Southampton: University of Southampton: Proceedings of the 30th European Marine Biology Symposium, pp. 129–142.Google Scholar
Knoll, A. H., Bambach, R. K., Canfield, D. E. and Grotzinger, J. P. (1996). Comparative Earth history and Late Permian mass extinction. Science, 273, 452–457.CrossRefGoogle ScholarPubMed
Kölliker, A. (1865). Icones histiologicae oder Atlas der vergleichenden Gewebelehre. Zweite Abtheilung. Der feinere Bau der höheren Thiere. Erstes Heft. Die Bindesubstanz der Coelenteraten. Leipzig: Verlag von Wilhelm Engelmann.Google Scholar
Könnecker, G. and Freiwald, A. (2005). Plectroninia celtica n. sp. (Calcarea, Minchinellidae), a new species of ‘pharetronid’ sponge from bathyal depths in the northern Porcupine Seabight, NE Atlantic. Facies, 51, 53–59.CrossRefGoogle Scholar
Kontiza, I., Abatis, D., Malakate, K., Vagias, C. and Roussis, V. (2006). 3-Keto steroids from the marine organisms Dendrophyllia cornigera and Cymodocea nodosa. Steroids, 71, 177–181.CrossRefGoogle ScholarPubMed
Koslow, J. A., Gowlett-Holmes, K., Lowry, J. K.et al. (2001). Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling. Marine Ecology Progress Series, 213, 111–125.CrossRefGoogle Scholar
Kourti, N., Shepherd, I., Greidanus, H.et al. (2005). Integrating remote sensing in fisheries control. Fisheries Management and Ecology, 12, 295–307.CrossRefGoogle Scholar
Kozachenko, M. (2005). Present and past environments of the Belgica Mounds (deep-water coral carbonate mounds), Eastern Porcupine Seabight, North East Atlantic. Unpublished PhD thesis, University College Cork.
Krieger, K. J. (1993). Distribution and abundance of rockfish determined from a submersible and by bottom trawling. Fisheries Bulletin, 91, 87–96.Google Scholar
Krieger, K. J. and Wing, B. L. (2002). Megafauna associations with deepwater corals (Primnoa spp.) in the Gulf of Alaska. Hydrobiologia, 471, 83–90.CrossRefGoogle Scholar
Kring, D. A. (2007). The Chicxulub impact and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 255, 4–21.CrossRefGoogle Scholar
Krone, M. and Biggs, D. (1980). Sublethal metabolic responses of the hermatypic coral Madracis decactis exposed to drilling mud enriched with ferrochrome lignosulfate. In Research on Environmental Fate and Effects of Drilling Fluids and Cuttings 2, Washington, DC: Courtesy Associates, pp. 1079–1100.Google Scholar
Kükenthal, W. (1915). Pennatularia. Das Tierreich, 43, i–xv & 1–132. Berlin: Verlag von R. Friedländer und Sohn.
Kükenthal, W. (1919). Gorgonaria. Wissenschaftliche Ergebnisse der deutschen Tiefsee-Expedition ‘Valdivia’, 1898–1899, 13(2), 1–946.Google Scholar
Kükenthal, W. (1924). Coelenterata: Gorgonaria. Das Tierreich. Berlin: Walter de Gruyter and Co.Google Scholar
Kükenthal, W. and Broch, H. (1911). Pennatulacea. Wissenschaftliche Ergebnisse der deutschen Tiefsee-Expedition ‘Valdivia’, 1898–1899, 13(1), 113–576.Google Scholar
Labeyrie, L. D., Duplessy, J.-C. and Blanc, P. L. (1987). Variations in mode of formation and temperature of oceanic deep-water over the past 125 000 years. Nature, 327, 477–482.CrossRefGoogle Scholar
Ladd, H. S. (1970). Eocene molluscs from Eua, Tonga. United States Geological Survey Professional Paper, C640, 1–12.Google Scholar
Lafuste, J., Debrenne, F., Gandin, A. and Gravestock, D. (1991). The oldest tabulate coral and the associated Archaeocyatha, Lower Cambrian, Flinders Ranges, South Australia. Geobios, 24, 697–718.CrossRefGoogle Scholar
Land, L. S. (1976). Early dissolution of sponge spicules from reef sediments, North Jamaica. Journal of Sedimentary Petrology, 46, 967–969.Google Scholar
Langdon, C., Broecker, W. S., Hammond, D. E.et al. (2003). Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochemical Cycles, 17, 1101, doi: 10.1029/2002GB001941.CrossRefGoogle Scholar
Langdon, C., Takahashi, T., Sweeney, C.et al. (2000). Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles, 14, 639–654.CrossRefGoogle Scholar
Larkin, J., Aharon, P. and Henk, M. C. (1994). Beggiatoa in microbial mats at hydrocarbon vents in the Gulf of Mexico and warm mineral springs, Florida. Geo-Marine Letters, 14, 97–103.CrossRefGoogle Scholar
Latham, M. H. (1929). Jurassic and Kainozoic corals from Somaliland. Transactions of the Royal Society of Edinburgh, 56, 273–290.CrossRefGoogle Scholar
LaVigne, M., Field, M. P., Anagnostou, E.et al. (2008). Skeletal P/Ca tracks upwelling in Gulf of Panama coral: evidence for a new seawater phosphate proxy. Geophysical Research Letters, 35, L05604, doi: 10.1029/2007GL031926.CrossRefGoogle Scholar
Lebar, M. D., Heimbegner, J. L. and Baker, B. J. (2007). Cold-water marine natural products. Natural Product Reports, 24, 774–797.CrossRefGoogle ScholarPubMed
Leclercq, N., Gattuso, J.-P. and Jaubert, J. (2000). CO2 partial pressure controls the calcification rate of a coral community. Global Change Biology, 6, 329–334.CrossRefGoogle Scholar
Danois, E. (1948). Les profondeurs de la Mer. Paris: Payot.Google Scholar
Lees, A. and Miller, J. (1995). Waulsortian banks. In Carbonate Mud-mounds: Their Origin and Evolution, ed. Monty, C. L. V., Bosence, D. W. J., Bridges, P. H. and Pratt, B. R.. New York: International Association of Sedimentologists Special Publication, 23, pp. 191–271.Google Scholar
Goff, M. C. and Rogers, A. D. (2002). Characterization of 10 microsatellite loci for the deep-sea coral Lophelia pertusa (Linnaeus 1758). Molecular Ecology Notes, 2, 164–166.CrossRefGoogle Scholar
Goff-Vitry, M. C., Pybus, O. G. and Rogers, A. D. (2004a). Genetic structure of the deep-sea coral Lophelia pertusa in the northeast Atlantic revealed by microsatellites and internal transcribed spacer sequences. Molecular Ecology, 13, 537–549.CrossRefGoogle ScholarPubMed
Goff-Vitry, M. C., Rogers, A. D. and Baglow, D. (2004b). A deep-sea slant on the molecular phylogeny of the Scleractinia. Molecular Phylogenetics and Evolution, 30, 167–177.CrossRefGoogle ScholarPubMed
Leinfelder, R. R., Schmid, D. U., Nose, M. and Werner, W. (2002). Jurassic reef patterns: the expression of a changing globe. SEPM Special Publication, 72, 465–520.Google Scholar
Lepland, A. and Mortensen, P. B. (2008). Barite and barium in sediments and coral skeletons around the hydrocarbon exploration drilling site in the Træna Deep, Norwegian Sea. Environmental Geology, 56, 119–129.CrossRefGoogle Scholar
Lepot, K., Benzerara, K., Brown, G. E. and Philippot, P. (2008). Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geoscience, 1, 118–121.CrossRefGoogle Scholar
Lesser, M. P., Bythell, J. C., Gates, R. D., Johnstone, R. W. and Hoegh-Guldberg, O. (2007). Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. Journal of Experimental Marine Biology and Ecology, 346, 36–44.CrossRefGoogle Scholar
Leverette, T. L. and Metaxas, A. (2005). Predicting habitat for two species of deep-water coral on the Canadian Atlantic continental shelf and slope. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 467–479.Google Scholar
Levin, I. and Kromer, B. (1997). Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon, 39, 205–18.CrossRefGoogle Scholar
Levin, I., Kromer, B., Schoch-Fischer, H.et al. (1994). δ14CO2 records from two sites in central Europe. In Trends 93 – A Compendium of Data on Global Change and Online Updates, ed. Boden, T. A., Kaiser, D. P., Sepanski, R. J. and Stoss, F. W.. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, pp. 203–222.Google Scholar
Levin, L. A. and Mendoza, G. F. (2007). Community structure and nutrition of deep methane-seep macrobenthos from the North Pacific (Aleutian) Margin and the Gulf of Mexico (Florida Escarpment). Marine Ecology, 28, 131–151.CrossRefGoogle Scholar
Levitus, S., Antonov, J. and Boyer, T. (2005). Warming of the world ocean, 1955–2003. Geophysical Research Letters, 32, L02604, doi: 10.1029/2004GL021592.CrossRefGoogle Scholar
Levy, O., Appelbaum, L., Leggat, W.et al. (2007). Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science, 318, 467–470.CrossRefGoogle ScholarPubMed
Lewis, J. C. and Wallis, E. (1991). The function of surface sclerites in gorgonians (Coelenterata, Octocorallia). Biological Bulletin, 181, 275–288.CrossRefGoogle Scholar
Lindberg, B., Berndt, C. and Mienert, J. (2007). The Fugløy Reef at 70°N: acoustic signature, geologic, geomorphologic and oceanographic setting. International Journal of Earth Sciences, 96, 201–213.CrossRefGoogle Scholar
Lindberg, B. and Mienert, J. (2005a). Post-glacial carbonate production by cold-water corals on the Norwegian Shelf and their role in the global carbonate budget. Geology, 33, 537–540.CrossRefGoogle Scholar
Lindberg, B. and Mienert, J. (2005b). Sedimentology and geochemical environment of the Fugløy Reef off northern Norway. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 633–650.Google Scholar
Lindner, A., Cairns, S. D. and Cunningham, C. W. (2008). From offshore to onshore: multiple origins of shallow-water corals from deep-sea ancestors. PLoS ONE, 3, e2429, doi: 10.1371/journal.pone.0002429.CrossRefGoogle ScholarPubMed
Linklater, E. (1972). The Voyage of the Challenger. Garden City, NY: Doubleday and Company Inc.Google Scholar
Lipps, J. H. (1973). Test structure in Foraminifera. Annual Review of Microbiology, 27, 471–486.CrossRefGoogle ScholarPubMed
Lisiecki, L. E. and Raymo, M. E. (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi: 10.1029/2004PA001071.Google Scholar
Loel, W. and Corey, W. H. (1932). The Vaqueros Formation, Lower Miocene of California. I. Paleontology. University of California Publications, Bulletin of the Department of Geological Sciences, 22, 31–410.Google Scholar
Longo, C., Mastrototaro, F. and Corriero, G. (2005). Sponge fauna associated with a Mediterranean deep-sea coral bank. Journal of the Marine Biological Association of the United Kingdom, 85, 1341–1352.CrossRefGoogle Scholar
López, E., Britayev, T. A., Martin, D. and San Martín, G. (2001). New symbiotic associations involving Syllidae (Annelida: Polychaeta), with taxonomic and biological remarks on Pionosyllis magnifica and Syllis cf. armillaris. Journal of the Marine Biological Association of the United Kingdom, 81, 399–409.CrossRefGoogle Scholar
López Correa, M., Freiwald, A., Hall-Spencer, J. and Taviani, M. (2005). Distribution and habitats of Acesta excavata (Bivalvia: Limidae) with new data on its shell ultrastructure. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 173–205.Google Scholar
López-García, P. and Moreira, D. (2008). Tracking microbial biodiversity through molecular and genomic ecology. Research in Microbiology, 159, 67–73.CrossRefGoogle ScholarPubMed
Love, M. S., Yoklavich, M. M., Black, B. A. and Andrews, A. H. (2007). Age of black coral (Antipathes dendrochristos) colonies, with notes on associated invertebrate species. Bulletin of Marine Science, 80, 391–399.Google Scholar
