Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-02T06:32:51.368Z Has data issue: false hasContentIssue false

10 - Medical and Nutritional Management of Cholestasis in Infants and Children

from SECTION II - CHOLESTATIC LIVER DISEASES

Published online by Cambridge University Press:  18 December 2009

Andrew P. Feranchak M.D.
Affiliation:
Assistant Professor, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pediatric Gastroenterology and Hepatology, Children's Medical Center of Dallas, Dallas, Texas
Ronald J. Sokol M.D.
Affiliation:
Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

When first encountering an infant or child with cholestatic liver disease, it is essential that diagnostic evaluation be conducted promptly in order to (i) recognize disorders amenable either to specific medical therapy (e.g., galactosemia, tyrosinemia, hypothyroidism, urinary tract infection) or to early surgical intervention (e.g., biliary atresia, choledochal cyst), (ii) institute treatment directed toward enhancing bile flow, and (iii) prevent and treat the varied medical, nutritional, and emotional consequences of chronic liver disease. Because many of the treatable causes require early diagnosis and prompt institution of therapy, the evaluation of the cholestatic infant should never be delayed. Although “physiologic cholestasis” (hypercholemia, or elevated bile acids) may be present in the infant, there is no state of “physiologic conjugated hyperbilirubinemia.” For the jaundiced infant, historical and clinical information such as color of the stools, birth weight, and presence of hepatomegaly may provide important clues as to the etiology of cholestasis. Consanguinity or liver disease in siblings suggests the possibility of metabolic, familial, or genetic disease. Review of the prenatal and postnatal course may reveal intrauterine infection, occurrence of hypoglycemia or seizures, and exposure to toxins/drugs (i.e., total parenteral nutrition [TPN]). Careful physical examination may reveal features of typical disorders or syndromes. For the older child and adolescent, a history of exposure to drugs/toxins (e.g., acetaminophen), the presence of vascular insufficiency, and the presence of underlying disease (e.g., inflammatory bowel disease) provide helpful clues. The diagnostic evaluation of the infant with cholestasis is detailed in Chapter 9.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kasai, M. Treatment of biliary atresia with special reference to hepatic portoenterostomy and its modifications. Prog Pediatr Surg 1974;6:5.Google Scholar
Whitley, R J, Nahmias, A J, SoongSJ, et al SJ, et al. Vidarabine therapy of neonatal herpes simplex virus infection. Pediatrics 1980 Oct;66:495–501.Google Scholar
Ingall, D, Musher, D. Infectious diseases of the fetus and newborn infant. In: Remington, J S, Klein, J O, eds. Syphilis. Philadelphia: Saunders, 1983:335.Google Scholar
Wright, D J, Berry, C L. Letter: liver involvement in congenital syphilis. Br J Vener Dis 1974;50:241.Google ScholarPubMed
Ray, C G, Wedgwood, R J. Neonatal listeriosis. Six case reports and a review of the literature. Pediatrics 1964;34:378–92.Google Scholar
Seelinger, H, Finger, H. Infectious diseases of the fetus and newborn infant. In: Remington, J S, Klein, J O, eds. Listeriosis. Philadelphia: Saunders, 1983:264.Google Scholar
Huber, G L. Tuberculosis. In: Remington, J, Klein, J, eds. Tuberculosis. Philadelphia: Saunders, 1983:570.Google Scholar
Couvreur, J, Desmonts, G. Congenital and maternal toxoplasmosis. A review of 300 congenital cases. Dev Med Child Neurol 1962;4:519–30.CrossRefGoogle ScholarPubMed
