Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T17:36:38.867Z Has data issue: false hasContentIssue false

23 - Prion disorders and other rapidly progressive dementias

Published online by Cambridge University Press:  31 July 2009

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Foundation, Minnesota
Get access

Summary

Introduction

Because most dementias develop slowly, rapidly progressing dementias (RPDs) present a unique challenge to neurologists. Assessment of patients with an RPD often requires consideration of diagnoses that only marginally overlap with those for slowly progressing dementias. With the possible exceptions of dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD), the disorders that commonly lead to slowly progressive adult dementia, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), rarely present as RPDs.

Since the start of the twenty-first century, our group has assessed more than 975 individuals with RPD, many of whom were referred with a suspected diagnosis of Creutzfeldt–Jakob disease (CJD). A recent review of these data show that 54% were diagnosed with prion disease (37% probable or definite sporadic, 15% genetic and 2% acquired), 28% had an undetermined diagnosis (insufficient records, although most met criteria for possible CJD), and, most importantly, 18% were shown to have other non-prion conditions, many of which were treatable. The diagnostic breakdown of these non-prion RPDs was 26% neurodegenerative, 15% autoimmune, 11% infectious, 11% psychiatric, 9% miscellaneous other, while 28% were still undetermined, often leukoencephalopathies or encephalopathies of unknown etiology (unpublished data). Differentiating prion disease from other causes of RPDs is paramount; therefore, we will begin our discussion of RPDs by focusing initially on prion disease, the prototypical RPD.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tschampa, H. J., Neumann, M., Zerr, I.et al. Patients with Alzheimer's disease and dementia with Lewy bodies mistaken for Creutzfeldt–Jakob disease. J Neurol Neurosurg Psychiatry, 2001; 71(1): 33–9.CrossRefGoogle ScholarPubMed
Poser, S., Mollenhauer, B., Kraubeta, A.et al. How to improve the clinical diagnosis of Creutzfeldt–Jakob Disease. Brain, 1999; 122(Pt 12): 2345–51.CrossRefGoogle ScholarPubMed
Olichney, J. M., Galasko, D., Salmon, D. P.et al. Cognitive decline is faster in Lewy body variant than in Alzheimer's disease. Neurology, 1998; 51(2): 351–7.CrossRefGoogle ScholarPubMed
Geschwind, M. D., Haman, A., and Miller, B. L.. Rapidly progressive dementia. Neurol Clin, 2007; 25(3): 783–807.CrossRefGoogle ScholarPubMed
Creutzfeldt, H. G.On a particular focal disease of the central nervous system (preliminary communication), 1920. Alzheimer Dis Assoc Disord, 1989; 3(1–2): 3–25.CrossRefGoogle ScholarPubMed
Jakob, A.Concerning a disorder of the central nervous system clinically resembling multiple sclerosis with remarkable anatomic findings (spastic pseudosclerosis). Report of a fourth case. Alzheimer Dis Assoc Disord, 1989; 3(1–2): 26–45.CrossRefGoogle Scholar
Katscher, F.It's Jakob's disease, not Creutzfeldt's. Nature, 1998; 393(6680): 11.CrossRefGoogle Scholar
Gibbs, C. J.Spongiform encephalopathies – slow, latent, and temperate virus infections – in retrospect In Prion Diseases of Humans and Animals, Prusiner, eds. S. B., Collinge, J., Powell, J. and Anderton, B.. London: Ellis Horwood, 1992, pp. 53–62.Google Scholar
Masters, C. L.Creutzfeldt–Jakob disease: its origins. Alzheimer Dis Assoc Disord, 1989; 3(1–2): 46–51.CrossRefGoogle ScholarPubMed
Ladogana, A., Puopolo, M., Croes, E. A.et al. Mortality from Creutzfeldt–Jakob disease and related disorders in Europe, Australia, and Canada. Neurology, 2005; 64(9): 1586–91.CrossRefGoogle ScholarPubMed
Brown, P., Gibbs, Jr. C. J., Rodgers-Johnson, P.et al. Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol, 1994; 35(5): 513–29.CrossRefGoogle ScholarPubMed
Pocchiari, M., Puopolo, M., Croes, E. A.et al. Predictors of survival in sporadic Creutzfeldt–Jakob disease and other human transmissible spongiform encephalopathies. Brain, 2004; 127(10): 2348–59.CrossRefGoogle ScholarPubMed
Collins, S. J., Sanchez-Juan, P., Masters, C. L.et al. Determinants of diagnostic investigation sensitivities across the clinical spectrum of sporadic Creutzfeldt–Jakob disease. Brain, 2006; 129(Pt 9): 2278–87.CrossRefGoogle ScholarPubMed
Rabinovici, G. D., Wang, P. N., Levin, J.et al. First symptom in sporadic Creutzfeldt–Jakob disease. Neurology, 2006; 66(2): 286–7.CrossRefGoogle ScholarPubMed
,World Health Organization. Emerging and Other Communicable Diseases, Surveillance and Control: Global Surveillance, Diagnosis and Therapy of Human Transmissible Spongiform Encephalopathies. Geneva: World Health Organization, 1998.
Masters, C. L., Harris, J. O., Gajdusek, D. C.et al. Creutzfeldt–Jakob disease: patterns of worldwide occurrence and the significance of familial and sporadic clustering. Ann Neurol, 1979; 5(2): 177–88.CrossRefGoogle ScholarPubMed
Kretzschmar, H. A., Ironside, J. W., DeArmond, S. J.et al. Diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Arch Neurol, 1996; 53(9): 913–20.CrossRefGoogle ScholarPubMed
Pals, P., Everbroeck, B., Sciot, R.et al. A retrospective study of Creutzfeldt–Jakob disease in Belgium. Eur J Epidemiol, 1999; 15(6): 517–19.CrossRefGoogle ScholarPubMed
Zerr, I., Pocchiari, M., Collins, S.et al. Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt–Jakob disease. Neurology, 2000; 55(6): 811–15.CrossRefGoogle Scholar
Steinhoff, B. J., Zerr, I., Glatting, M.et al. Diagnostic value of periodic complexes in Creutzfeldt–Jakob disease. Ann Neurol, 2004; 56(5): 702–8.CrossRefGoogle ScholarPubMed
Henchey, R., Cibula, J., Helveston, W.et al. Electroencephalographic findings in Hashimoto's encephalopathy. Neurology, 1995; 45(5): 977–81.CrossRefGoogle ScholarPubMed
Seipelt, M., Zerr, I., Nau, R.et al. Hashimoto's encephalitis as a differential diagnosis of Creutzfeldt–Jakob disease. J Neurol Neurosurg Psychiatry, 1999; 66(2): 172–6.CrossRefGoogle ScholarPubMed
Hsich, G., Kenney, K., Gibbs, C. J.et al. The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med, 1996; 335(13): 924–30.CrossRefGoogle ScholarPubMed
Otto, M. and Wiltfang, J.. Differential diagnosis of neurodegenerative diseases with special emphasis on Creutzfeldt–Jakob disease. Restor Neurol Neurosci, 2003; 21(3–4): 191–209.Google ScholarPubMed
Everbroeck, B., Quoilin, S., Boons, J.et al. A prospective study of CSF markers in 250 patients with possible Creutzfeldt–Jakob disease. J Neurol Neurosurg Psychiatry, 2003; 74(9): 1210–14.CrossRefGoogle ScholarPubMed
