Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-26T09:43:52.415Z Has data issue: false hasContentIssue false

2 - The Reactive-Flow Modeling Problem

Published online by Cambridge University Press:  09 October 2009

Elaine S. Oran
Affiliation:
Naval Research Laboratory, Washington DC
Jay P. Boris
Affiliation:
Naval Research Laboratory, Washington DC
Get access

Summary

As described in the previous chapter, the term reactive flow applies to a very broad range of physical phenomena. In some cases the equations are not even rigorously known. In this chapter, we first consider the equations of gas-phase reactive flows, which are generally accepted as valid in the continuum regime. This set of time-dependent, coupled, partial differential equations governs the conservation of mass and species density, momentum, and energy. The equations describe the convective motion of the fluid, reactions among the constituent species that may change the molecular composition, and other transport processes such as thermal conduction, molecular diffusion, and radiation transport. Many different situations are described by these equations when they are combined with various initial and boundary conditions. In a later section of this chapter, we discuss interactions among these processes and generalizations of this set of equations to describe multiphase reactive flows.

The material presented in this chapter is somewhat condensed, and is not meant to give an in-depth explanation to those unfamiliar with the individual topics. The purpose is to present the reactive-flow equations, to establish the notation used throughout this book, and then to relate each term in the equations to physical processes important in reactive flows. The chapter can then be used as a reference for the more detailed discussions of numerical methods in subsequent chapters. It would be reasonable to skim this chapter the first time through the book, and then to refer back to it as needed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×