Lucas, J. M. and Knapp, L. W. (1997). A physiological evaluation of carbon sources for calcification in the octocoral Leptogorgia virgulata (Lamarck). Journal of Experimental Biology, 200, 2653–2662.Google Scholar
Luff, R. and Wallmann, K. (2003). Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochimica et Cosmochimica Acta, 67, 3403–3421.CrossRefGoogle Scholar
MacDonald, I. R., Sager, W. W. and Peccini, M. B. (2003). Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps: Northern Gulf of Mexico. Marine Geology, 198, 133–158.CrossRefGoogle Scholar
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Maier, E., Tollrian, R. and Nurnberger, B. (2001). Development of species-specific markers in an organism with endosymbionts: microsatellites in the scleractinian coral Seriatopora hystrix. Molecular Ecology Notes, 1, 157–159.CrossRefGoogle Scholar
Malecki, J. (1982). Bases of Upper Cretaceous octocorals from Poland. Acta Palaeontologica Polonica, 27, 65–75.Google Scholar
Mangini, A., Lomitschka, M., Eichstädter, R., Frank, N. and Vogler, S. (1998). Coral provides way to age deep water. Nature, 392, 347–348.CrossRefGoogle Scholar
Manning, M. R. and Melhuish, W. H. (1994). δ14CO2 record from Wellington. In Trends 93 – A Compendium of Data on Global Change and Online Updates, ed. Boden, T. A., Kaiser, D. P., Sepanski, R. J. and Stoss, F. W.. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, pp. 173–202.Google Scholar
Mare, M. F. (1942). A study of a marine benthic community with special reference to the micro-organisms. Journal of the Marine Biological Association of the United Kingdom, 25, 517–554.CrossRefGoogle Scholar
Marques, A. C. and Collins, A. G. (2004). Cladistic analysis of Medusozoa and cnidarian evolution. Invertebrate Biology, 123, 23–42.CrossRefGoogle Scholar
Marriott, C. S., Henderson, G. M., Belshaw, N. S. and Tudhope, A. W. (2004). Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth and Planetary Science Letters, 222, 615–624.CrossRefGoogle Scholar
Marschal, C., Garrabou, J., Harmelin, J. G. and Pichon, M. (2004). A new method for measuring growth and age in the precious red coral Corallium rubrum (L.). Coral Reefs, 23, 423–432.CrossRefGoogle Scholar
Martin, D. and Britayev, T. A. (1998). Symbiotic polychaetes: review of known species. Oceanography and Marine Biology: An Annual Review, 36, 217–340.Google Scholar
Martin, D., Núñez, J., Riera, R. and Gil, J. (2002). On the associations between Haplosyllis (Polychaeta, Syllidae) and gorgonians (Cnidaria, Octocorallaria), with the description of a new species. Biological Journal of the Linnean Society, 77, 455–477.CrossRefGoogle Scholar
Martinez, P., Bertrand, P., Shimmield, G. B.et al. (1999). Upwelling intensity and ocean productivity changes off Cape Blanc (northwest Africa) during the last 70 000 years: geochemical and micropalaeontological evidence. Marine Geology, 158, 57–74.CrossRefGoogle Scholar
Marubini, F. and Atkinson, M. J. (1999). Effects of lowered pH and elevated nitrate on coral calcification. Marine Ecology Progress Series, 188, 117–121.CrossRefGoogle Scholar
Marubini, F., Barnett, H., Langdon, C. and Atkinson, M. J. (2001). Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Marine Ecology Progress Series, 220, 153–162.CrossRefGoogle Scholar
Marubini, F., Ferrier-Pages, C. and Cuif, J.-P. (2003). Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proceedings of the Royal Society of London Series B – Biological Sciences, 270, 179–184.CrossRefGoogle ScholarPubMed
Masson, D. G., Bett, B. J., Billett, D. S. M.et al. (2003). The origin of deep-water, coral-topped mounds in the northern Rockall Trough, Northeast Atlantic. Marine Geology, 194, 159–180.CrossRefGoogle Scholar
Mastandrea, A., Muto, F., Neri, C.et al. (2002). Deep-water coral banks: an example from the ‘Calcare di Mendicino’ (Upper Miocene, northern Calabria, Italy). Facies, 47, 27–42.CrossRefGoogle Scholar
Matsumoto, A. K. (2007). Effects of low water temperature on growth and magnesium carbonate concentrations in the cold-water gorgonian Primnoa pacifica. Bulletin of Marine Science, 81, 423–435.Google Scholar
Mazzullo, S. J. (1980). Calcite pseudospar replacive of marine acicular aragonite, and implications for aragonite cement diagenesis. Journal of Sedimentary Petrology, 50, 409–422.CrossRefGoogle Scholar
McClain, C. R. (2007). Seamounts: identity crisis or split personality?Journal of Biogeography, 34, 2001–2008.CrossRefGoogle Scholar
McConnaughey, T. (1989a). 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta, 53, 151–162.CrossRefGoogle Scholar
McConnaughey, T. (1989b). 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta, 53, 163–171.CrossRefGoogle Scholar
McConnaughey, T. (1991). Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnology and Oceanography, 36, 619–628.CrossRefGoogle Scholar
McConnaughey, T. A. (2003). Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models. Coral Reefs, 22, 316–327.CrossRefGoogle Scholar
Medina, M., Collins, A. G., Takaoka, T. L., Kuehl, J. V. and Boore, J. L. (2006). Naked corals: skeleton loss in Scleractinia. Proceedings of the National Academy of Sciences of the United States of America, 103, 9096–9100.CrossRefGoogle ScholarPubMed
Meibom, A., Cuif, J.-P., Hillion, F. O.et al. (2004). Distribution of magnesium in coral skeleton. Geophysical Research Letters, 31, L23306, doi: 10.1029/2004GL021313.CrossRefGoogle Scholar
Meibom, A., Cuif, J.-P., Houlbreque, F.et al. (2008). Compositional variations at ultra-structure length scales in coral skeleton. Geochimica et Cosmochimica Acta, 72, 1555–1569.CrossRefGoogle Scholar
Meibom, A., Yurimoto, H., Cuif, J.-P.et al. (2006). Vital effects in coral skeletal composition display strict three-dimensional control. Geophysical Research Letters, 33, L11608, doi: 10.1029/2006GL025968.CrossRefGoogle Scholar
Melim, L. A., Westphal, H., Swart, P. K., Eberli, G. P. and Munnecke, A. (2002). Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas. Marine Geology, 185, 27–53.CrossRefGoogle Scholar
Mesolella, K. J., Matthews, R. K., Broecker, W. S. and Thurber, D. L. (1969). The astronomical theory of climatic change: Barbados data. Journal of Geology, 77, 250–274.CrossRefGoogle Scholar
Messing, C. G., Neuman, A. C. and Lang, J. C. (1990). Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Straits of Florida. Palaios, 5, 15–33.CrossRefGoogle Scholar
Metaxas, A. and Bryan, T. (2007). Predictive habitat model for deep gorgonians needs better resolution: reply to Etnoyer & Morgan. Marine Ecology Progress Series, 339, 313–314.CrossRef
Metaxas, A. and Davis, J. (2005). Megafauna associated with assemblages of deep-water gorgonian corals in Northeast Channel, off Nova Scotia, Canada. Journal of the Marine Biological Association of the United Kingdom, 85, 1381–1390.CrossRefGoogle Scholar
Michener, R. H. and Schell, D. M. (1994). Stable isotope ratios as tracers in marine aquatic foodwebs. In Stable Isotopes in Ecology and Environmental Science, ed. Lajtha, K. and Michener, R. H.. Oxford: Blackwell Scientific Publications, pp. 138–157.Google Scholar
Mienis, F., Stigter, H. C., White, M.et al. (2007). Hydrodynamic controls on cold-water coral growth and carbonate mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep-Sea Research Part I, 54, 1655–1674.CrossRefGoogle Scholar
Mienis, F., Weering, T., Haas, H.et al. (2006). High-resolution TOBI images and seismic profiles of a carbonate mound province at the SW Rockall Trough Margin, NE Atlantic. Marine Geology, 233, 1–19.CrossRefGoogle Scholar
Mikkelsen, N., Erlenkeuser, H., Killingley, J. S. and Berger, W. H. (1982). Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas, 11, 163–171.CrossRefGoogle Scholar
Milliman, J. D., Manheim, F. T., Pratt, R. M. and Zarudzki, E. F. K. (1967). Alvin dives on the continental margin off the southeastern United States July 2–13, 1967. Woods Hole Oceanographic Institution.CrossRef
Mills, C. M., Townsend, S. E., Jennings, S., Eastwood, P. D. and Houghton, C. A. (2007). Estimating high resolution trawl fishing effort from satellite-based vessel monitoring system data. ICES Journal of Marine Science, 64, 248–255.CrossRefGoogle Scholar
Moissette, P. and Spjeldnaes, N. (1995). Plio-Pleistocene deep-water bryozoans from Rhodes, Greece. Palaeontology, 38, 771–799.Google Scholar
Møller, P. R. and Jones, W. J. (2007). Eptatretus strickrotti n. sp. (Myxinidae): first hagfish captured from a hydrothermal vent. Biological Bulletin, 212, 55–66.CrossRefGoogle ScholarPubMed
Montagna, P., López-Corea, M., Rüggeberg, A.et al. (2008). Coral Li/Ca in micro-structural domains as a temperature proxy. Goldschmidt Conference Abstracts (Vancouver, Canada), p. 69.Google Scholar
Montagna, P., McCulloch, M., Taviani, M., Mazzoli, C. and Vendrell, B. (2006). Phosphorus in cold-water corals as a proxy for seawater nutrient chemistry. Science, 312, 1788–1791.CrossRefGoogle ScholarPubMed
Montenat, C., Barrier, P. and Ott d'Estevou, P. (1991). Some aspects of the recent tectonics in the Strait of Messina, Italy. Tectonophysics, 194, 203–215.CrossRefGoogle Scholar
Monty, C. L. V., Bosence, D. W. J., Bridges, P. H. and Pratt, B. R. (1995). Carbonate Mud-mounds: Their Origin and Evolution. Special Publication No. 23. New York: International Association of Sedimentologists.CrossRefGoogle Scholar
Moore, J. A., Auster, P. J., Calini, D.et al. (2008). False boarfish (Neocyttus helgae) in the western North Atlantic. Bulletin of the Peabody Museum of Natural History, 49, 31–41.CrossRefGoogle Scholar
Moore, R. C. (ed.) (1956). Treatise on Invertebrate Paleontology. Part F. Coelenterata. Lawrence, KS: University of Kansas Press.Google Scholar
Morato, T. and Clark, M. R. (2007). Seamount fisheries: ecology and life histories. In Seamounts: Ecology, Fisheries and Conservation, ed. Pitcher, T. J., Morato, T., Hart, P. J. B.et al. Oxford: Blackwell, pp. 170–188.Google Scholar
Morgan, L. E., Tsao, C.-F. and Guinotte, J. M. (2006). Status of Deep-sea Corals in US Waters, with Recommendations for their Conservation and Management. Bellevue, WA: Marine Conservation Biology Institute.Google Scholar
Morrison, C. L., Eackles, M. S., Johnson, R. L. and King, T. L. (2008a). Characterization of 13 microsatellite loci for the deep-sea coral, Lophelia pertusa (Linnaeus 1758), from the western North Atlantic Ocean and Gulf of Mexico. Molecular Ecology Resources, 8, 1037–1039.CrossRefGoogle Scholar
Morrison, C. L., Johnson, R. L., King, T. L., Ross, S. W. and Nizinski, M. S. (2008b). Molecular assessment of deep-sea scleractinian coral biodiversity and population structure of Lophelia pertusa in the Gulf of Mexico. In Characterization of Northern Gulf of Mexico Deepwater Hard Bottom Communities with Emphasis on Lophelia Coral: Lophelia Reef Megafaunal Community Structure, Biotopes, Genetics, Microbial Ecology, and Geology (2004–2006), ed. Sulak, K. J., Randall, M. T., Luke, K. E., Norem, A. D. and Miller, J. M.. US Geological Survey Report.