Sanchez-Juan, P., Green, A., Ladogana, A.et al. CSF tests in the differential diagnosis of Creutzfeldt–Jakob disease. Neurology, 2006; 67(4): 637–43.CrossRefGoogle ScholarPubMed
Chapman, T., McKeel, Jr. D. W., and Morris, J. C.. Misleading results with the 14-3-3 assay for the diagnosis of Creutzfeldt–Jakob disease. Neurology, 2000; 55(9): 1396–7.CrossRefGoogle Scholar
Geschwind, M. D., Martindale, J., Miller, D.et al. Challenging the clinical utility of the 14-3-3 protein for the diagnosis of sporadic Creutzfeldt–Jakob disease. Arch Neurol, 2003; 60(6): 813–16.CrossRefGoogle Scholar
Zerr, I., Bodemer, M., Gefeller, O.et al. Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt–Jakob disease. Ann Neurol, 1998; 43(1): 32–40.CrossRefGoogle Scholar
Geschwind, M. D., Haman, A., Torres-Chae, C.. et al. CSF findings in a large United States sporadic CJD cohort. In Proceedings of the Annual Conference of the American Academy of Neurology, Boston, 2007, A142.Google Scholar
Lemstra, A. W., Meegan, M. T., Vreyling, J. P.et al. 14-3-3 testing in diagnosing Creutzfeldt–Jakob disease. Neurology, 2000; 55: 514–16.CrossRefGoogle ScholarPubMed
Beaudry, P., Cohen, P., Brandel, J. P.et al. 14-3-3 Protein, neuron-specific enolase, and S-100 protein in cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Dement Geriatr Cogn Disord, 1999; 10(1): 40–6.CrossRefGoogle ScholarPubMed
Everbroeck, B. R. J., Boons, J. and Cras, P., 14-3-3 {gamma}-isoform detection distinguishes sporadic Creutzfeldt–Jakob disease from other dementias. J Neurol Neurosurg Psychiatry, 2005; 76(1): 100–2.CrossRefGoogle ScholarPubMed
Otto, M., Wiltfang, J., Cepek, L.et al. Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt–Jakob disease. Neurology, 2002; 58(2): 192–7.CrossRefGoogle ScholarPubMed
Everbroeck, B., Green, A., Vanmechelen, E.et al. Phosphorylated tau in cerebrospinal fluid as a marker for Creutzfeldt–Jakob disease. J Neurol Neurosurg Psychiatry, 2002; 73(1): 79–81.CrossRefGoogle ScholarPubMed
Huang, N., Marie, S. K., Livramento, J. A.et al. 14-3-3 protein in the CSF of patients with rapidly progressive dementia. Neurology, 2003; 61(3): 354–7.CrossRefGoogle ScholarPubMed
Safar, J., Wille, H., Itri, V.et al. Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med, 1998; 4(10): 1157–65.CrossRefGoogle ScholarPubMed
Safar, J. G., Geschwind, M. D., Deering, C.et al. Diagnosis of human prion disease. Proc Natl Acad Sci USA, 2005; 102(9): 3501–6.CrossRefGoogle ScholarPubMed
Safar, J. G., Wille, H., Geschwind, M. D.et al. Human prions and plasma lipoproteins. Proc Natl Acad Sci USA, 2006; 103: 11312–17.CrossRefGoogle ScholarPubMed
Saa, P., Castilla, J., and Soto, C.. Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J Biol Chem, 2006; 281(46): 35245–52.CrossRefGoogle ScholarPubMed
Young, G. S., Geschwind, M. D., Fischbein, N. J.et al. Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt–Jakob disease: high sensitivity and specificity for diagnosis. Am J Neuroradiol, 2005; 26(6): 1551–62.Google ScholarPubMed
Shiga, Y., Miyazawa, K., Sato, S.et al. Diffusion-weighted MRI abnormalities as an early diagnostic marker for Creutzfeldt–Jakob disease. Neurology, 2004; I63: 443–9.CrossRefGoogle Scholar
Bavis, J., Reynolds, P., Tegeler, C.et al. Asymmetric neuroimaging in Creutzfeldt–Jakob disease: a ruse. J Neuroimaging, 2003; 13(4): 376–79.CrossRefGoogle ScholarPubMed
Cambier, D. M., Kantarci, K., Worrell, G. A.et al. Lateralized and focal clinical, EEG, and FLAIR MRI abnormalities in Creutzfeldt–Jakob disease. Clin Neurophysiol, 2003; 114(9): 1724–8.CrossRefGoogle ScholarPubMed
Peretz, D., Supattapone, S., Giles, K.et al. Inactivation of prions by acidic sodium dodecyl sulfate. J Virol, 2006; 80(1): 322–31.CrossRefGoogle ScholarPubMed
Muller, W. E., Laplanche, J. L., Ushijima, H.et al. Novel approaches in diagnosis and therapy of Creutzfeldt–Jakob disease. Mech Ageing Dev, 2000; 116(2–3): 193–218.CrossRefGoogle ScholarPubMed
Serban, D., Taraboulos, A., DeArmond, S. J.et al. Rapid detection of Creutzfeldt–Jakob disease and scrapie prion proteins. Neurology, 1990; 40(1): 110–17.CrossRefGoogle ScholarPubMed
Soto, C., Saborio, G. P., and Anderes, L.. Cyclic amplification of protein misfolding: application to prion-related disorders and beyond. Trends Neurosci, 2002; 25(8): 390–4.CrossRefGoogle ScholarPubMed
Castilla, J., Saa, P., Soto, C.. Detection of prions in blood. Nat Med, 2005; 11(9): 982–5.CrossRefGoogle ScholarPubMed
Castilla, J., Nonno, R., Fernández-Borges, N.et al. FC7.4 de novo generation of prions in a cell-free system. In Prion2007. Edinburgh, UK: NeuroPrion, 2007, p. 16.Google Scholar
Chang, C. C., Eggers, S. D., Johnson, J. K.et al. Anti-GAD antibody cerebellar ataxia mimicking Creutzfeldt–Jakob disease. Clin Neurol Neurosurg, 2007; 109: 54–7.CrossRefGoogle ScholarPubMed
Saiz, A., Graus, F., Dalmau, J.et al. Detection of 14-3-3 brain protein in the cerebrospinal fluid of patients with paraneoplastic neurological disorders. Ann Neurol, 1999; 46: 774–7.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Geschwind, M. D. and Jay, C.. Assessment of rapidly progressive dementias. Concise review related to Chapter 362: Alzheimer's Disease and Other Primary Dementias. In Harrison's Textbook of Internal Medicine, eds. Braunwald, E., Fauci, A. S., Kaspar, D. L.et al. New York: McGraw Hill, 2003. [Online supplement.] McGraw Hill.Google Scholar
Ghika-Schmid, F., Ghika, J., Regli, F.et al. Hashimoto's myoclonic encephalopathy: an underdiagnosed treatable condition?Mov Disord, 1996; 11(5): 555–62.CrossRefGoogle ScholarPubMed
Slee, M., Pretorius, P., Ansorge, O.et al. Parkinsonism and dementia due to gliomatosis cerebri mimicking sporadic Creutzfeldt–Jakob disease (CJD). J Neurol Neurosurg Psychiatry, 2006; 77(2): 283–4.CrossRefGoogle Scholar
Heinrich, A., Vogelgesang, S., Kirsch, M.et al. Intravascular lymphomatosis presenting as rapidly progressive dementia. Eur Neurol, 2005; 54(1): 55–8.CrossRefGoogle ScholarPubMed
Bakshi, R., Mazziotta, J. C., Mischel, P. S.et al. Lymphomatosis cerebri presenting as a rapidly progressive dementia: clinical, neuroimaging and pathologic findings. Dement Geriatr Cogn Disord, 1999; 10(2): 152–7.CrossRefGoogle ScholarPubMed
Carlson, B. A., Rapidly progressive dementia caused by nonenhancing primary lymphoma of the central nervous system. Am J Neuroradiol, 1996; 17(9): 1695–7.Google ScholarPubMed
Josephson, S. A., Papanastassiou, A. M., Berger, M. S.et al. The diagnostic utility of brain biopsy procedures in patients with rapidly deteriorating neurological conditions or dementia. J Neurosurg, 2007; 106(1): 72–5.CrossRefGoogle ScholarPubMed
Jungreis, A. C. and Schaumburg, H. H.. Encephalopathy from abuse of bismuth subsalicylate (Pepto-Bismol). Neurology, 1993; 43(6): 1265.CrossRefGoogle Scholar
Teepker, 2002 #6458 to add.
