Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-24T09:14:11.492Z Has data issue: false hasContentIssue false

17 - Volatiles in magmatic liquids

Published online by Cambridge University Press:  24 November 2009

L. L. Perchuk
Affiliation:
Institute of Experimental Mineralogy, Moscow
Get access

Summary

Introduction

Volatile contents and distribution of volatile species in magmatic systems can be inferred by direct analysis of volcanic gas, analysis of fluid inclusions and gas contents of glass inclusions in phenocryst and xenocrysts. Information can also be obtained by indirect methods based on observed phase relations and phase chemistry and by theoretical analysis of activity – composition relations in appropriate systems. The principal volatiles in magmatic systems can be described with the system C–H–O–S–F. The volatiles in volcanic gases generally are quite oxidized and CO2, H2O and SO2 are the main gas species (e.g., Anderson, 1975, Gerlach & Nordlie, 1975, Casadewall et al., 1987). Gas compositions from volcanoes along convergent plate boundaries generally are water-rich with carbon dioxide as the second most important volatile component, (Muenow et al., 1977, Helgeson et al., 1978, Rutherford et al., 1984), whereas the gases in mid-ocean ridge basalts and basalts from oceanic islands contain principally SO2 and CO2 (e.g., Mathez & Delaney, 1981, Greenland, 1987) although others (see, for example, Gerlach, 1980) have suggested that H2O is more important than previously recognized.

Information on volatile compositions at depth in the earth is less direct and relies on analysis of fluid inclusions in phenocrysts (Roedder, 1965, Murck et al., 1978), gas content of glass inclusions in phenocrysts (Delaney et al., 1977, 1978) and activity–composition relations derived from volatile-containing mineral parageneses in igneous rocks (e.g., amphibole, mica, sulfide and carbonate minerals).

Type
Chapter
Information
Progress in Metamorphic and Magmatic Petrology
A Memorial Volume in Honour of D. S. Korzhinskiy
, pp. 435 - 476
Publisher: Cambridge University Press
Print publication year: 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×