Mortensen, P. B. (2001). Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia, 54, 83–104.CrossRefGoogle Scholar
Mortensen, P. B. and Buhl-Mortensen, L. (2004). Distribution of deep-water gorgonian corals in relation to benthic habitat features in the Northeast Channel (Atlantic Canada). Marine Biology, 144, 1223–1238.CrossRefGoogle Scholar
Mortensen, P. B. and Buhl-Mortensen, L. (2005). Morphology and growth of the deep-water gorgonians Primnoa resedaeformis and Paragorgia arborea. Marine Biology, 147, 775–788.CrossRefGoogle Scholar
Mortensen, P. B., Buhl-Mortensen, L., Gordon, D. C.et al. (2005). Effects of fisheries on deepwater gorgonian corals in the Northeast Channel, Nova Scotia. In Benthic Habitats and the Effects of Fishing, ed. Barnes, P. W. and Thomas, J. P.. American Fisheries Society Symposium, 41, 369–382.
Mortensen, P. B., Hovland, M., Brattegard, T. and Farestveit, R. (1995). Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64°N on the Norwegian shelf: structure and associated megafauna. Sarsia, 80, 145–158.CrossRefGoogle Scholar
Mortensen, P. B., Hovland, M. T., Fosså, J. H. and Furevik, D. M. (2001). Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. Journal of the Marine Biological Association of the United Kingdom, 81, 581–597.CrossRefGoogle Scholar
Mortensen, P. B. and Rapp, H. T. (1998). Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L.) (Anthozoa, Scleractinia): implications for determining of linear extension rates. Sarsia, 83, 433–446.CrossRefGoogle Scholar
Mortimore, R. N., Wood, C. J. and Gallois, R. W. (2001). British Upper Cretaceous Stratigraphy. Geological Conservation Series, JNCC, Peterborough.Google Scholar
Morycowa, E. (1988). Middle Triassic Scleractinia from the Cracow–Silesia region, Poland. Acta Palaeontologica Polonica, 33, 91–121.Google Scholar
Moseley, H. N. (1879). Notes by a naturalist on the ‘Challenger’, being an account of various observations made during the voyage of H.M.S. ‘Challenger’ around the world, in the years 1872–1876, under the commands of Capt. Sir G. S. Nares and Capt. F. T. Thomson. London: John Murray.CrossRefGoogle Scholar
Moseley, H. N. (1881). Report on certain hydroid, alcyonarian, and madreporarian corals procured during the voyage of H.M.S. Challenger, in the years 1873–1876. Report on the Scientific Results of the Voyage of H.M.S. Challenger During the Years 1873–76. Zoology, 2.Google Scholar
Mullineaux, L. S. and Mills, S. W. (1997). A test of the larval retention hypothesis in seamount-generated flows. Deep-Sea Research Part I, 44, 745–770.CrossRefGoogle Scholar
Mullins, H. T., Newton, C. R., Heath, K. and Vanburen, H. M. (1981). Modern deep-water coral mounds north of Little Bahama Bank: criteria for recognition of deep-water coral bioherms in the rock record. Journal of Sedimentary Petrology, 51, 999–1013.Google Scholar
Mundy, D. J. C. (1994). Microbialite – sponge – bryozoan – coral framestones in Lower Carboniferous (late Visean) buildups in northern England (UK). In Pangea: Global Environments and Resources, ed. Embry, A. F., Beauchamp, B. and Glass, D. J.. Memoir of the Canadian Society of Petroleum Geologist, 17, pp. 713–729.Google Scholar
Murray, J. and Hjort, J. (1912). The Depths of the Ocean. London: MacMillan and Co. Ltd.Google Scholar
Muscatine, L., Falkowski, P. G., Porter, J. W. and Dubinsky, Z. (1984). Fate of photosynthetic fixed carbon in light-adapted and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proceedings of the Royal Society of London Series B – Biological Sciences, 222, 181–202.CrossRefGoogle Scholar
Muscatine, L., Porter, J. W. and Kaplan, I. R. (1989). Resource partitioning by reef corals as determined from stable isotope composition. I. δ13C of zooxanthellae and animal tissue vs depth. Marine Biology, 100, 185–193.CrossRefGoogle Scholar
Muzik, K. (1978). A bioluminescent gorgonian, Lepidisis olapa, new species (Coelenterata: Octocorallia), from Hawaii. Bulletin of Marine Science, 28, 735–741.Google Scholar
Myers, M. R. and Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. Nature, 423, 280–283.CrossRefGoogle ScholarPubMed
Myers, R. F. (1989). Micronesian Reef Fishes. Barrigada, Guam: Coral Graphics.Google Scholar
Naeth, J., di Primio, R., Horsfield, B., Schaefer, R. G. and Krooss, B. M. (2007). On the relationship between hydrocarbon migration pathways and carbonate mound occurrence in the Porcupine Basin. International Journal of Earth Sciences, 96, 199–200.CrossRefGoogle Scholar
Naeth, J., di Primio, R., Horsfield, B.et al. (2005). Hydrocarbon seepage and carbonate mound formation: a basin modelling study from the Porcupine Basin (offshore Ireland). Journal of Petroleum Geology, 28, 147–165.CrossRefGoogle Scholar
Neumann, A. C. (1966). Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnology and Oceanography, 11, 92–108.CrossRefGoogle Scholar
Neumann, A. C., Kofoed, J. W. and Keller, G. H. (1977). Lithoherms in the Straits of Florida. Geology, 5, 4–10.2.0.CO;2>CrossRefGoogle Scholar
New, A. L. and Pingree, R. D. (1990). Evidence for internal tidal mixing near the shelf break in the Bay of Biscay. Deep-Sea Research Part A, 37, 1783–1803.CrossRefGoogle Scholar
Newman, W. A., Zullo, V. A. and Withers, T. H. (1969). Cirripedia. In Treatise on Invertebrate Palaeontology, ed. Moore, R. C.. Lawrence, KA: Geological Society of America and University of Kansas Press, pp. 207–295.Google Scholar
Newton, C. R., Mullins, H. T., Gardulski, A. F., Hine, A. C. and Dix, G. R. (1987). Coral mounds on the western Florida Slope: unanswered questions regarding the development of deep-water banks. Palaios, 2, 359–367.CrossRefGoogle Scholar
Nielsen, K. B. (1913). Crinoiderne i Danmarks kridtaflejringer. Danmarks Geologiske Undersøgelse, Række 2, 26, 1–120.Google Scholar
Noé, S. U., Lembke-Jene, L. and Dullo, W.-C. (2008). Varying growth rates in bamboo corals: sclerochronology and radiocarbon dating of a mid-Holocene deep-water gorgonian skeleton (Keratoisis sp.: Octocorallia) from Chatham Rise (New Zealand). Facies, 54, 151–166.CrossRefGoogle Scholar
Noé, S., Titschack, J., Freiwald, A. and Dullo, W.-C. (2006). From sediment to rock: diagenetic processes of hardground formation in deep-water carbonate mounds of the NE Atlantic. Facies, 52, 183–208.CrossRefGoogle Scholar
Noe-Nygaard, N. and Surlyk, F. (1985). Mound bedding in a sponge-rich Coniacian chalk, Bornholm, Denmark. Bulletin of the Geological Society of Denmark, 34, 237–249.Google Scholar
Nolf, D. (1995). Studies on fossil otoliths: the state of the art. In Recent Developments in Fish Otolith Research, ed. Secor, D. H., Dean, J. M. and Campana, S. E.. University of South Carolina Press, pp. 513–544.Google Scholar
Norse, E. A., Crowder, L. B., Gjerde, K.et al. (2005). Place-based ecosystem management in the open ocean. In Marine Conservation Biology: The Science of Maintaining the Sea's Biodiversity, ed. Norse, E. A. and Crowder, L. B.. Washington, DC: Island Press, pp. 302–327.Google Scholar
Ocaña, O. and Brito, A. (2004). A review of the Gerariidae (Anthozoa: Zoantharia) from the Macaronesian Islands and the Mediterranean Sea with the description of a new species. Revista de la Academia Canaria de Ciencias, 15, 159–189.Google Scholar
O'Connor, M. I., Bruno, J. F., Gaines, S. D.et al. (2007). Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 104, 1266–1271.CrossRefGoogle ScholarPubMed
Oliver, W. A. (1980). The relationship of the scleractinian corals to the rugose corals. Paleobiology, 6, 146–160.CrossRefGoogle Scholar
Oliverio, M. and Gofas, S. (2006). Coralliophiline diversity at mid-Atlantic seamounts (Neogastropoda, Muricidae, Coralliophilinae). Bulletin of Marine Science, 79, 205–230.Google Scholar
Opresko, D. M. (2005). A new species of antipatharian coral (Cnidaria: Anthozoa: Antipatharia) from the southern California Bight. Zootaxa, 852, 1–10.CrossRefGoogle Scholar
Opresko, D. M. (2006). Revision of the Antipathidae (Cnidaria: Anthozoa). Part V. Establishment of a new family, Stylopathidae. Zoologische Mededelingen, Leiden, 80, 109–138.Google Scholar
O'Reilly, B. M., Readman, P. W. and Shannon, P. M. (2004). Cold-water coral mounds: evidence for early Holocene climate change and slope failure. Geophysical Research Letters, 31, L07204, doi: 10.1029/2003GL018619.CrossRefGoogle Scholar
O'Reilly, B. M., Readman, P. W., Shannon, P. M. and Jacob, A. W. B. (2003). A model for the development of a carbonate mound population in the Rockall Trough based on deep-towed sidescan sonar data. Marine Geology, 198, 55–66.CrossRefGoogle Scholar
Orejas, C., Gili, J. M. and Arntz, W. (2003). Role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Marine Ecology Progress Series, 250, 105–116.CrossRefGoogle Scholar
Orejas, C., Gili, J. M., Lopez-Gonzalez, P. J., Hasemann, C. and Arntz, W. E. (2007). Reproduction patterns of four Antarctic octocorals in the Weddell Sea: an inter-specific, shape, and latitudinal comparison. Marine Biology, 150, 551–563.CrossRefGoogle Scholar
Orejas, C., Gori, A. and Gili, J. M. (2008). Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs, 27, 255.CrossRefGoogle Scholar
Orejas, C., Lopez-Gonzalez, P. J., Gili, J. M.et al. (2002). Distribution and reproductive ecology of the Antarctic octocoral Ainigmaptilon antarcticum in the Weddell Sea. Marine Ecology Progress Series, 231, 101–114.CrossRefGoogle Scholar
Orr, J. C., Fabry, V. J., Aumont, O.et al. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681–686.CrossRefGoogle ScholarPubMed
Osberger, R. (1954). Research on fossil corals from Java. Indonesian Journal for Natural Science, 110, 201–205.Google Scholar
Ostarello, G. L. (1973). Natural history of the hydrocoral Allopora californica Verrill (1866). Biological Bulletin, 145, 548–564.CrossRefGoogle Scholar
Owens, J. M. (1984). Evolutionary trends in the Micrabaciidae: an argument in favor of preadaptation. Geologos, 11, 87–93.Google Scholar
Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science, 276, 734–740.CrossRefGoogle ScholarPubMed
Palanques, A., Guillen, J. and Puig, P. (2001). Impact of bottom trawling on water turbidity and muddy sediment of an unfished continental shelf. Limnology and Oceanography, 46, 1100–1110.CrossRefGoogle Scholar
Pallas, P. (1766). Elenchus zoophytorum sistens generum adumbrationes generaliores et specierum cognitarum succinctas descriptiones cum selectis auctorum synonymis. Hagae Comitum: F. Varrentrapp.CrossRefGoogle Scholar
Palumbi, S. R. (1994). Genetic-divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics, 25, 547–572.CrossRefGoogle Scholar