Gajdusek, D. C.Unconventional viruses and the origin and disappearance of kuru. Science, 1977; 197(4307): 943–60.CrossRefGoogle ScholarPubMed
Brown, P., Rohwer, R. G. and Gajdusek, D. C., Newer data on the inactivation of scrapie virus or Creutzfeldt–Jakob disease virus in brain tissue. J Infect Dis, 1986; 153(6): 1145–8.CrossRefGoogle ScholarPubMed
Prusiner, S. B.Novel proteinaceous infectious particles cause scrapie. Science, 1982; 216(4542): 136–44.CrossRefGoogle ScholarPubMed
Gajdusek, D. C., Gibbs, Jr. C. J., Asher, D. M.et al. Precautions in medical care of, and in handling materials from, patients with transmissible virus dementia (Creutzfeldt–Jakob disease). N Engl J Med, 1977; 297(23): 1253–8.CrossRefGoogle Scholar
Oesch, B., Westaway, D., Walchli, M.et al. A cellular gene encodes scrapie PrP 27–30 protein. Cell, 1985; 40(4): 735–46.CrossRefGoogle ScholarPubMed
Basler, K., Oesch, B., Scott, M.et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell, 1986; 46(3): 417–28.CrossRefGoogle ScholarPubMed
Taraboulos, A., Jendroska, K., Serban, D.et al. Regional mapping of prion proteins in brain. Proc Natl Acad Sci USA, 1992; 89(16): 7620–4.CrossRefGoogle ScholarPubMed
Borchelt, D. R., Rogers, M., Stahl, N.et al. Release of the cellular prion protein from cultured cells after loss of its glycoinositol phospholipid anchor. Glycobiology, 1993; 3(4): 319–29.CrossRefGoogle ScholarPubMed
Borchelt, D. R., Taraboulos, A. and Prusiner, S. B.. Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem, 1992; 267(23): 16188–99.Google ScholarPubMed
Hegde, R. S., Tremblay, P., Groth, D.et al. Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature, 1999; 402(6763): 822–6.CrossRefGoogle Scholar
Hegde, R. S., Mastrianni, J. A., Scott, M. R.et al. A transmembrane form of the prion protein in neurodegenerative disease. Science, 1998; 279(5352): 827–34.CrossRefGoogle ScholarPubMed
Hay, B., Prusiner, S. B., and Lingappa, V. R.. Evidence for a secretory form of the cellular prion protein. Biochemistry, 1987; 26(25): 8110–15.CrossRefGoogle ScholarPubMed
Prusiner, S. B.Shattuck lecture: neurodegenerative diseases and prions. N Engl J Med, 2001; 344(20): 1516–26.CrossRefGoogle Scholar
Prusiner, S. B.The prion diseases. Brain Pathol, 1998; 8(3): 499–513.CrossRefGoogle ScholarPubMed
Prusiner, S. B.Prions. Proc Natl Acad Sci USA, 1998; 95(23): 13363–83.CrossRefGoogle ScholarPubMed
Deleault, N. R., Lucassen, R. W. and Supattapone, S.. RNA molecules stimulate prion protein conversion. Nature, 2003; 425(6959): 717–20.CrossRefGoogle ScholarPubMed
Wong, C., Xiong, L. W., Horiuchi, M.et al. Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. Embo J, 2001; 20(3): 377–86.CrossRefGoogle ScholarPubMed
Telling, G. C., Scott, M., Mastrianni, J.et al. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell, 1995; 83(1): 79–90.CrossRefGoogle ScholarPubMed
Bueler, H., Aguzzi, A., Sailer, A.et al. Mice devoid of PrP are resistant to scrapie. Cell, 1993; 73(7): 1339–47.CrossRefGoogle ScholarPubMed
Prusiner, S. B., Groth, D., Serban, A.et al. Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci USA, 1993; 90(22): 10608–12.CrossRefGoogle ScholarPubMed
Katamine, S., Nishida, N., Sugimoto, T.et al. Impaired motor coordination in mice lacking prion protein. Cell Mol Neurobiol, 1998; 18(6): 731–42.CrossRefGoogle ScholarPubMed
Sailer, A., Bueler, H., Fischer, M.et al. No propagation of prions in mice devoid of PrP. Cell, 1994; 77(7): 967–8.CrossRefGoogle ScholarPubMed
Nishida, N., Tremblay, P., Sugimoto, T.et al. A mouse prion protein transgene rescues mice deficient for the prion protein gene from purkinje cell degeneration and demyelination. Lab Invest, 1999; 79(6): 689–97.Google ScholarPubMed
Spudich, A., Frigg, R., Kilic, E.et al. Aggravation of ischemic brain injury by prion protein deficiency: role of ERK-1/-2 and STAT-1. Neurobiol Dis, 2005; 20(2): 442–9.CrossRefGoogle ScholarPubMed
Tobler, I., Gaus, S. E., Deboer, T.et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature, 1996; 380(6575): 639–42.CrossRefGoogle ScholarPubMed
Tobler, I., Deboer, T., and Fischer, M.. Sleep and sleep regulation in normal and prion protein-deficient mice. J Neurosci, 1997; 17(5): 1869–79.CrossRefGoogle ScholarPubMed
Criado, J. R., Sanchez-Alavez, M., Conti, B.et al. Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol Dis, 2005; 19(1–2): 255–65.CrossRefGoogle ScholarPubMed
Colling, S. B., Khana, M., Collinge, J.et al. Mossy fibre reorganization in the hippocampus of prion protein null mice. Brain Res, 1997; 755(1): 28–35.CrossRefGoogle ScholarPubMed
Brown, D. R., Nicholas, R. S., and Canevari, L.. Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J Neurosci Res, 2002; 67(2): 211–24.CrossRefGoogle Scholar
Miele, G., Jeffrey, M., Turnbull, D.et al. Ablation of cellular prion protein expression affects mitochondrial numbers and morphology. Biochem Biophys Res Commun, 2002; 291(2): 372–7.CrossRefGoogle ScholarPubMed
Klamt, F., Dal-Pizzol, F., Conte da Frota, M. J.et al. Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med, 2001; 30(10): 1137–44.CrossRefGoogle ScholarPubMed
Wong, B. S., Liu, T., Li, R.et al. Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. J Neurochem, 2001; 76(2): 565–72.CrossRefGoogle ScholarPubMed
Weise, J., Sandau, R., Schwarting, S.et al. Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke, 2006; 37(5): 1296–300.CrossRefGoogle ScholarPubMed
Kuwahara, C., Takeuchi, A. M., Nishimura, T.et al. Prions prevent neuronal cell-line death. Nature, 1999; 400(6741): 225–6.CrossRefGoogle ScholarPubMed
Weissmann, C. and Flechsig, E.. PrP knock-out and PrP transgenic mice in prion research. Br Med Bull, 2003; 66: 43–60.CrossRefGoogle ScholarPubMed
Shyu, W. C., Lin, S. Z., Chiang, M. F.et al. Overexpression of PrPC by adenovirus-mediated gene targeting reduces ischemic injury in a stroke rat model. J Neurosci, 2005; 25(39): 8967–77.CrossRefGoogle Scholar
Mallucci, G. R., Ratte, S., Asante, E. A.et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. Embo J, 2002; 21(3): 202–10.CrossRefGoogle Scholar
Santuccione, A., Sytnyk, V., Leshchyns'ka, I.et al. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol, 2005; 169(2): 341–54.CrossRefGoogle ScholarPubMed
Kanaani, J., Prusiner, S. B., Diacovo, J.et al. Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J Neurochem, 2005; 95(5): 1373–86.CrossRefGoogle ScholarPubMed
Palmer, M. S., Dryden, A. J., Hughes, J. T.et al. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt–Jakob disease. Nature, 1991; 352(6333): 340–2.CrossRefGoogle ScholarPubMed
