Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-21T02:25:10.160Z Has data issue: false hasContentIssue false

3 - Adapting skeletal muscle to be efficient

Published online by Cambridge University Press:  03 October 2009

Robert W. Blake
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

INTRODUCTION

The efficiency with which a muscle converts chemical free energy into mechanical work is adaptively important in prolonged aerobic locomotion, for example in migration. Cruising locomotion is characterized by cyclic contraction at a well defined frequency, in which each muscle actively shortens, and is then passively stretched back to its original length. The muscle does a certain amount of work (the ‘cycle work’) in each cycle (Fig. 3.1). The average rate of doing work, that is the mechanical power output, is found by multiplying the cycle work by the contraction frequency.

Since the limbs of vertebrates and arthropods are actuated by muscles directly, without the intervention of any form of reduction drive, the frequency of contraction is necessarily the same as the stepping frequency for a terrestrial animal, or the frequency at which a flying animal beats its wings, or a swimming one beats its tail or flippers. The frequency at which any particular animal oscillates its limbs is determined by mechanical considerations, the general nature of which was discussed by Hill (1950). ‘Natural’ frequencies of limb oscillation in terrestrial locomotion have been considered by Alexander (1976, 1980), and for flying animals by Pennycuick (1975a, 1990). For present purposes, it is sufficient to note first, that the range of frequencies available to a particular animal in cruising locomotion is narrow, and second, that there is a strong trend for larger animals to oscillate their limbs at lower frequencies than smaller ones of similar general type. This latter trend is plainly visible to the naked eye.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×