Pannella, G. (1971). Fish otoliths; daily growth layers and periodic patterns. Science, 173, 1124–1127.CrossRefGoogle Scholar
Parin, N. V., Mironov, A. N. and Nesis, K. N. (1997). Biology of the Nazca and Sala y Gómez submarine ridges, an outpost of the Indo-west Pacific fauna in the eastern Pacific Ocean: composition and distribution of the fauna, its communities and history. Advances in Marine Biology, 32, 145–242.CrossRefGoogle Scholar
Parkes, R. J., Cragg, B. A. and Wellsbury, P. (2000). Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeology Journal, 8, 11–28.CrossRefGoogle Scholar
Parrish, F. A. (2007). Density and habitat of three deep-sea corals in the lower Hawaiian chain. In Conservation and Adaptive Management of Seamount and Deep-sea Coral Ecosystems, ed. George, R. Y. and Cairns, S. D.. Miami: University of Miami, pp. 185–194.Google Scholar
Parrish, F. A. and Baco, A. R. (2007). State of the U.S. coral ecosystems in western Pacific region: Hawaii and the United States Pacific Territories. In The State of Deep Coral Communities of the United States. NOAA Technical Memorandum, pp. 109–152.Google Scholar
Paull, C. K., Neumann, A. C., am Ende, B. A., Ussler, W. and Rodriguez, N. M. (2000). Lithoherms on the Florida Hatteras Slope. Marine Geology, 166, 83–101.CrossRefGoogle Scholar
Pauly, D. (1995). Anecdotes and the shifting baseline syndrome of fisheries. Trends in Ecology & Evolution, 10, 430.CrossRefGoogle ScholarPubMed
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. and Torres, F. (1998). Fishing down marine food webs. Science, 279, 860–863.CrossRefGoogle ScholarPubMed
Pauly, D., Christensen, V., Guénette, S.et al. (2002). Towards sustainability in world fisheries. Nature, 418, 689–695.CrossRefGoogle ScholarPubMed
Payne, J. L., Lehrmann, D. J., Wei, J.et al. (2004). Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305, 506–509.CrossRefGoogle ScholarPubMed
Pearse, V. B. (1970). Incorporation of metabolic CO2 into coral skeleton. Nature, 228, 383.CrossRefGoogle Scholar
Penn, K., Wu, D. Y., Eisen, J. A. and Ward, N. (2006). Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Applied and Environmental Microbiology, 72, 1680–1683.CrossRefGoogle ScholarPubMed
Pisera, A. and Busquets, P. (2002). Eocene siliceous sponges from the Ebro Basin (Catalonia, Spain). Géobios, 35, 321–346.CrossRefGoogle Scholar
Pohowsky, R. A. (1978). The boring ctenostomate Bryozoa: taxonomy and paleobiology based on cavities in calcareous substrata. Bulletins of American Paleontology, 73, 1–192.Google Scholar
Pontoppidan, E. (1755). The Natural History of Norway. London: A. Linde.Google Scholar
Pope, A. (1734). An Essay on Man. Clarendon Press Series edition, ed. Pattison, M. (1904). Oxford: Clarendon Press.Google Scholar
Porter, J. W. (1976). Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. American Naturalist, 110, 731–742.CrossRefGoogle Scholar
Porter, J. W. and Targett, N. M. (1988). Allelochemical interactions between sponges and corals. Biological Bulletin, 175, 230–239.CrossRefGoogle Scholar
Pourtalès, L. F. (1871). Deep-sea Corals. Illustrated Catalogue of the Museum of Comparative Zoology at Harvard College. Vol. 4. Cambridge, MA: University Press, Welch, Bigelow & Co.Google Scholar
Prentice, I. C., Farquhar, G. D., Fasham, M. J. R.et al. (2001). The carbon cycle and atmospheric carbon dioxide. In Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J., Ding, Y., Griggs, D. J.et al. New York: Cambridge University Press, pp. 183–237.Google Scholar
Probert, P. K., McKnight, D. G. and Grove, S. L. (1997). Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand. Aquatic Conservation: Marine and Freshwater Ecosystems, 7, 27–40.3.0.CO;2-9>CrossRefGoogle Scholar
Pulpeiro, E. F., Besteiro, C. and Ramil, F. (1988). Sublittoral bryozoans of the Norwegian Sea. Thalassas, 6, 23–27.Google Scholar
Pütter, A. (1911). Der Stoffwechsel der Aktinien. Zeitschrift für allgemeine Physiologie, 12, 297–322.Google Scholar
Qi, W. (1984). An Anisian coral fauna in Guizhou, South China. Palaeontographica Americana, 54, 187–190.Google Scholar
Queller, D. C., Strassmann, J. E. and Hughes, C. R. (1993). Microsatellites and kinship. Trends in Ecology and Evolution, 8, 285–288.CrossRefGoogle ScholarPubMed
Raes, M. and Vanreusel, A. (2005). The metazoan meiofauna associated with a cold-water coral degradation zone in the Porcupine Seabight (NE Atlantic). In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 821–847.Google Scholar
Raes, M. and Vanreusel, A. (2006). Microhabitat type determines the composition of nematode communities associated with sediment-clogged cold-water coral framework in the Porcupine Seabight (NE Atlantic). Deep-Sea Research Part I, 53, 1880–1894.CrossRefGoogle Scholar
Raimondi, P. T., Barnett, A. M. and Krause, P. R. (1997). The effects of drilling muds on marine invertebrate larvae and adults. Environmental Toxicology and Chemistry, 16, 1218–1228.CrossRefGoogle Scholar
Read, J. F. (1982). Geometry, facies, and development of Middle Ordovician carbonate buildups, Virginia Appalachians. American Association of Petroleum Geologists Bulletin, 66, 189–209.Google Scholar
Reading, H. G. and Levell, B. K. (1996). Controls on the sedimentary rock record. In Sedimentary Environments: Processes and Stratigraphy, ed. Reading, H. G.. Oxford: Blackwell Science Ltd, pp. 5–36.Google Scholar
Reed, J. K. (2002). Deep-water Oculina coral reefs of Florida: biology, impacts, and management. Hydrobiologia, 471, 43–55.CrossRefGoogle Scholar
Reed, J. K., Koenig, C. C. and Shepard, A. N. (2007). Impacts of bottom trawling on a deep-water Oculina coral ecosystem off Florida. Bulletin of Marine Science, 81, 481–496.Google Scholar
Reed, J. K., Pomponi, S. A., Weaver, D., Paull, C. K. and Wright, A. E. (2005). Deep-water sinkholes and bioherms of South Florida and the Pourtalès Terrace: habitat and fauna. Bulletin of Marine Science, 77, 267–296.Google Scholar
Reed, J. K., Weaver, D. C. and Pomponi, S. A. (2006). Habitat and fauna of deep-water Lophelia pertusa coral reefs off the southeastern US: Blake Plateau, Straits of Florida, and Gulf of Mexico. Bulletin of Marine Science, 78, 343–375.Google Scholar
Richer de Forges, B., Koslow, J. A. and Poore, G. C. B. (2000). Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature, 405, 944–947.CrossRefGoogle Scholar
Riding, R. (2002). Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Reviews, 58, 163–231.CrossRefGoogle Scholar
Richmond, R. H. (1997). Reproduction and recruitment in corals: critical links in the persistence of reefs. In Life and Death of Coral Reefs, ed. Birkeland, C.. New York: Chapman & Hall, pp. 175–197.Google Scholar
Richmond, R. H. and Hunter, C. L. (1990). Reproduction and recruitment of corals: comparisons among the Caribbean, the tropical Pacific, and the Red Sea. Marine Ecology Progress Series, 60, 185–203.CrossRefGoogle Scholar
Risk, M. J., Heikoop, J. M., Snow, M. G. and Beukens, R. (2002). Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia, 471, 125–131.CrossRefGoogle Scholar
Roark, E. B., Guilderson, T. P., Dunbar, R. B. and Ingram, B. L. (2006). Radiocarbon based ages and growth rates: Hawaiian deep sea corals. Marine Ecology Progress Series, 327, 1–14.CrossRefGoogle Scholar
Roark, E. B., Guilderson, T. P., Flood-Page, S.et al. (2005). Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska. Geophysical Research Letters, 32, L04606, doi: 10.1029/2004GL021919.CrossRefGoogle Scholar
Roberts, C. M. (2007). The Unnatural History of the Sea. Washington, DC: Island Press/Shearwater Books.Google Scholar
Roberts, C. M., McClean, C. J., Veron, J. E. N.et al. (2002). Marine biodiversity hotspots and conservation priorities for tropical reefs. Science, 295, 1280–1284.CrossRefGoogle ScholarPubMed
Roberts, H. H. and Aharon, P. (1994). Hydrocarbon-derived carbonate buildups of the northern Gulf of Mexico continental slope: a review of submersible investigations. Geo-Marine Letters, 14, 135–148.CrossRefGoogle Scholar
Roberts, J. M. (2000). Full effects of oil rigs on corals are not yet known. Nature, 403, 242.CrossRefGoogle Scholar
Roberts, J. M. (2002). The occurrence of the coral Lophelia pertusa and other conspicuous epifauna around an oil platform in the North Sea. Journal of the Society for Underwater Technology, 25, 83–91.CrossRefGoogle Scholar
Roberts, J. M. (2005). Reef-aggregating behaviour by symbiotic eunicid polychaetes from cold-water corals: do worms assemble reefs?Journal of the Marine Biological Association of the United Kingdom, 85, 813–819.CrossRefGoogle Scholar
Roberts, J. M. (in press). Cold-water coral reefs. In Encyclopedia of Ocean Sciences, ed. Thorpe, S., Steele, J. and Turekian, K.. Published online by Elsevier Ltd.
Roberts, J. M., Brown, C. J., Long, D. and Bates, C. R. (2005a). Acoustic mapping using a multibeam echosounder reveals cold-water coral reefs and surrounding habitats. Coral Reefs, 24, 654–669.CrossRefGoogle Scholar
Roberts, J. M., Davies, P. S. and Fixter, L. M. (1999a). Symbiotic anemones can grow when starved: nitrogen budget for Anemonia viridis in ammonium-supplemented seawater. Marine Biology, 133, 29–35.CrossRefGoogle Scholar
Roberts, J. M., Davies, P. S., Fixter, L. M. and Preston, T. (1999b). Primary site and initial products of ammonium assimilation in the symbiotic sea anemone Anemonia viridis. Marine Biology, 135, 223–236.CrossRefGoogle Scholar
Roberts, J. M., Fixter, L. M. and Davies, P. S. (2001). Ammonium metabolism in the symbiotic sea anemone Anemonia viridis. Hydrobiologia, 461, 25–35.CrossRefGoogle Scholar
Roberts, J. M., Harvey, S. M., Lamont, P. A., Gage, J. D. and Humphery, J. D. (2000). Seabed photography, environmental assessment and evidence for deep-water trawling on the continental margin west of the Hebrides. Hydrobiologia, 441, 173–183.CrossRefGoogle Scholar
Roberts, J. M., Henry, L.-A., Long, D. and Hartley, J. P. (2008). Cold-water coral reef frameworks, megafaunal communities and evidence for coral carbonate mounds on the Hatton Bank, north east Atlantic. Facies, 54, 297–316.CrossRefGoogle Scholar
Roberts, J. M., Long, D., Wilson, J. B., Mortensen, P. B. and Gage, J. D. (2003). The cold-water coral Lophelia pertusa (Scleractinia) and enigmatic seabed mounds along the north-east Atlantic margin: are they related?Marine Pollution Bulletin, 46, 7–20.CrossRefGoogle ScholarPubMed
Roberts, J. M., Peppe, O. C., Dodds, L. A.et al. (2005b). Monitoring environmental variability around cold-water coral reefs: the use of a benthic photolander and the potential of seafloor observatories. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 715–729.