Parchi, P., Giese, A., Capellari, S.et al. Classification of sporadic Creutzfeldt–Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol, 1999; 46(2): 224–33.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Laplanche, J. L., Delasnerie-Laupretre, N., Brandel, J. P.et al. Molecular genetics of prion diseases in France. French Research Group on Epidemiology of Human Spongiform Encephalopathies. Neurology, 1994; 44(12): 2347–51.CrossRefGoogle ScholarPubMed
Parchi, P., Castellani, R., Capellari, S.et al. Molecular basis of phenotypic variability in sporadic Creutzfeldt–Jakob disease. Ann Neurol, 1996; 39(6): 767–78.CrossRefGoogle ScholarPubMed
Polymenidou, M., Stoeck, K., Glatzel, M.et al. Coexistence of multiple PrPSc types in individuals with Creutzfeldt–Jakob disease. Lancet Neurol, 2005; 4(12): 805–14.CrossRefGoogle ScholarPubMed
Mastrianni, J. A., Nixon, R., Layzer, R.et al. Prion protein conformation in a patient with sporadic fatal insomnia. N Engl J Med, 1999; 340(21): 1630–8.CrossRefGoogle Scholar
Parchi, P., Capellari, S., Chin, S.et al. A subtype of sporadic prion disease mimicking fatal familial insomnia. Neurology, 1999; 52(9): 1757–63.CrossRefGoogle ScholarPubMed
Watts, J. C., Balachandran, A., and Westaway, D.. The expanding universe of prion diseases. PLoS Pathol, 2006; 2(3): e26.CrossRefGoogle ScholarPubMed
Kong, Q. K., Surewicz, W. K., Petersen, R. B.et al. Inherited prion diseases. In Prion Biology and Disease, ed. Prusiner, S. B.. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 2004, pp. 673–776.Google Scholar
Ghetti, B., Dlouhy, S. R., Giaccone, G.et al. Gerstmann–Straussler–Scheinker disease and the Indiana kindred. Brain Pathol, 1995; 5(1): 61–75.CrossRefGoogle ScholarPubMed
Kovacs, G. G., Trabattoni, G., Hainfellner, J. A.et al. Mutations of the prion protein gene phenotypic spectrum. J Neurol, 2002; 249(11): 1567–82.Google ScholarPubMed
Gambetti, P., Parchi, P., and Chen, S. G.. Hereditary Creutzfeldt–Jakob disease and fatal familial insomnia. Clin Lab Med, 2003; 23: 43–64.CrossRefGoogle ScholarPubMed
Will, R. G., Alperovitch, A., Poser, S.et al. Descriptive epidemiology of Creutzfeldt–Jakob disease in six European countries, 1993–1995. EU Collaborative Study Group for CJD. Ann Neurol, 1998; 43(6): 763–7.CrossRefGoogle Scholar
Bruce, M. E., Will, R. G., Ironside, J. W.et al. Transmissions to mice indicate that “new variant” CJD is caused by the BSE agent. Nature, 1997; 389(6650): 498–501.CrossRefGoogle Scholar
Hill, A. F., Desbruslais, M., Joiner, S.et al. The same prion strain causes vCJD and BSE. Nature, 1997; 389(6650): 448–50, 526.CrossRefGoogle Scholar
Scott, M. R., Will, R., Ironside, J.et al. Compelling transgenetic evidence for transmission of bovine spongiform encephalopathy prions to humans. Proc Natl Acad Sci USA, 1999; 96(26): 15137–42.CrossRefGoogle Scholar
Will, R. G., Ironside, J. W., Zeidler, M.et al. A new variant of Creutzfeldt–Jakob disease in the UK. Lancet, 1996; 347(9006): 921–5.CrossRefGoogle ScholarPubMed
,UK National CJD Surveillance Unit. vCJD Cases Worldwide. Edinburgh: Western General Hospital, 2007.
Lorains, J. W., Henry, C., Agbamu, D. A.et al. Variant Creutzfeldt–Jakob disease in an elderly patient. Lancet, 2001; 357(9265): 1339–40.CrossRefGoogle Scholar
Zeidler, M., Johnstone, E. C., Bamber, R. W.et al. New variant Creutzfeldt–Jakob disease: psychiatric features. Lancet, 1997; 350(9082): 908–10.CrossRefGoogle ScholarPubMed
Will, R. G., Zeidler, M., Stewart, G. E.et al. Diagnosis of new variant Creutzfeldt–Jakob disease. Ann Neurol, 2000; 47(5): 575–82.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Kapur, N., Abbott, P., Lowman, A.et al. The neuropsychological profile associated with variant Creutzfeldt–Jakob disease. Brain, 2003; 126(Pt 12): 2693–702.CrossRefGoogle ScholarPubMed
Binelli, S., Agazzi, P., Giaccone, G.et al. Periodic electroencephalogram complexes in a patient with variant Creutzfeldt–Jakob disease. Ann Neurol, 2006; 59(2): 423–7.CrossRefGoogle Scholar
Zeidler, M., Sellar, R. J., Collie, D. A.et al. The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt–Jakob disease. Lancet, 2000; 355(9213): 1412–18.CrossRefGoogle ScholarPubMed
Collie, D. A., Sellar, R. J., Zeidler, M.et al. MRI of Creutzfeldt–Jakob disease: imaging features and recommended MRI protocol. Clinical Radiology, 2001; 56(9): 726–39.CrossRefGoogle ScholarPubMed
Collie, D. A., Summers, D. M., Sellar, R. J.et al. Diagnosing variant Creutzfeldt–Jakob disease with the pulvinar sign: MR imaging findings in 86 neuropathologically confirmed cases. Am J Neuroradiol, 2003; 24(8): 1560–9.Google ScholarPubMed
Petzold, G. C., Westner, I., Bohner, G.et al. False-positive pulvinar sign on MRI in sporadic Creutzfeldt–Jakob disease. Neurology, 2004; 62(7): 1235–6.CrossRefGoogle ScholarPubMed
Wakisaka, Y., Santa, N., Doh-ura, K.et al. Increased asymmetric pulvinar magnetic resonance imaging signals in Creutzfeldt–Jakob disease with florid plaques following a cadaveric dura mater graft. Neuropathology, 2006; 26(1): 82–8.CrossRefGoogle ScholarPubMed
Singhal, A. B., Newstein, M. C., Budzik, R.et al. Diffusion-weighted magnetic resonance imaging abnormalities in Bartonella encephalopathy. J Neuroimaging, 2003; 13(1): 79–82.CrossRefGoogle ScholarPubMed
Mihara, M., Sugase, S., Konaka, K.et al. The “pulvinar sign” in a case of paraneoplastic limbic encephalitis associated with non-Hodgkin's lymphoma. J Neurol Neurosurg Psychiatry, 2005; 76(6): 882–4.CrossRefGoogle Scholar
Will, R.Variant Creutzfeldt–Jakob disease. Folia Neuropathol, 2004; 42(Suppl A): 77–83.Google ScholarPubMed
Hill, A. F., Zeidler, M., Ironside, J.et al. Diagnosis of new variant Creutzfeldt–Jakob disease by tonsil biopsy. Lancet, 1997; 349(9045): 99–100.CrossRefGoogle ScholarPubMed
Hill, A. F., Butterworth, R. J., Joiner, S.et al. Investigation of variant Creutzfeldt–Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet, 1999; 353(9148): 183–9.CrossRefGoogle ScholarPubMed
Hilton, D. A., Ghani, A. C., Conyers, L.et al. Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J Pathol, 2004; 203(3): 733–9.CrossRefGoogle ScholarPubMed
Heikenwalder, M., Zeller, N., Seeger, H.et al. Chronic lymphocytic inflammation specifies the organ tropism of prions. Science, 2005; 307(5712): 1107–10.CrossRefGoogle ScholarPubMed
Seeger, H., Heikenwalder, M., Zeller, N.et al. Coincident scrapie infection and nephritis lead to urinary prion excretion. Science, 2005; 310(5746): 324–6.CrossRefGoogle ScholarPubMed
Peden, A. H., Head, M. W., Ritchie, D. L.et al. Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet, 2004; 364(9433): 527–9.CrossRefGoogle Scholar
Llewelyn, C. A., Hewitt, P. E., Knight, R. S.et al. Possible transmission of variant Creutzfeldt–Jakob disease by blood transfusion. Lancet, 2004; 363(9407): 417–21.CrossRefGoogle ScholarPubMed
,UK Health Protection Agency. Variant CJD and Blood Products. London: Health Protection Agency, 2007.
