Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T14:14:16.481Z Has data issue: false hasContentIssue false

4 - Adjusting cellular metabolism for optimum product yield

Published online by Cambridge University Press:  12 October 2009

Terence Cartwright
Affiliation:
TCS Biologicals Ltd, Buckingham
Get access

Summary

One consequence of more intensive monitoring of the different parameters of cell growth and maintenance in fermentors is that it is becoming possible to understand in finer detail the metabolic requirements of animal cells and how these relate to the efficiency of cells as bioreactors for the production of recombinant proteins and other products. With this understanding it is possible to extend attempts to improve the yield and authenticity of the product to include manipulation of the internal mechanisms of the cell in addition to empirical optimization of the cell's external environment through parameters such as fermentor configuration and medium composition. Specifically, information is accumulating on the effect of cellular metabolism on specific product yield, on the generation of undesirable by-products and on the correctness of post-translational modification. An exciting development is the possibility of specifically tailoring aspects of the cell's metabolism to optimize these functions. Useful results have already been achieved even though the detailed metabolism of cells in culture is still far from being understood.

Energy sources and waste products

Mammalian cells in culture use two main energy sources, glucose and glutamine, for the production of ATP and reduced pyridine nucleotides. The proportion of cellular ATP derived from each substrate varies widely with cell type and culture conditions. However, for most types of cell over half of the ATP generated derives from glutamine oxidation. This can rise to very high levels (>95%) under culture conditions in which lactate production is disfavoured (Reitzer, Wice and Kennell, 1979).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×