Roberts, J. M., Wheeler, A. J. and Freiwald, A. (2006). Reefs of the deep: the biology and geology of cold-water ecosystems. Science, 312, 543–547.CrossRefGoogle ScholarPubMed
Robinson, L. F., Adkins, J. F., Keigwin, L. D.et al. (2005). Radiocarbon variability in the western North Atlantic during the last deglaciation. Science, 310, 1469–1473.CrossRefGoogle ScholarPubMed
Robinson, L. F., Adkins, J. F., Scheirer, D. S.et al. (2007). Deep-sea scleractinian coral age and depth distributions in the northwest Atlantic for the last 225,000 years. Bulletin of Marine Science, 81, 371–391.Google Scholar
Rogers, A. D. (1994). The biology of seamounts. Advances in Marine Biology, 30, 305–350.CrossRefGoogle Scholar
Rogers, A. D. (1999). The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. International Review of Hydrobiology, 84, 315–406.CrossRefGoogle Scholar
Rogers, A. D., Baco, A., Griffiths, H., Hart, T. and Hall-Spencer, J. M. (2007). Corals on seamounts. In Seamounts: Ecology, Fisheries and Conservation, ed. Pitcher, T. J., Morato, T., Hart, P. J. B.et al. Oxford: Blackwell Publishing, pp. 141–169.Google Scholar
Romano, S. L. and Cairns, S. D. (2000). Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science, 67, 1043–1068.Google Scholar
Romano, S. L. and Palumbi, S. R. (1996). Evolution of scleractinian corals inferred from molecular systematics. Science, 271, 640–642.CrossRefGoogle Scholar
Roniewicz, E. (1984). Aragonitic Jurassic corals from erratic boulders on the south Baltic coast. Annales Societatis Geologorum Poloniae, 54, 65–77.Google Scholar
Roniewicz, E. (1996). The key role of skeletal microstructure in recognizing high-rank scleractinian taxa in the stratigraphical record. Paleontological Society Papers, 1, 187–206.Google Scholar
Roniewicz, E. and Morycowa, E. (1993). Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg, 164, 233–240.Google Scholar
Ross, D. M. and Sutton, L. (1961). The response of the sea anemone Calliactis parasitica to shells of the hermit crab Pagarus bernhardus. Proceedings of the Royal Society of London Series B – Biological Sciences, 155, 266–281.CrossRefGoogle Scholar
Ross, S. W. and Quattrini, A. M. (2007). The fish associated with deep coral banks off the southeastern United States. Deep-Sea Research Part I, 54, 975–1007.CrossRefGoogle Scholar
Roux, M., Barrier, P., Di Geronimo, I. and Montenat, C. (1988). Découverte de crinoides pédonculés bathyaux d'origine Atlantique dans le Pliocène supérieur et le Pléistocène moyen Méditerranéen: consèquences biogéographiques. Comptes Rendus de l'Académie des Sciences Paris, Série III, 307, 259–264.Google Scholar
Rowden, A. A., Clark, M. R., O'Shea, S. and McKnight, D. G. (2003). Benthic biodiversity of seamounts on the southern Kermadec volcanic arc. Marine Biodiversity Biosecurity Report No. 3. Wellington, New Zealand: Ministry of Fisheries.Google Scholar
Rüggeberg, A., Dorschel, B., Dullo, W.-C. and Hebbeln, D. (2005). Sedimentary patterns in the vicinity of a carbonate mound in the Hovland Mound Province, northern Porcupine Seabight. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M., Berlin Heidelberg: Springer, pp. 87–112.Google Scholar
Rüggeberg, A., Dullo, C., Dorschel, B. and Hebbeln, D. (2007). Environmental changes and growth history of a cold-water carbonate mound (Propeller Mound, Porcupine Seabight). International Journal of Earth Sciences, 96, 57–72.CrossRefGoogle Scholar
Rüggeberg, A., Fietzke, J., Liebetrau, V.et al. (2008). Stable strontium isotopes (δ88/86Sr) in cold-water corals: a new proxy for reconstuction of intermediate ocean water temperatures. Earth and Planetary Science Letters, 269, 569–574.CrossRefGoogle Scholar
Rusch, D. B., Halpern, A. L., Sutton, G.et al. (2007). The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biology, 5, 398–431.CrossRefGoogle ScholarPubMed
Sabine, C. L. and Feely, R. A. (2007). The oceanic sink for carbon dioxide. In Greenhouse Gas Sinks, ed. Reay, D., Hewitt, N., Grace, J. and Smith, K.. Oxfordshire, UK: CABI Publishing, pp. 31–49.CrossRef
Sale, P. F. (ed.) (1991). The Ecology of Fishes on Coral Reefs. San Diego, CA: Academic Press.Google Scholar
Sale, P. F. (ed.) (2002). Coral Reef Fishes. Dynamics and Diversity in a Complex Ecosystem. San Diego, CA: Academic Press.Google Scholar
Samadi, S., Bottan, L., Macpherson, E., Forges, B. R. and Boisselier, M. C. (2006). Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates. Marine Biology, 149, 1463–1475.CrossRefGoogle Scholar
Sánchez, J. A. (2005). Systematics of the bubblegum corals (Cnidaria: Octocorallia: Paragorgiidae) with description of new species from New Zealand and the eastern Pacific. Zootaxa, 1014, 1-72.CrossRefGoogle Scholar
Sandberg, P. A. (1983). An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305, 19–22.CrossRefGoogle Scholar
Sars, M. (1865). Om de i Norge forekommende fossile dyrelevninger fra Quartaerperioden. Universitets Program for første Halvaar 1864, Christiania [now Oslo].
Schindewolf, O. H. (1942). Zur Kenntnis der Polycoelien und Plerophyllen: Eine Studie über den Bau der ‘Tetrakorallen’ und ihre Beziehungen zu den Madreporarien. Abhandlungen des Reichsamts für Bodenforschung, Neue Folge, 204, 1–324.Google Scholar
Schnabel, K. E. and Bruce, N. L. (2006). New records of Munidopsis (Crustacea: Anomura: Galatheidae) from New Zealand with description of two new species from a seamount and underwater canyon. Zootaxa, 1172, 49–67.Google Scholar
Schlötterer, C. (2000). Evolutionary dynamics of microsatellite DNA. Chromosoma, 109, 365–371.CrossRefGoogle ScholarPubMed
Scholle, P. A. and Ulmer-Scholle, D. S. (2003). A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. American Association of Petroleum Geologists Memoir, 77, 1–474.Google Scholar
Schönberg, C. H. L. (2008). A history of sponge erosion: from past myths and hypotheses to recent approaches. In Current Developments in Bioerosion, ed. Wisshak, M. and Tapanila, L.. Berlin Heidelberg: Springer, pp. 165–202.Google Scholar
Schönberg, C. H. L. and Beuck, L. (2007). Where Topsent went wrong: Aka infesta a.k.a. Aka labyrinthica (Demospongiae: Phloeodictyidae) and implications for other Aka spp. Journal of the Marine Biological Association of the United Kingdom, 87, 1459–1476.CrossRefGoogle Scholar
Schroeder, W. W. (2002). Observations of Lophelia pertusa and the surficial geology at a deep-water site in the northeastern Gulf of Mexico. Hydrobiologia, 471, 29–33.CrossRefGoogle Scholar
Schröder-Ritzrau, A., Freiwald, A. and Mangini, A. (2005). U/Th-dating of deep-water corals from the eastern North Atlantic and the western Mediterranean Sea. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 157–172.Google Scholar
Schröder-Ritzrau, A., Mangini, A. and Lomitschka, M. (2003). Deep-sea corals evidence periodic reduced ventilation in the North Atlantic during the LGM/Holocene transition. Earth and Planetary Science Letters, 216, 399–410.CrossRefGoogle Scholar
Schrope, M. (2007). Digging deep. Nature, 447, 246–247.Google ScholarPubMed
Schuhmacher, H. and Zibrowius, H. (1985). What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs, 4, 1–9.CrossRefGoogle Scholar
Scoffin, T. P. (1970). The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. Journal of Sedimentary Petrology, 40, 249–273.Google Scholar
Scoffin, T. P. (1981). Aspects of the preservation of deep and shallow water reefs. Proceedings of the 4th International Coral Reef Symposium, Manila, The Philippines, 1, 499–501.Google Scholar
Scoffin, T. P. (1992). Taphonomy of coral reefs: a review. Coral Reefs, 11, 57–77.CrossRefGoogle Scholar
Scrutton, C. T. (1993). A new kilbuchophyllid coral from Ordovician of the Southern Uplands, Scotland. Courier Forschungsinstitut Senckenberg, 164, 153–158.Google Scholar
Scrutton, C. T. (1997). The Palaeozoic corals, I: origins and relationships. Proceedings of the Yorkshire Geological Society, 51, 177–208.CrossRefGoogle Scholar
Seguenza, G. (1864). Disquisizioni paleontologiche intorno ai Corallarii fossili delle rocce terziarie del distretto di Messina. Memorie della Reale Accademia delle Scienze di Torino, Classe di Scienze Fisiche e Matematiche (ser. 2), 21, 399–560.Google Scholar
Selkoe, K. A. and Toonen, R. J. (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters, 9, 615–629.CrossRefGoogle ScholarPubMed
Sharma, R., Nagender Nath, B. and Jai Sankar, S. (2005). Monitoring the impact of simulated deep-sea mining in Central Indian Basin. Marine Georesources and Geotechnology, 23, 339–356.CrossRefGoogle Scholar
Shearer, T. L., Gutiérrez-Rodriguez, C. and Coffroth, M. A. (2005). Generating molecular markers from zooxanthellate cnidarians. Coral Reefs, 24, 57–66.CrossRefGoogle Scholar
Shelton, G. (1980). Lophelia pertusa (L.): electrical conduction and behaviour in a deep-water coral. Journal of the Marine Biological Association of the United Kingdom, 60, 517–528.CrossRefGoogle Scholar
Sherwood, O. A., Heikoop, J. M., Scott, D. B.et al. (2005a). Stable isotope composition of deep sea gorgonian corals Primnoa spp.: a new archive of surface processes. Marine Ecology Progress Series, 301, 135–148.CrossRefGoogle Scholar
Sherwood, O. A., Heikoop, J. M., Sinclair, D. J.et al. (2005b). Skeletal Mg/Ca in Primnoa resedaeformis: relationship to temperature? In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 1061–1079.Google Scholar
Sherwood, O. A. and Risk, M. J. (2007). Deep-sea corals: new insights to paleoceanography. In Developments in Marine Geology: Proxies in Late Cenozoic Paleoceanography, vol. 1, ed. Hillaire-Marcel, C.. Elsevier, pp. 491–522.Google Scholar
Sherwood, O. A., Scott, D. B., Risk, M. J. and Guilderson, T. P. (2005c). Radiocarbon evidence for annual growth rings in the deep-sea octocoral Primnoa resedaeformis. Marine Ecology Progress Series, 301, 129–134.CrossRefGoogle Scholar
Shester, G. and Ayers, J. (2005). A cost effective approach to protecting deep-sea coral and sponge ecosystems with an application to Alaska's Aleutian Islands region. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 1151–1169.Google Scholar
Shick, J. M. (1991). A Functional Biology of Sea Anemones. London: Chapman & Hall.CrossRefGoogle Scholar
Shirai, K., Kusakabe, M., Nakai, S.et al. (2005). Deep-sea coral geochemistry: implication for the vital effect. Chemical Geology, 224, 212–222.CrossRefGoogle Scholar
Sibuet, M. and Olu, K. (1998). Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Research Part II, 45, 517–567.CrossRefGoogle Scholar
Sinclair, D. J., Sherwood, O. A., Risk, M. J.et al. (2005). Testing the reproducibility of Mg/Ca profiles in the deep-water coral Primnoa resedaeformis: putting the proxy through its paces. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 1039–1060.Google Scholar
Sinclair, D. J., Williams, B. and Risk, M. (2006). A biological origin for climate signals in corals: trace element ‘vital effects’ are ubiquitous in Scleractinian coral skeletons. Geophysical Research Letters, 33, L17707, doi: 10.1029/2006GL02183.CrossRefGoogle Scholar
Slattery, M., Hines, G. A., Starmer, J. and Paul, V. J. (1999). Chemical signals in gametogenesis, spawning, and larval settlement and defense of the soft coral Sinularia polydactyla. Coral Reefs, 18, 75–84.CrossRefGoogle Scholar
Slattery, M., McClintock, J. B. and Bowser, S. S. (1997). Deposit feeding: a novel mode of nutrition in the Antartic colonial soft coral Gersemia antartica. Marine Ecology Progress Series, 149, 299–304.CrossRefGoogle Scholar
Smith, D. C. and Douglas, A. E. (1987). The Biology of Symbiosis. London: Edward Arnold.Google Scholar
Smith, J. E., Risk, M. J., Schwarcz, H. P. and McConnaughey, T. A. (1997). Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals. Nature, 386, 818–820.CrossRefGoogle Scholar
Smith, J. E., Schwarcz, H. P., Risk, M. J., McConnaughey, T. A. and Keller, N. (2000). Paleotemperatures from deep-sea corals: overcoming ‘vital effects’. Palaios, 15, 25–32.2.0.CO;2>CrossRefGoogle Scholar
Smith, P. J. (2001). Managing biodiversity: invertebrate by-catch in seamount fisheries in the New Zealand Exclusive Economic Zone (a case study). UNEP Workshop on Managing Global Fisheries for Biodiversity, Victoria.