Wroe, S. J., Pal, S., Siddique, D.et al. Clinical presentation and pre-mortem diagnosis of variant Creutzfeldt–Jakob disease associated with blood transfusion: a case report. Lancet, 2006; 368(9552): 2061–7.CrossRefGoogle ScholarPubMed
Bishop, M. T., Hart, P., Aitchison, L.et al. Predicting susceptibility and incubation time of human-to-human transmission of vCJD. Lancet Neurol, 2006; 5(5): 393–8.CrossRefGoogle ScholarPubMed
Aguzzi, A. and Glatzel, M.. vCJD tissue distribution and transmission by transfusion: a worst-case scenario coming true?Lancet, 2004; 363(9407): 411–12.CrossRefGoogle ScholarPubMed
Ironside, J. W., Bishop, M. T., Connolly, K.et al. Variant Creutzfeldt–Jakob disease: prion protein genotype analysis of positive appendix tissue samples from a retrospective prevalence study. BMJ, 2006; 332(7551): 1186–8.CrossRefGoogle ScholarPubMed
Korth, C., May, B. C. H., Cohen, F. E.et al. Acridine and phenothiazine derivatives as pharmacoptherapeutics for prion disease. Proc Natl Acad Sci USA, 2001; 98(17): 9836–41.CrossRefGoogle ScholarPubMed
Murakami-Kubo, I., Doh-Ura, K., Ishikawa, K.et al. Quinoline derivatives are therapeutic candidates for transmissible spongiform encephalopathies. J Virol, 2004; 78(3): 1281–8.CrossRefGoogle ScholarPubMed
Barret, A., Tagliavini, F., Forloni, G.et al. Evaluation of quinacrine treatment for prion diseases. J Virol, 2003; 77(15): 8462–9.CrossRefGoogle ScholarPubMed
Forloni, G., Iussich, S., Awan, T.et al. Tetracyclines affect prion infectivity. Proc Natl Acad Sci USA, 2002; 99(16): 10849–54.CrossRefGoogle ScholarPubMed
Sellarajah, S., Lekishvili, T., Bowring, C.et al. Synthesis of analogues of Congo red and evaluation of their anti-prion activity. J Med Chem, 2004; 47(22): 5515–34.CrossRefGoogle ScholarPubMed
Tatzelt, J., Prusiner, S. B. and Welch, W. J.. Chemical chaperones interfere with the formation of scrapie prion protein. Embo J, 1996; 15(23): 6363–73.Google ScholarPubMed
Georgieva, D., Schwark, D., Bergen, M.et al. Interactions of recombinant prions with compounds of therapeutical significance. Biochem Biophys Res Commun, 2006; 344(2): 463–70.CrossRefGoogle ScholarPubMed
Priola, S. A., Raines, A., and Caughey, W. S.. Porphyrin and phthalocyanine antiscrapie compounds. Science, 2000; 287: 1503–6.CrossRefGoogle ScholarPubMed
Tagliavini, F., McArthur, R. A., Canciani, B.et al. Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science, 1997; 276: 1119–22.CrossRefGoogle ScholarPubMed
Ehlers, B. and Diringer, H.. Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. J Gen Virol, 1984; 65: 1325–30.CrossRefGoogle ScholarPubMed
Kimberlin, R. H. and Walker, C. A.. The antiviral compound HPA-23 can prevent scrapie when administered at the time of infection. Arch Virol, 1983; 78: 9–18.Google Scholar
Korth, C. and Peters, P. J.. Emerging pharmacotherapies for Creutzfeldt–Jakob disease. Arch Neurol, 2006; 63(4): 497–501.CrossRefGoogle ScholarPubMed
Doh-ura, K., Ishikawa, K., Murakami-Kubo, I.et al. Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J Virol, 2004; 78(10): 4999–5006.CrossRefGoogle ScholarPubMed
Vogtherr, M., Grimme, S., Elshorst, B.et al. Antimalarial drug quinacrine binds to C-terminal helix of cellular prion protein. J Med Chem, 2003; 46(17): 3563–4.CrossRefGoogle ScholarPubMed
Doh-Ura, K., Iwaki, T., and Caughey, B.. Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J Virol, 2000; 74(10): 4894–7.CrossRefGoogle ScholarPubMed
Sandberg, M. K., Wallen, P., Wikstrom, M. A.et al. Scrapie-infected GTI-1 cells show impaired function of voltage-gated N-type calcium channels (Ca(v) 2.2) which is ameliorated by quinacrine treatment. Neurobiol Dis, 2004; 15(1): 143–51.CrossRefGoogle Scholar
Collins, S. J., Lewis, V., Brazier, M.et al. Quinacrine does not prolong survival in a murine Creutzfeldt–Jakob disease model. Ann Neurol, 2002; 52(4): 503–6.CrossRefGoogle ScholarPubMed
Scoazec, J. Y., Krolak-Salmon, P., Casez, O.et al. Quinacrine-induced cytolytic hepatitis in sporadic Creutzfeldt–Jakob disease. Ann Neurol, 2003; 53(4): 546–7.CrossRefGoogle ScholarPubMed
Nakajima, M., Yamada, T., Kusuhara, T.et al. Results of quinacrine administration to patients with Creutzfeldt–Jakob disease. Dement Geriatr Cogn Disord, 2004; 17(3): 158–63.CrossRefGoogle ScholarPubMed
Haik, S., Brandel, J. P., Salomon, D.et al. Compassionate use of quinacrine in Creutzfeldt–Jakob disease fails to show significant effects. Neurology, 2004; 63(12): 2413–15.CrossRefGoogle ScholarPubMed
Heppner, F. L., Musahl, C., Arrighi, I.et al. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science, 2001; 294(5540): 178–82.CrossRefGoogle ScholarPubMed
Peretz, D., Williamson, R. A., Legname, G.et al. A change in the conformation of prions accompanies the emergence of a new prion strain. Neuron, 2002; 34(6): 921–32.CrossRefGoogle ScholarPubMed
Pankiewicz, J., Prelli, F., Sy, M. S.et al. Clearance and prevention of prion infection in cell culture by anti-PrP antibodies. Eur J Neurosci, 2006; 23(10): 2635–47.CrossRefGoogle ScholarPubMed
Donofrio, G., Heppner, F. L., Polymenidou, M.et al. Paracrine inhibition of prion propagation by anti-PrP single-chain Fv miniantibodies. J Virol, 2005; 79(13): 8330–8.CrossRefGoogle ScholarPubMed
Love, R.Antibodies effective against scrapie infection, report European researchers. Lancet, 2001; 358(9284): 816.CrossRefGoogle ScholarPubMed
Goni, F., Knudsen, E., Schreiber, F.et al. Mucosal vaccination delays or prevents prion infection via an oral route. Neuroscience, 2005; 133(2): 413–21.CrossRefGoogle ScholarPubMed
Bade, S., Baier, M., Boetel, T.et al. Intranasal immunization of Balb/c mice against prion protein attenuates orally acquired transmissible spongiform encephalopathy. Vaccine, 2006; 24(9): 1242–53.CrossRefGoogle ScholarPubMed
Sigurdsson, E. M., Sy, M. S., Li, R.et al. Anti-prion antibodies for prophylaxis following prion exposure in mice. Neurosci Lett, 2003; 336(3): 185–7.CrossRefGoogle ScholarPubMed
Magri, G., Clerici, M., Dall'Ara, P.et al. Decrease in pathology and progression of scrapie after immunisation with synthetic prion protein peptides in hamsters. Vaccine, 2005; 23(22): 2862–8.CrossRefGoogle ScholarPubMed
White, A. R., Enever, P., Tayebi, M.et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature, 2003; 422(6927): 80–3.CrossRefGoogle ScholarPubMed
Sadowski, M., Pankiewicz, J., Scholtzova, H.et al. Targeting prion amyloid deposits in vivo. J Neuropathol Exp Neurol, 2004; 63(7): 775–84.CrossRefGoogle ScholarPubMed
Heppner, F. L. and Aguzzi, A.. Recent developments in prion immunotherapy. Curr Opin Immunol, 2004; 16(5): 594–8.CrossRefGoogle ScholarPubMed
Mallucci, G. R., White, M. D., Farmer, M.et al. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron, 2007; 53(3): 325–35.CrossRefGoogle ScholarPubMed
Lopez, O., Claassen, D. and Boller, F.. Alzheimer's disease, cerebral amyloid angiopathy, and dementia of acute onset. Aging (Milan), 1991; 3(2): 171–5.Google ScholarPubMed
Barcikowska, M., Mirecka, B., Papierz, W.et al. [A case of Alzheimer's disease simulating Creutzfeldt–Jakob disease.]Neurol Neurochir Pol, 1992; 26(5): 703–10.Google Scholar
Caselli, R. J., Couce, M. E., Osborne, D.et al. From slowly progressive amnesic syndrome to rapidly progressive Alzheimer disease. Alzheimer Dis Assoc Disord, 1998; 12(3): 251–3.Google ScholarPubMed
Haik, S., Brandel, J. P., Sazdovitch, V.et al. Dementia with Lewy bodies in a neuropathologic series of suspected Creutzfeldt–Jakob disease. Neurology, 2000; 55(9): 1401–4.CrossRefGoogle Scholar
McKeith, I. G., Galasko, D., Kosaka, K.et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. Neurology, 1996; 47(5): 1113–24.CrossRefGoogle Scholar
Walker, Z., Allen, R., Shergill, S.et al. Three years survival in patients with a clinical diagnosis of dementia with Lewy bodies. Int J Geriatr Psychiatry, 2000; 15(3): 267–73.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Mitsuyama, Y.Presenile dementia with motor neuron disease. Dementia, 1993; 4(3–4): 137–42.Google ScholarPubMed
Nasreddine, Z. S., Loginov, M., Clark, L. N.et al. From genotype to phenotype: a clinical pathological, and biochemical investigation of frontotemporal dementia and parkinsonism (FTDP-17) caused by the P301L tau mutation. Ann Neurol, 1999; 45(6): 704–15.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Levy, M. L., Miller, B. L., Cummings, J. L.et al. Alzheimer disease and frontotemporal dementias. Behavioral distinctions. Arch Neurol, 1996; 53(7): 687–90.CrossRefGoogle ScholarPubMed
Rosen, H. J., Lengenfelder, J. and Miller, B.. Frontotemporal dementia. Neurol Clin, 2000; 18(4): 979–92.CrossRefGoogle ScholarPubMed
Schneider, J. A., Watts, R. L., Gearing, M.et al. Corticobasal degeneration: neuropathologic and clinical heterogeneity. Neurology, 1997; 48(4): 959–69.CrossRefGoogle ScholarPubMed
Litvan, I., Agid, Y., Goetz, C.et al. Accuracy of the clinical diagnosis of corticobasal degeneration: a clinicopathologic study. Neurology, 1997; 48(1): 119–25.CrossRefGoogle ScholarPubMed
Gimenez-Roldan, S., Mateo, D., Benito, C.et al. Progressive supranuclear palsy and corticobasal ganglionic degeneration: differentiation by clinical features and neuroimaging techniques. J Neural Transm Suppl, 1994; 42: 79–90.CrossRefGoogle ScholarPubMed
Mathuranath, P. S., Xuereb, J. H., Bak, T.et al. Corticobasal ganglionic degeneration and/or frontotemporal dementia? A report of two overlap cases and review of literature. J Neurol Neurosurg Psychiatry, 2000; 68(3): 304–12.CrossRefGoogle ScholarPubMed
Kertesz, A., Martinez-Lage, P., Davidson, W.et al. The corticobasal degeneration syndrome overlaps progressive aphasia and frontotemporal dementia. Neurology, 2000; 55(9): 1368–75.CrossRefGoogle ScholarPubMed
Kleiner-Fisman, G., Bergeron, C. and Lang, A. E.. Presentation of Creutzfeldt–Jakob disease as acute corticobasal degeneration syndrome. Mov Disord, 2004; 19(8): 948–9.CrossRefGoogle ScholarPubMed
Avanzino, L., Marinelli, L., Buccolieri, A.et al. Creutzfeldt–Jakob disease presenting as corticobasal degeneration: a neurophysiological study. Neurol Sci, 2006; 27(2): 118–21.CrossRefGoogle ScholarPubMed
Grafman, J., Litvan, I. and Stark, M.. Neuropsychological features of progressive supranuclear palsy. Brain Cogn, 1995; 28(3): 311–20.CrossRefGoogle ScholarPubMed
Litvan, I., Agid, Y., Calne, D.et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome): report of the NINDS–SPSP International Workshop. Neurology, 1996; 47(1): 1–9.CrossRefGoogle Scholar
Litvan, I., Agid, Y., Jankovic, J.et al. Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome). Neurology, 1996; 46(4): 922–30.CrossRefGoogle Scholar
Litvan, I., Mega, M. S., Cummings, J. L.et al. Neuropsychiatric aspects of progressive supranuclear palsy. Neurology, 1996; 47(5): 1184–9.CrossRefGoogle ScholarPubMed
Yagishita, A. and Oda, M.. Progressive supranuclear palsy: MRI and pathological findings. Neuroradiology, 1996; 38(Suppl 1): S60–6.CrossRefGoogle Scholar
Leigh, R. J. and Zee, D. S.Contemporary Neurology Series, 55: The Neurology of Eye Movements, 3rd edn. New York: Oxford University Press, 1999, pp. x, 646.Google Scholar
Josephs, K. A., Tsuboi, Y. and Dickson, D. W.. Creutzfeldt–Jakob disease presenting as progressive supranuclear palsy. Eur J Neurol, 2004; 11(5): 343–6.CrossRefGoogle Scholar
Boxer, A. L., Geschwind, M. D., Belfor, N.et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol, 2006; 63(1): 81–6.CrossRefGoogle ScholarPubMed