Smith, P. J., McVeagh, S. M., Mingoia, J. T. and France, S. C. (2004). Mitochondrial DNA sequence variation in deep-sea bamboo coral (Keratoisidinae) species in the southwest and northwest Pacific Ocean. Marine Biology, 144, 253–261.CrossRefGoogle Scholar
Somers, M. L. (1996). The GLORIA system and data processing. In Geology of the United States' Seafloor. The View from GLORIA, ed. Gardner, J. V., Field, M. E. and Twichell, D. C.. Cambridge: Cambridge University Press, pp. 5–27.Google Scholar
Sorauf, J. E. (1972). Skeletal microstructure and microarchitecture in Scleractinia (Coelenterata). Palaeontology, 15, 88–107.Google Scholar
Soulé, M. E. (1985). What is conservation biology?Bioscience, 35, 727–734.Google Scholar
Speden, I. G. (1975). Cretaceous stratigraphy of Raukumara peninsula. New Zealand Geological Survey Bulletin, 91, 1–70.Google Scholar
Spiro, B., Roberts, M., Gage, J. and Chenery, S. (2000). 18O/16O and 13C/12C in an ahermatypic deep-water coral Lophelia pertusa from the North Atlantic: a case of disequilibrium isotope fractionation. Rapid Communications in Mass Spectrometry, 14, 1332–1336.3.0.CO;2-#>CrossRefGoogle Scholar
Squires, D. F. (1957). New species of caryophylliid corals from the Gulf Coast Tertiary. Journal of Paleontology, 31, 992–996.Google Scholar
Squires, D. F. (1958). The Cretaceous and Tertiary corals of New Zealand. Paleontological Bulletin, 29, 1–107.Google Scholar
Squires, D. F. (1964). Fossil coral thickets in Wairarapa, New Zealand. Journal of Paleontology, 38, 904–915.Google Scholar
Squires, D. F. (1965). Deep-water coral structure on the Campbell Plateau, New Zealand. Deep-Sea Research, 12, 785–788.Google Scholar
Squires, D. F. (1967). The evolution of the deep-sea coral family Micrabaciidae. Studies in Tropical Oceanography, 5, 502–510.Google Scholar
Stanley, G. D. (1981). Early history of scleractinian corals and its geological consequences. Geology, 9, 507–511.2.0.CO;2>CrossRefGoogle Scholar
Stanley, G. D. (1988). The history of early Mesozoic reef communities: a three-step process. Palaios, 3, 170–183.Google Scholar
Stanley, G. D. (2003). The evolution of modern corals and their early history. Earth-Science Reviews, 60, 195–225.CrossRefGoogle Scholar
Stanley, G. D. and Cairns, S. D. (1988). Constructional azooxanthellate coral communities: an overview with implications for the fossil record. Palaios, 3, 233–242.Google Scholar
Stanley, G. D. and Fautin, D. G. (2001). The origins of modern corals. Science, 291, 1913–1914.CrossRefGoogle ScholarPubMed
Stanley, G. D. and Swart, P. K. (1995). Evolution of the coral-zooxanthellate symbiosis during the Triassic: a geochemical approach. Paleobiology, 21, 179–199.CrossRefGoogle Scholar
Stanley, S. M. (2006). Influence of seawater chemistry on biomineralization throughout Phanerozoic time: palaeontological and experimental evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 214–236.CrossRefGoogle Scholar
Stanley, S. M. and Hardie, L. A. (1998). Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 3–19.CrossRefGoogle Scholar
Steneck, R. S. (1988). Herbivory on coral reefs: a synthesis. Proceedings of the 6th International Coral Reef Symposium, Townsville, Australia, 1, 37–49.Google Scholar
Stetson, T. R., Squires, D. F. and Pratt, R. M. (1962). Coral banks occurring in deep water on the Blake Plateau. American Museum Novitates, 2114, 1–39.Google Scholar
Stewart, R. H. (2007). Introduction to Physical Oceanography. Online textbook (http://oceanworld.tamu.edu/home/course_book.htm). Accessed May 2008.Google Scholar
Stocks, K. I. and Hart, P. J. B. (2007). Biogeography and biodiversity of seamounts. In Seamounts: Ecology, Fisheries and Conservation, ed. Pitcher, T. J., Morato, T., Hart, P. J. B.et al. Oxford: Blackwell, pp. 255–281.Google Scholar
Stoker, M. S., Weering, T. C. E. and Svaerdborg, T. (2002). A Mid- to Late Cenozoic tectonostratigraphic framework for the Rockall Trough. In The Petroleum Exploration of Ireland's Offshore Basins, ed. Shannon, P. M., Haughton, P. D. W. and Corcoran, D. V.. London: Geological Society of London, Special Publication, 188, 411–438.Google Scholar
Stolarski, J. (2003). Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontologica Polonica, 48, 497–530.Google Scholar
Stolarski, J. and Vertino, A. (2007). First Mesozoic record of the scleractinian Madrepora from the Maastrichtian siliceous limestones of Poland. Facies, 53, 67–78.CrossRefGoogle Scholar
Stone, R. P. (2006). Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions. Coral Reefs, 25, 229–238.CrossRefGoogle Scholar
Stone, R. P. and Shotwell, S. K. (2007). State of the deep coral ecosystems in the Alaska region: Gulf of Alaska, Bering Sea and the Aleutian Islands. In The State of Deep Coral Communities of the United States, NOAA Technical Memorandum, pp. 54–108.
Stone, R. and Wing, B. (2001). Growth and recruitment of an Alaskan shallow-water gorgonian. In Proceedings of the First International Symposium on Deep-sea Corals, ed. Willison, J. H. M., Hall, J., Gass, S. E.et al. Halifax, Nova Scotia: Ecology Action Center and Nova Scotia Museum, pp. 88–94.Google Scholar
Stumm, W. and Morgan, J. L. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. New York: John Wiley & Sons.Google Scholar
Suess, E., Torres, M. E., Bohrmann, G.et al. (1999). Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth and Planetary Science Letters, 170, 1–15.CrossRefGoogle Scholar
Sulak, K. J., Brooks, R. A., Luke, K. E.et al. (2007). Demersal fishes associated with Lophelia pertusa coral and hard-substrate biotopes on the continental slope, northern Gulf of Mexico. In Conservation and Adaptive Management of Seamount and Deep-sea Coral Ecosystems, ed. George, R. Y. and Cairns, S. D.. Miami, FL: University of Miami, pp. 65–92.Google Scholar
Sumaila, U. R. (2005). Differences in economic perspectives and implementation of ecosystem-based management of marine resources. Marine Ecology Progress Series, 300, 279–282.CrossRefGoogle Scholar
Sumaila, U. R., Khan, A., Teh, L.et al. (2006a). Subsidies to high seas bottom trawl fleet and the sustainability of deep sea benthic fish stocks. In Catching More Bait: a Bottom-up Re-estimation of Global Fisheries Subsidies, vol. 14, ed. Sumaila, U. R. and Pauly, D.. Fisheries Centre, the University of British Columbia, Vancouver, Canada, pp. 49–53.Google Scholar
Sumaila, U. R. and Pauly, D. (2007). All fishing nations must unite to cut subsidies. Nature, 450, 945.CrossRefGoogle ScholarPubMed
Sumaila, U. R., Teh, L., Watson, R., Tyedmers, P. and Pauly, D. (2006b). Fuel subsidies to global fisheries: magnitude on resource sustainability. In Catching More Bait: a Bottom-up Re-estimation of Global Fisheries Subsidies., vol. 14, ed. Sumaila, U. R. and Pauly, D.. Fisheries Centre, the University of British Columbia, Vancouver, Canada, pp. 38–48.Google Scholar
Sumaila, U. R., Zeller, D., Watson, R., Alder, J. and Pauly, D. (2007). Potential costs and benefits of marine reserves in the high seas. Marine Ecology Progress Series, 345, 305–310.CrossRefGoogle Scholar
Sumida, P. Y. G., Yoshinaga, M. Y., Madureira, L. and Hovland, M. (2004). Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin. Marine Geology, 207, 159–167.CrossRefGoogle Scholar
Surlyk, F. (1997). A cool-water carbonate ramp with bryozoan mounds: Late Cretaceaous – Danian of the Danish Basin. SEPM Special Publication, 56, 293–307.Google Scholar
Swart, P. K. (1983). Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth-Science Reviews, 19, 51–80.CrossRefGoogle Scholar
Szmant-Froelich, A., Johnson, V., Hoen, T.et al. (1981). The physiological effects of oil drilling muds on the Caribbean coral Montastrea annularis. Proceedings of the 4th International Coral Reef Symposium, Manila, The Philippines, 1, 163–168.Google Scholar
Tambutté, E., Allemand, D., Mueller, E. and Jaubert, J. (1996). A compartmental approach to the mechanism of calcification in hermatypic corals. Journal of Experimental Biology, 199, 1029–1041.Google Scholar
Tambutté, E., Allemand, D., Zoccola, D.et al. (2007a). Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs, 26, 517–529.CrossRefGoogle Scholar
Tambutté, S., Tambutté, E., Zoccola, D. and Allemand, D. (2007b). Organic matrix and biomineralization of scleractinian corals. In Handbook of Biomineralization, vol. 1, ed. Bäuerlein, E.. Weinheim: Wiley-VCH, pp. 243–259.Google Scholar
Tambutté, S., Tambutté, E., Zoccola, D.et al. (2007c). Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Marine Biology, 151, 71–83.CrossRefGoogle Scholar
Tambs-Lyche, H. (1958). Zoogeographical and faunistic studies on west Norwegian marine animals. In Publications from the Biological Station, Espegrend, ed. Brattstrøm, H.. Bergen: Biological Station, Espegrend, pp. 2–24.
Tarrant, A. M. (2005). Endocrine-like signaling in cnidarians: current understanding and implications for ecophysiology. Integrative and Comparative Biology, 45, 201–214.CrossRefGoogle ScholarPubMed
Tarrant, A. M., Atkinson, S. and Atkinson, M. J. (1999). Estrone and estradiol-17β concentration in tissue of the scleractinian coral, Montipora verrucosa. Comparative Biochemistry and Physiology A – Molecular and Integrative Physiology, 122, 85–92.CrossRefGoogle ScholarPubMed
Taviani, M., Freiwald, A. and Zibrowius, H. (2005). Deep coral growth in the Mediterranean Sea: an overview. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 137–156.Google Scholar
Taviani, M. and Sabelli, B. (1982). Iphitus (Mollusca: Gastropoda) a deep-water genus new to the Mediterranean Sea. Atti del V. Convegno della Società Malacologica Italiana, 129–131.Google Scholar
Teichert, C. (1958). Cold- and deep-water coral banks. The Bulletin of the American Association of Petroleum Geologists, 42, 1064–1082.Google Scholar
Tenison-Woods, J. E. (1880). Palaeontology of New Zealand. Part IV. Corals and Bryozoa. Colonial Museum and Geological Survey Department, pp. 1–34.Google Scholar
,The Royal Society (2005). Ocean acidification due to increasing atmospheric carbon dioxide. London: The Royal Society. pp. 60.
Thiel, H., Schriever, G., Ahnert, A.et al. (2001). The large-scale environmental impact experiment DISCOL: reflection and foresight. Deep-Sea Research Part II, 48, 3869–3882.CrossRefGoogle Scholar
Thiem, Ø., Ravagnan, E., Fosså, J. H. and Bernsten, J. (2006). Food supply mechanisms for cold-water corals along a continental shelf. Journal of Marine Systems, 60, 207–219.CrossRefGoogle Scholar
Thompson, J. J., Shinn, E. A. and Bright, T. J. (1980). Effects of drilling mud on seven species of reef-building corals as measured in the field and laboratory. In Marine Environmental Pollution, 1: Hydrocarbons, ed. Geyer, R. A.. Amsterdam: Elsevier Scientific Publishing Company, pp. 433–453.Google Scholar
Thomson, C. W. (1874). The Depths of the Sea. London: Macmillan and Co.Google Scholar
Thorrold, S. R., Jones, G. P., Hellberg, M. E.et al. (2002). Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bulletin of Marine Science, 70, 291–308.Google Scholar
Thresher, R. E., MacRae, C. M., Wilson, N. C. and Gurney, R. (2007). Environmental effects on the skeletal composition of deep-water gorgonians (Keratoisis spp.; Isididae). Bulletin of Marine Science, 81, 409–422.Google Scholar
Thresher, R., Rintoul, S. R., Koslow, J. A.et al. (2004). Oceanic evidence of climate change in southern Australia over the last three centuries. Geophysical Research Letters, 31, L07212, doi: 10.1029/2003GL018869.CrossRefGoogle Scholar
Titschack, J. and Freiwald, A. (2005). Growth, deposition, and facies of Pleistocene bathyal coral communities from Rhodes, Greece. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 41–59.Google Scholar
Titschack, J., Bromley, R. G. and Freiwald, A. (2005). Plio-Pleistocene cliff-bound, wedge-shaped, warm-temperate carbonate deposits from Rhodes (Greece): sedimentology and facies. Sedimentary Geology, 180, 29–56.CrossRefGoogle Scholar
Torrents, O., Tambutté, E., Caminiti, N. and Garrabou, J. (2008). Upper thermal thresholds of shallow vs. deep populations of the precious Mediterranean red coral Corallium rubrum (L.): assessing the potential effects of warming in the NW Mediterranean. Journal of Experimental Marine Biology and Ecology, 357, 7–19.CrossRefGoogle Scholar
Toulmin, L. D. (1977). Stratigraphic distribution of Paleocene and Eocene fossils in the Eastern Gulf Coast region. Geological Survey of Alabama, Monograph, 13, 1–602.Google Scholar
Tracey, D., Neil, H., Marriott, P.et al. (2007). Age and growth of two genera of deep-sea bamboo corals (Family Isididae) in New Zealand waters. Bulletin of Marine Science, 81, 393–408.Google Scholar
Tribollet, A. (2008). The boring microflora in modern coral reef ecosystems: a review of its roles. In Current Developments in Bioerosion, ed. Wisshak, M. and Tapanila, L.. Heidelberg: Springer, pp. 67–94.Google Scholar
Tsounis, G., Rossi, S., Gili, J. M. and Arntz, W. (2006). Population structure of an exploited benthic cnidarian: the case study of red coral (Corallium rubrum L.). Marine Biology, 149, 1059–1070.CrossRefGoogle Scholar
Turley, C., Blackford, J., Widdicombe, S.et al. (2006). Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem. In Avoiding Dangerous Climate Change, ed. Schellnhuber, H. J., Cramer, W., Nakicenovic, N., Wigley, T. and Yohe, G., Cambridge, UK: Cambridge University Press, pp. 65–70.Google Scholar
Twan, W. H., Hwang, J. S. and Chang, C. F. (2003). Sex steroids in scleractinian coral, Euphyllia ancora: implication in mass spawning. Biology of Reproduction, 68, 2255–2260.CrossRefGoogle ScholarPubMed
Tyler, P. A., Grant, A., Pain, S. L. and Gage, J. D. (1982). Is annual reproduction in deep-sea echinoderms a response to variability in their environment?Nature, 300, 747–750.CrossRefGoogle Scholar
,UN (2007). Sixty-first session. Agenda item 71 (b). Oceans and the law of the sea: sustainable fisheries, including through the 1995 Agreement for the Implementation of the Provisions of the United Nations Convention on the Law of the Sea of 10 December 1982 relating to the Conservation and Management of Straddling Fish Stocks and Highly Migratory Fish Stocks, and related instruments. vol. 2167: United Nations, Treaty Series.
,UNEP (2006). Ecosystems and biodiversity in deep waters and high seas. In UNEP Regional Seas Reports and Studies. Switzerland: UNEP/IUCN.Google Scholar
,UNEP (2007). Deep-sea biodiversity and ecosystems: a scoping report on their socio-economic, management and governance. Cambridge, UK: UNEP-WCMC, pp. 84.
Valenciennes, A. (1855). Extrait d'une monographie de la famille des Gorgonidées de la classe des polypes. Les Comptes Rendus de l'Académie des Sciences, 41, 7–15.Google Scholar
Valle-Levinson, A., Castro, A. T., Velasco, G. G. and Armas, R. G. (2004). Diurnal vertical motions over a seamount of the southern Gulf of California. Journal of Marine Systems, 50, 61–77.CrossRefGoogle Scholar
Flierdt, T., Robinson, L. F., Adkins, J. F., Hemming, S. R. and Goldstein, S. L. (2006). Temporal stability of the neodymium isotope signature of the Holocene to glacial North Atlantic. Paleoceanography, 21, PA4102, doi: 10.1029/2006PA001294.Google Scholar
Dyke, F. (2003). Conservation Biology: Foundations, Concepts, Applications. New York: McGraw Hill.Google Scholar
Vanney, J.-R. and Gennesseaux, M. (1985). Mediterranean seafloor features: overview and assessment. In Geological Evolution of the Mediterranean Basin, ed. Stanley, D. J. and Wezel, F. C.. Springer, pp. 3–32.Google Scholar
Oppen, M. J. H., Willis, B. L. and Miller, D. J. (1999). Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proceedings of the Royal Society of London Series B – Biological Sciences, 266, 179–183.CrossRefGoogle ScholarPubMed
Rooij, D., Mol, B., Huvenne, V., Ivanov, M. and Henriet, J.-P. (2003). Seismic evidence of current-controlled sedimentation in the Belgica mound province, Porcupine Seabight: a multidisciplinary approach. Marine Geology, 195, 31–53.CrossRefGoogle Scholar
Rooij, D., Blamart, D., Kozachenko, M. and Henriet, J.-P. (2007a). Small mounded contourite drifts associated with deep-water coral banks, Porcupine Seabight, NE Atlantic Ocean. In Economic and Palaeoceanographic Importance of Contourite Deposits, ed. Viana, A. and Rebesco, M.. London: Geological Society, London, Special Publication, 276, pp. 225–244.Google Scholar
Rooij, D., Blamart, D., Richter, T.et al. (2007b). Quaternary sediment dynamics in the Belgica mounds province, Porcupine Seabight: ice rafting events and contour current processes. International Journal of Earth Sciences, 96, 121–140.CrossRefGoogle Scholar
Rooij, D., Huvenne, V. A. I., Foubert, A.et al. (2008). The Enya mounds: a lost mound-drift competition. International Journal of Earth Sciences, doi: 10.1007/s00531–007-0293–9.Google Scholar
Soest, R. W. M., Cleary, D. F. R., Kluijver, M. J.et al. (2007). Sponge diversity and community composition in Irish bathyal coral reefs. Contributions to Zoology, 76, 121–142.Google Scholar
Weering, T. C. E., Haas, H., Stigter, H. C., Lykke-Andersen, H. and Kouvaev, I. (2003). Structure and development of giant carbonate mounds at the SW and SE Rockall Trough margins, NE Atlantic Ocean. Marine Geology, 198, 67–81.CrossRefGoogle Scholar
Vaughan, T. W. (1900). The Eocene and Lower Oligocene coral faunas of the United States with descriptions of a few doubtfully Cretaceous species. Monographs of the United States Geological Survey, 39, 1–207.Google Scholar
Vaughan, T. W. (1940). Ecology of modern marine organisms with reference to paleogeography. Bulletin of the Geological Society of America, 51, 433–468.CrossRefGoogle Scholar
Vaughan, T. W. and Wells, J. W. (1943). Revision of the suborders, families, and genera of the Scleractinia. Geological Society of America Special Papers, 44, 1–363.CrossRefGoogle Scholar
Vella, P. (1964). Foraminifera and other fossils from Late Tertiary deep-water coral thickets, Wairarapa, New Zealand. Journal of Paleontology, 38, 916–928.Google Scholar
Veron, J. E. N. (1995). Corals in Space and Time. The Biogeography and Evolution of the Scleractinia. Ithaca, NY and London: Cornell University Press.Google Scholar
Veron, J. E. N., Odorico, D. M., Chen, C. A. and Miller, D. J. (1996). Reassessing evolutionary relationships of scleractinian corals. Coral Reefs, 15, 1–9.CrossRefGoogle Scholar
Voigt, E. (1958). Untersuchungen an Oktokorallen aus der oberen Kreide. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, 27, 5–49.Google Scholar
Voigt, E. (1959). Endosacculus moltkiae n. g. n. sp., ein vermutlicher fossiler Ascothoracide (Entomostr.) als Cystenbildner bei der Oktokoralle Moltkia minuta. Paläontologische Zeitschrift, 33, 211–223.CrossRef
Waller, R. G. (2005). Deep-water Scleractinia (Cnidaria: Anthozoa): current knowledge of reproductive processes. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 691–700.Google Scholar
Waller, R. G. and Tyler, P. A. (2005). The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs, 24, 514–522.CrossRefGoogle Scholar
Waller, R. G, Tyler, P. A. and Gage, J. D. (2002). Reproductive ecology of the deep-sea scleractinian coral Fungiacyathus marenzelleri (Vaughan, 1906) in the northeast Atlantic Ocean. Coral Reefs, 21, 325–331.Google Scholar
Walter, M. R. (1983). Archean stromatolites: evidence of the Earth's earliest benthos. In Earth Earliest Biosphere, ed. Schopf, J. W.. Princetown, NJ: Princeton University Press, pp. 187–213.Google Scholar
Wang, J. T. and Douglas, A. E. (1998). Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis?Journal of Experimental Biology, 201, 2445–2453.Google ScholarPubMed
Wares, J. P. and Cunningham, C. W. (2001). Phylogeography and historical ecology of the North Atlantic intertidal. Evolution, 55, 2455–2469.CrossRefGoogle ScholarPubMed
Warren, G. and Speden, I. (1978). The Piripauan and Haumurian stratotypes (Mata Series, Upper Cretaceous) and correlative sequences in the Haumuri Bluff district, South Marlborough. New Zealand Geological Survey Bulletin, 92, 1–60.Google Scholar
Watling, L. and Auster, P. J. (2005). Distribution of deep-water Alcyonacea off the Northeastern coast of the United States. In Cold-water Corals and Ecosystems, ed. Freiwald, A.. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 279–296.Google Scholar
Watling, L. and Norse, E. A. (1998). Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conservation Biology, 12, 1180–1197.CrossRefGoogle Scholar
Webb, G. E. (1996). Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)?Sedimentology, 43, 947–971.CrossRefGoogle Scholar
Webb, G. E. (2002). Latest Devonian and early Carboniferous reefs: depressed reef building after the middle Paleozoic collapse. In Phanerozoic Reef Patterns, ed. Kiessling, W., Flügel, E. and Golonka, J.. SEPM Special Publication, 72, 239–269.Google Scholar
Webber, W. R. (2004). A new species of Alvinocaris (Crustacea: Decapoda: Alvinocarididae) and new records of alvinocaridids from hydrothermal vents north of New Zealand. Zootaxa, 444, 1–26.CrossRefGoogle Scholar
Weber, J. N. and Woodhead, P. M. (1972). Temperature dependence of oxygen-18 concentration in reef coral carbonates. Journal of Geophysical Research, 77, 463–473.CrossRefGoogle Scholar
Weinbauer, M. G., Brandstatter, F. and Velimirov, B. (2000). On the potential use of magnesium and strontium concentrations as ecological indicators in the calcite skeleton of the red coral (Corallium rubrum). Marine Biology, 137, 801–809.CrossRefGoogle Scholar
Wells, J. W. (1933). Corals of the Cretaceous of the Atlantic and Gulf coastal plain and western interior of the United States. Bulletins of American Paleontology, 18, 85–288.Google Scholar
Wells, J. W. (1956). Scleractinia. In Treatise on Invertebrate Paleontology. Part F Coelenterata, ed. Moore, R. C.. Lawrence, KS: Geological Society of America and University of Kansas Press, pp. 328–444.Google Scholar
Wells, J. W. (1977). Eocene corals from Eua, Tonga. Geological Survey Professional Paper, G640, 1–13 and 17–18.Google Scholar
Wells, J. W. and Alderslade, P. N. (1979). The scleractinian coal Archohelia living on the coastal shores of Queensland, Australia. Records of the Australian Museum, 32, 211–216.CrossRefGoogle Scholar
Wells, J. W. and Hill, D. (1956). Anthozoa-general features. In Treatise on Invertebrate Paleontology. Part F Coelenterata, ed. Moore, R. C., Lawrence, KS: Geological Society of America and University of Kansas Press, pp. 161–165.Google Scholar
Wells, P. E. (1986). Record of an Upper Miocene fossil Goniocorella coral thicket, Mt. Bruce, Wairarapa, New Zealand. Journal of the Royal Society of New Zealand, 16, 139–144.CrossRefGoogle Scholar
Wendt, J. (1990). The first aragonitic rugose coral. Journal of Paleontology, 64, 335–340.CrossRefGoogle Scholar
Wenner, E. L. and Barans, C. A. (2001). Benthic habitats and associated fauna of the upper- and middle-continental slope near the Charleston Bump. In Island in the Stream: Oceanography and Fisheries of the Charleston Bump, ed. Sedberry, G. R.. American Fisheries Society Symposium, 25, 161–176.