Dropcho, E. J.Paraneoplastic diseases of the nervous system. Curr Treat Options Neurol, 1999; 1(5): 417–27.CrossRefGoogle ScholarPubMed
Gultekin, S. H., Rosenfeld, M. R., Voltz, R.et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain, 2000; 123(Pt 7): 1481–94.CrossRefGoogle ScholarPubMed
Vernino, S., Geschwind, M. D. and Boeve, B.. Autoimmune encephalopathies. Neurologist, 2007; 13(3): 140–7.CrossRefGoogle ScholarPubMed
Bien, C. G.Limbic encephalitis: extension of the diagnostic armamentarium. J Neurol Neurosurg Psychiatry, 2007; 78(4): 332–3.CrossRefGoogle ScholarPubMed
Ances, B. M., Vitaliani, R., Taylor, R. A.et al. Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain, 2005; 128(Pt 8): 1764–77.CrossRefGoogle ScholarPubMed
Rosenfeld, M. R., Eichen, J. G., Wade, D. F.et al. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins. Ann Neurol, 2001; 50(3): 339–48.CrossRefGoogle ScholarPubMed
Dalmau, J., Graus, F., Villarejo, A.et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain, 2004; 127(Pt 8): 1831–44.CrossRefGoogle Scholar
Antoine, J. C., Honnorat, J., Anterion, C. T.et al. Limbic encephalitis and immunological perturbations in two patients with thymoma. J Neurol Neurosurg Psychiatry, 1995; 58(6): 706–10.CrossRefGoogle ScholarPubMed
Pittock, S. J., Kryzer, T. J. and Lennon, V. A.. Paraneoplastic antibodies coexist and predict cancer, not neurological syndrome. Ann Neurol, 2004; 56(5): 715–19.CrossRefGoogle Scholar
Vincent, A., Lang, B. and Kleopa, K. A.. Autoimmune channelopathies and related neurological disorders. Neuron, 2006; 52(1): 123–38.CrossRefGoogle ScholarPubMed
Bataller, L., Kleopa, K. A., Wu, G. F.et al. Autoimmune limbic encephalitis in 39 patients: immunophenotypes and outcomes. J Neurol Neurosurg Psychiatry, 2007; 78(4): 381–5.CrossRefGoogle ScholarPubMed
Tuzun, E. and Dalmau, J.. Limbic encephalitis and variants: classification, diagnosis and treatment. Neurologist, 2007; 13(5): 261–71.Google Scholar
Brain, L., Jellinek, E. H. and Ball, K.. Hashimoto's disease and encephalopathy. Lancet, 1966; 2(7462): 512–14.CrossRefGoogle ScholarPubMed
Kothbauer-Margreiter, I., Sturzenegger, M., Komor, J.et al. Encephalopathy associated with Hashimoto thyroiditis: diagnosis and treatment. J Neurol, 1996; 243(8): 585–93.CrossRefGoogle ScholarPubMed
Chong, J. Y. and Rowland, L. P.. What's in a NAIM? Hashimoto encephalopathy, steroid-responsive encephalopathy associated with autoimmune thyroiditis, or nonvasculitic autoimmune meningoencephalitis?Arch Neurol, 2006; 63(2): 175–6.CrossRefGoogle ScholarPubMed
Chong, J. Y., Rowland, L. P. and Utiger, R. D.. Hashimoto encephalopathy: syndrome or myth?Arch Neurol, 2003; 60(2): 164–71.CrossRefGoogle ScholarPubMed
Castillo, P., Woodruff, B., Caselli, R.et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis. Arch Neurol, 2006; 63(2): 197–202.CrossRefGoogle ScholarPubMed
Shein, M., Apter, A., Dickerman, Z.et al. Encephalopathy in compensated Hashimoto thyroiditis: a clinical expression of autoimmune cerebral vasculitis. Brain Dev, 1986; 8(1): 60–4.CrossRefGoogle ScholarPubMed
Peschen-Rosin, R., Schabet, M. and Dichgans, J.. Manifestation of Hashimoto's encephalopathy years before onset of thyroid disease. Eur Neurol, 1999; 41(2): 79–84.CrossRefGoogle ScholarPubMed
Josephs, K. A., Rubino, F. A. and Dickson, D. W.. Nonvasculitic autoimmune inflammatory meningoencephalitis. Neuropathology, 2004; 24(2): 149–52.CrossRefGoogle ScholarPubMed
Schielke, E., Nolte, C., Muller, W.et al. Sarcoidosis presenting as rapidly progressive dementia: clinical and neuropathological evaluation. J Neurol, 2001; 248(6): 522–4.CrossRefGoogle ScholarPubMed
Rabinstein, A. A., Romano, J. G., Forteza, A. M.et al. Rapidly progressive dementia due to bilateral internal carotid artery occlusion with infarction of the total length of the corpus callosum. J Neuroimaging, 2004; 14(2): 176–9.CrossRefGoogle ScholarPubMed
Auchus, A. P., Chen, C. P., Sodagar, S. N.et al. Single stroke dementia: insights from 12 cases in Singapore. J Neurol Sci, 2002; 203–204: 85–9.CrossRefGoogle Scholar
Schaefer, P. W.Diffusion-weighted imaging as a problem-solving tool in the evaluation of patients with acute strokelike syndromes. Top Magn Reson Imaging, 2000; 11(5): 300–9.CrossRefGoogle ScholarPubMed
Anderson, S. C., Shah, C. P. and Murtagh, F. R.. Congested deep subcortical veins as a sign of dural venous thrombosis: MR and CT correlations. J Comput Assist Tomogr, 1987; 11(6): 1059–61.CrossRefGoogle ScholarPubMed
Wynne, P. J., Younger, D. S., Khandji, A.et al. Radiographic features of central nervous system vasculitis. Neurol Clin, 1997; 15(4): 779–804.CrossRefGoogle ScholarPubMed
Menendez Calderon, M. J., Segui Riesco, M. E., Arguelles, M.et al. [Intravascular lymphomatosis. A report of three cases.] Ann Med Intern, 2005; 22(1): 31–4.Google ScholarPubMed
Navia, B. A. and Price, R. W.. The acquired immunodeficiency syndrome: dementia as the presenting sole manifestation of human immunodeficiency virus infection. Arch Neurol, 1987; 44: 65–9.CrossRefGoogle ScholarPubMed
Brew, B. J.AIDS dementia complex. Neurol Clin, 1999; 17(4): 861–81.CrossRefGoogle ScholarPubMed
Wallace, M. R., Nelson, J. A., McCutchan, J. A.et al. Symptomatic HIV seroconverting illness is associated with more rapid neurological impairment. Sex Transm Infect, 2001; 77(3): 199–201.CrossRefGoogle ScholarPubMed
Nath, A., Maragos, W. F., Avison, M. J.et al. Acceleration of HIV dementia with methamphetamine and cocaine. J Neurovirol, 2001; 7(1): 66–71.Google ScholarPubMed
Ala, T. A., Doss, R. C. and Sullivan, C. J.. Reversible dementia: a case of cryptococcal meningitis masquerading as Alzheimer's disease. J Alzheimers Dis, 2004; 6(5): 503–8.CrossRefGoogle ScholarPubMed