Wheeler, A. J., Beck, T., Thiede, J.et al. (2005a). Deep-water coral mounds on the Porcupine Bank, Irish margin: preliminary results from Polarstern ARK-XIX/3a ROV cruise. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M., Berlin Heidelberg: Springer, pp. 393–402.Google Scholar
Wheeler, A. J., Bett, B. J., Billett, D. S. M., Masson, D. G. and Mayor, D. (2005b). The impact of demersal trawling on northeast Atlantic deepwater coral habitats: the case of the Darwin Mounds, United Kingdom. In Benthic Habitats and the Effects of Fishing, ed. Barnes, P. W. and Thomas, J. P.. American Fisheries Society Symposium, 41, 807–817.Google Scholar
Wheeler, A. J., Beyer, A., Freiwald, A.et al. (2007). Morphology and environment of deep-water coral mounds on the NW European margin. International Journal of Earth Sciences, 96, 37–56.CrossRefGoogle Scholar
Wheeler, A. J., Kozachenko, M., Beyer, A.et al. (2005c). Sedimentary processes and carbonate mounds in the Belgica mound province, Porcupine Seabight, NE Atlantic. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M., Berlin Heidelberg: Springer, pp. 571–603.Google Scholar
Wheeler, A. J., Kozachenko, M., Masson, D. G. and Huvenne, V. A. I. (2008). The influence of benthic sediment transport on cold-water coral bank morphology and growth: the example of the Darwin Mounds, NE Atlantic. Sedimentology, 55, 1875–1887.CrossRefGoogle Scholar
White, M., Bashmachnikov, I., Arístegui, J. and Martins, A. (2007). Physical processes and seamount productivity. In Seamounts: Ecology, Fisheries and Conservation, ed. Pitcher, T. J., Morato, T., Hart, P. J. B.et al. Oxford: Blackwell Publishing, pp. 65–84.Google Scholar
White, M., Mohn, C. and Orren, M. J. (1998). Nutrient distributions across the Porcupine Bank. ICES Journal of Marine Science, 55, 1082–1094.CrossRefGoogle Scholar
White, M., Mohn, C., Stigter, H. and Mottram, G. (2005). Deep-water coral development as a function of hydrodynamics and surface productivity around the submarine banks of the Rockall Trough, NE Atlantic. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 503–514.Google Scholar
Wienberg, C., Beuck, L., Heidkamp, S.et al. (2008). Franken Mound: facies and biocoenoses on a newly-discovered ‘carbonate mound’ on the western Rockall Bank, NE Atlantic. Facies, 54, 1–24.CrossRefGoogle Scholar
Wignall, P. B. (2001). Large igneous provinces and mass extinctions. Earth-Science Reviews, 53, 1–33.CrossRefGoogle Scholar
Wild, C., Huettel, M., Klueter, A.et al. (2004). Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature, 428, 66–70.CrossRefGoogle ScholarPubMed
Williams, B., Risk, M. J., Ross, S. W. and Sulak, K. J. (2006a). Deep-water antipatharians: proxies of environmental change. Geology, 34, 773–776.CrossRefGoogle Scholar
Williams, B., Risk, M. J., Ross, S. W. and Sulak, K. J. (2007). Stable isotope data from deep-water antipatharians: 400-year records from the southeastern coast of the United States of America. Bulletin of Marine Science, 81, 437–447.Google Scholar
Williams, G. C. (1995). Living genera of sea pens (Coelenterata: Octocorallia: Pennatulacea): illustrated key and synopses. Zoological Journal of the Linnean Society, 113, 93–140.CrossRefGoogle Scholar
Williams, G. C. (1999). Index Pennatulacea: annotated bibliography and indexes of the sea pens (Coelenterata: Octocorallia) of the world 1469–1999. Proceedings of the California Academy of Sciences, 51, 19–103.Google Scholar
Williams, T., Kano, A., Ferdelman, T.et al. (2006b). Cold-water coral mounds revealed. EOS: Transactions American Geophysical Union, 87, 525–526.CrossRefGoogle Scholar
Wilson, J. B. (1979). ‘Patch’ development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank. Journal of the Marine Biological Association of the United Kingdom, 59, 165–177.CrossRefGoogle Scholar
Wing, B. L. and Barnard, D. R. (2004). A field guide to Alaskan corals. NOAA Technical Memorandum NMFS-AFSC-146.
Winsnes, I. M. (1989). Eunicid polychaetes (Annelida) from Scandinavian and adjacent waters. Family Eunicidae. Zoologica Scripta, 18, 483–500.CrossRefGoogle Scholar
Wisshak, M. (2006). High-latitude bioerosion. Lecture Notes in Earth Sciences, 109, 1–202.Google Scholar
Wisshak, M., Freiwald, A., Lundälv, T. and Gektidis, M. (2005). The physical niche of the bathyal Lophelia pertusa in a non-bathyal setting: environmental controls and palaeoecological implications. In Cold-water Corals and Ecosystems, ed. Freiwald, A. and Roberts, J. M.. Berlin Heidelberg: Springer, pp. 979–1001.Google Scholar
Wisshak, M., Neumann, C., Jakobsen, J. and Freiwald, A. (2009). The ‘living-fossil community’ of the cyrtocrinoid Cyathidium foresti and the deep-sea oyster Neopycnodonte zibrowii (Azores Archipelago). Palaeogeography, Palaeoclimatology, Palaeoecology 271, 77–83.CrossRef
Wood, R. (1993). Nutrients, predation and the history of reef-building. Palaios, 8, 526–543.CrossRefGoogle Scholar
Wood, R., Dickson, J. A. D. and Kirkland, B. (1996). New observations on the ecology of the Permian Capitan Reef, Texas and New Mexico. Palaeontology, 39, 733–762.Google Scholar
Wood, R. A. (1999). Reef Evolution. Oxford: Oxford University Press.Google Scholar
Wood, R. A. (2000). Palaeoecology of a Late Devonian back reef: Windjana Gorge, Canning Basin, Western Australia. Palaeontology, 43, 671–703.CrossRefGoogle Scholar
Wright, D. J., Blongewicz, M. J., Halpin, P. N. and Breman, J. (2007). Arc Marine: GIS for a Blue Planet, Redlands, CA: ESRI Press.Google Scholar
Wright, E. P. and Studer, Th. (1889). Report on the Alcyonaria Collected by H.M.S. Challenger During the Years 1873–1876, Volume 31: Report of the Scientific Results of the Voyage of H.M.S. Challenger. London: Her Majesty's Stationery Office.
Wright, J. P. and Jones, C. G. (2006). The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience, 56, 203–209.CrossRefGoogle Scholar
Yakimov, M. M., Cappello, S., Crisafi, E.et al. (2006). Phylogenetic survey of metabolically active microbial communities associated with the deep-sea coral Lophelia pertusa from the Apulian plateau, Central Mediterranean Sea. Deep-Sea Research Part I, 53, 62–75.CrossRefGoogle Scholar
Yamamuro, M., Kayanne, H. and Minagawa, M. (1995). Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems. Limnology and Oceanography, 40, 617–621.CrossRefGoogle Scholar
Yoklavich, M. and Love, M. (2005). Christmas tree corals: a new species discovered off southern California. Journal of Marine Education (Current), 21, 27–30.Google Scholar
Yonge, C. M., Yonge, M. B. and Nicholls, A. G. (1932). Studies on the physiology of corals. VI. The relationship between respiration in corals and the production of oxygen by their zooxanthellae. In The Great Barrier Reef Expedition 1928–29. Scientific Reports. Volume 1. London: British Museum (Natural History), pp. 213–251.Google Scholar
Zabala, M., Maluquer, P. and Harmelin, J. G. (1993). Epibiotic bryozoans on deep-water scleractinian corals from the Catalonia slope (western Mediterranean, Spain, France). Scientia Marina, 57, 65–78.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.CrossRefGoogle ScholarPubMed
Zachos, J. C. (2005). Rapid acidification of the ocean during the Paleocene–Eocene thermal maximum. Science, 308, 1611–1615.CrossRefGoogle ScholarPubMed
Zeebe, R. and Gattuso, J.-P. (2006). Marine carbonate chemistry. In Encyclopedia of Earth, ed. Cleveland, C. J.. Washington, DC: Environmental Information Coalition and National Council for Science and the Environment. Published online www.eoearth.org/article/Marine_carbonate_chemistry. Accessed May 2008.Google Scholar
Zhao, M. X., Dupont, L., Eglinton, G. and Teece, M. (2003). N-alkane and pollen reconstruction of terrestrial climate and vegetation for NW Africa over the last 160 kyr. Organic Geochemistry, 34, 131–143.CrossRefGoogle Scholar
Zibrowius, H. (1973). Scléractiniaries des Iles Saint Paul et Amsterdam (sud de l'Océan Indien). Tethys, 5, 747–777.Google Scholar
Zibrowius, H. (1980). Les Scléractiniaries de la Mediterranée et de l'Atlantique nord-oriental. Mémoires Institute Océanographique, Monaco, 11, 1–284.Google Scholar
Zibrowius, H. (1981). Associations of Hydrocorallia Stylasterina with gall-inhabiting Copepoda Siphonostomatoidea from the south-west Pacific. Bijdragen tot de Dierkunde, 51, 268–286.Google Scholar
Zibrowius, H. (1984). Taxonomy in ahermatypic scleractinian corals. Palaeontographica Americana, 54, 80–85.Google Scholar
Zibrowius, H. (1987). Scléractiniaires et polychètes Serpulidae des faunes bathyales actuelle et plio-pléistocène de Méditerranée. Documents et Travaux IGAL, 11, 255–257.Google Scholar
Zibrowius, H. (1989). Mise au point les Scléractiniares comme indicateurs de profundeur (Cnidaria: Anthozoa). Géologie Méediterranéene, 15, 27–47.Google Scholar
Zibrowius, H. and Cairns, S. D. (1992). Revision of the northeast Atlantic and Mediterranean Stylasteridae (Cnidaria: Hydrozoa). Mémoires de Muséum National d'Histoire Naturelle, Zoologie, 153, 1–136.Google Scholar
Zibrowius, H., Southward, E. C. and Day, J. H. (1975). New observations on a little-known species of Lumbrineris (Polychaeta) living on various cnidarians, with notes on its recent and fossil scleractinian hosts. Journal of the Marine Biological Association of the United Kingdom, 55, 83–108.CrossRefGoogle Scholar
Zoccola, D., Tambutté, E., Kulhanek, E.et al. (2004). Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochimica et Biophysica Acta – Biomembranes, 1663, 117–126.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • J. Murray Roberts, Scottish Association for Marine Science, Andrew Wheeler, University College Cork, André Freiwald, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, Stephen Cairns, Smithsonian Institution, Washington DC
  • Book: Cold-Water Corals
  • Online publication: 23 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581588.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • J. Murray Roberts, Scottish Association for Marine Science, Andrew Wheeler, University College Cork, André Freiwald, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, Stephen Cairns, Smithsonian Institution, Washington DC
  • Book: Cold-Water Corals
  • Online publication: 23 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581588.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • J. Murray Roberts, Scottish Association for Marine Science, Andrew Wheeler, University College Cork, André Freiwald, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, Stephen Cairns, Smithsonian Institution, Washington DC
  • Book: Cold-Water Corals
  • Online publication: 23 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581588.011
Available formats
×