Heckman, G. A., Hawkins, C., Morris, A.et al. Rapidly progressive dementia due to Mycobacterium neoaurum meningoencephalitis. Emerg Infect Dis, 2004; 10(5): 924–7.CrossRefGoogle ScholarPubMed
Glaser, C. A., Honarmand, S., Anderson, L. J.et al. Beyond viruses: clinical profiles and etiologies associated with encephalitis. Clin Infect Dis, 2006; 43(12): 1565–77.CrossRefGoogle ScholarPubMed
Timmermans, M. and Carr, J.. Neurosyphilis in the modern era. J Neurol Neurosurg Psychiatry, 2004; 75(12): 1727–30.CrossRefGoogle Scholar
Kaplan, R. F. and Jones-Woodward, L.. Lyme encephalopathy: a neuropsychological perspective. Semin Neurol, 1997; 17(1): 31–7.CrossRefGoogle ScholarPubMed
Waniek, C., Prohovnik, I., Kaufman, M. A.et al. Rapidly progressive frontal-type dementia associated with Lyme disease. J Neuropsychiatry Clin Neurosci, 1995; 7(3): 345–7.Google ScholarPubMed
Kouyoumdjian, J. A.[Subacute sclerosing panencephalitis in an adult: report of a case.]Arq Neuropsiquiatr, 1985; 43(3): 312–15.CrossRefGoogle Scholar
Espay, A. J. and Lang, A. E.. Infectious etiologies of movement disorders. In Principles of Neurologic Infectious Diseases, ed. Roos, K. L.. New York: McGraw-Hill, 2005, pp. 383–408.Google Scholar
Anderson, M.Neurology of Whipple's disease. J Neurol Neurosurg Psychiatry, 2000; 68(1): 2–5.CrossRefGoogle ScholarPubMed
Durand, D. V., Lecomte, C., Cathebras, P.et al. Whipple disease. Clinical review of 52 cases. The SNFMI Research Group on Whipple Disease. Societe Nationale Francaise de Medecine Interne. Medicine (Baltimore), 1997; 76(3): 170–84.CrossRefGoogle ScholarPubMed
Louis, E. D., Lynch, T., Kaufmann, P.et al. Diagnostic guidelines in central nervous system Whipple's disease. Ann Neurol, 1996; 40(4): 561–8.CrossRefGoogle ScholarPubMed
Matthews, B. R., Jones, L. K., Saad, D. A.et al. Cerebellar ataxia and central nervous system whipple disease. Arch Neurol, 2005; 62(4): 618–20.CrossRefGoogle ScholarPubMed
Singer, R.Diagnosis and treatment of Whipple's disease. Drugs, 1998; 55(5): 699–704.CrossRefGoogle ScholarPubMed
Ramzan, N. N., Loftus, Jr. E., Burgart, L. J.et al. Diagnosis and monitoring of Whipple disease by polymerase chain reaction. Ann Intern Med, 1997; 126(7): 520–7.CrossRefGoogle ScholarPubMed
Bataille, B., Delwail, V., Menet, E.et al. Primary intracerebral malignant lymphoma: report of 248 cases. J Neurosurg, 2000; 92(2): 261–6.CrossRefGoogle ScholarPubMed
Rollins, K. E., Kleinschmidt-DeMasters, B. K., Corboy, J. R.et al. Lymphomatosis cerebri as a cause of white matter dementia. Human Pathology, 2005; 36(3): 282–90.CrossRefGoogle ScholarPubMed
Batchelor, T. and Loeffler, J. S.. Primary CNS lymphoma. J Clin Oncol, 2006; 24(8): 1281–8.CrossRefGoogle ScholarPubMed
Zuckerman, D., Seliem, R. and Hochberg, E.. Intravascular lymphoma: the oncologist's “great imitator.”Oncologist, 2006; 11(5): 496–502.CrossRefGoogle ScholarPubMed
Chapin, J. E., Davis, L. E., Kornfeld, M.et al. Neurologic manifestations of intravascular lymphomatosis. Acta Neurol Scand, 1995; 91(6): 494–9.CrossRefGoogle ScholarPubMed
Vieren, M., Sciot, R. and Robberecht, W.. Intravascular lymphomatosis of the brain: a diagnostic problem. Clin Neurol Neurosurg, 1999; 101(1): 33–6.CrossRefGoogle ScholarPubMed
Fetell, M. R.Lymphomas. In Merrit's Textbook of Neurology, 9th edn, ed. Rowland, L.. Baltimore, MD: Williams & Wilkins, 1995, pp. 351–9.Google Scholar
Kinsella, L. J. and Riley, D. E.. Nutritional deficiencies and syndromes associated with alcoholism. In Textbook of Clinical Neurology, ed. Goetz, C.. St. Louis, MO: Saunders, 2003, pp. 973–94.Google Scholar
Kertesz, S. G.Pellagra in 2 homeless men. Mayo Clin Proc, 2001; 76(3): 315–18.CrossRefGoogle ScholarPubMed
Chu, K., Kang, D. W., Kim, H. J.et al. Diffusion-weighted imaging abnormalities in Wernicke encephalopathy: reversible cytotoxic edema?Arch Neurol, 2002; 59(1): 123–7.CrossRefGoogle ScholarPubMed
Unlu, E., Cakir, B. and Asil, T.. MRI findings of Wernicke encephalopathy revisited due to hunger strike. Eur J Radiol, 2006; 57(1): 43–53.CrossRefGoogle ScholarPubMed
Halavaara, J., Brander, A., Lyytinen, J.et al. Wernicke's encephalopathy: is diffusion-weighted MRI useful?Neuroradiology, 2003; 45(8): 519–23.CrossRefGoogle ScholarPubMed
Hinkebein, J. H. and Callahan, C. D.. The neuropsychology of Kuf's disease: a case of atypical early onset dementia. Arch Clin Neuropsychol, 1997; 12(1): 81–9.CrossRefGoogle ScholarPubMed
Gorbach, S. L.Bismuth therapy in gastrointestinal diseases. Gastroenterology, 1990; 99(3): 863–75.CrossRefGoogle ScholarPubMed
Gordon, M. F., Abrams, R. I., Rubin, D. B.et al. Bismuth toxicity. Neurology, 1994; 44(12): 2418.CrossRefGoogle ScholarPubMed
Benet, L. Z.Safety and pharmacokinetics: colloidal bismuth subcitrate. Scand J Gastroenterol Suppl, 1991; 185: 29–35.CrossRefGoogle ScholarPubMed
Hampel, H., Berger, C. and Muller, N.. A case of Ganser's state presenting as a dementia syndrome. Psychopathology, 1996; 29(4): 236–41.CrossRefGoogle ScholarPubMed
Wall, C. A., Rummans, T. A., Aksamit, A. J.et al. Psychiatric manifestations of Creutzfeldt–Jakob disease: a 25-year analysis. J Neuropsychiatry Clin Neurosci, 2005; 17(4): 489–95.CrossRefGoogle ScholarPubMed
Barber, R., Panikkar, A. and McKeith, I. G.. Dementia with Lewy bodies: diagnosis and management. Int J Geriatr Psychiatry, 2001; 16(Suppl 1): S12–18.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Litvan, I., Cummings, J. L. and Mega, M.. Neuropsychiatric features of corticobasal degeneration. J Neurol, Neurosurg Psychiatry, 1998; 65(5): 717–21.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×