Remington, J S, Desmonts, G. Infectious diseases of the fetus and newborn infant. In: Remington, J S, Klein, J O, eds. Toxoplasmosis. Philadelphia: Saunders, 1983:143.Google Scholar
Applebaum, M N, Thaler, M M. Reversibility of extensive liver damage in galactosemia. Gastroenterology 1975;69:496–502.Google ScholarPubMed
Komrower, G M, Lee, D H. Long-term follow-up of galactosae- mia. Arch Dis Child 1970;45:367–73.CrossRefGoogle Scholar
Hill, A, Nordin, P M, Zaleski, W A. Dietary treatment of tyrosinosis. J Am Diet Assoc 1970;56:308–12.Google ScholarPubMed
Hostetter, M K, Levy, H L, Winter, H S. Evidence for liver disease preceding amino acid abnormalities in hereditary tyrosinemia. N Engl J Med 1983;308:1265–7.CrossRefGoogle ScholarPubMed
Lindblad, B, Lindstedt, S, Steen, G. On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A 1977;74:4641–5.CrossRefGoogle ScholarPubMed
Starzl, T E, Zitelli, B J, Shaw, B W. Changing concepts: liver replacement for hereditary tyrosinemia and hepatoma. J Pediatr 1985;106:604–6.CrossRefGoogle ScholarPubMed
Weinberg, A G, Mize, C E, Worthen, H G. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 1976;88:434–8.CrossRefGoogle ScholarPubMed
Lindstedt, S, Holme, E, Lock, E A. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 1992;340:813–17.CrossRefGoogle ScholarPubMed
Holme, E, Lindstedt, S, Lock, E. Treatment of tyrosinemia type I with an enzyme inhibitor (NTBC). Int Pediatr 1995;10:41–3.Google Scholar
Mock, D M, Perman, J A, Thaler, M, Morris, RC Jr. Chronic fructose intoxication after infancy in children with hereditary fructose intolerance. A cause of growth retardation. N Engl J Med 1983;309:764–70.Google ScholarPubMed
Odievre, M, Gentil, C, Gautier, M, Alagille, D. Hereditary fructose intolerance in childhood. Diagnosis, management, and course in 55 patients. Am J Dis Child 1978;132:605–8.Google Scholar
Herman, S P, Baggenstoss, A H, Cloutier, M D. Liver dysfunction and histologic abnormalities in neonatal hypopituitarism. J Pediatr 1975;87(6 pt 1):892–5.CrossRefGoogle Scholar
Colombo, C, Battezzati, P M, Podda, M. Ursodeoxycholic acid for liver disease associated with cystic fibrosis: a double-blind multicenter trial. The Italian Group for the Study of Ursodeoxycholic Acid in Cystic Fibrosis. Hepatology 1996;23: 1484–90.Google ScholarPubMed
Sokol, R J, Durie, P R. Recommendations for management of liver and biliary tract disease in cystic fibrosis. Cystic Fibrosis Foundation Hepatobiliary Disease Consensus Group. J Pediatr Gastroenterol Nutr 1999;28(suppl 1):S1–13.Google Scholar
Balistreri, W F. Inborn errors of bile acid metabolism: clinical and therapeutic aspects. In: Hofmann, A, Paumgartner, G, Stiehl, A, eds. Bile acids in gastroenterology: basic and clinical advances (proceedings of the 13th International Bile Acid Symposium). London: Kluwer Academic Publishers, 1995:333–53.Google Scholar
Daugherty, C C, Setchell, K D, Heubi, J E, Balistreri, W F. Resolution of liver biopsy alterations in three siblings with bile acid treatment of an inborn error of bile acid metabolism (delta 4–3-oxosteroid 5 beta-reductase deficiency). Hepatology 1993;18:1096–101.CrossRefGoogle Scholar
Jacquemin, E, Hermans, D, Myara, A. Ursodeoxycholic acid therapy in pediatric patients with progressive familial intrahe- patic cholestasis. Hepatology 1997;25:519–23.CrossRefGoogle Scholar
Setchell, K, O'Connell, N. Inborn errors of bile acid biosynthesis: update on biochemical aspects. In: Hofmann, A, Paumgartner, G, Stiehl, A, eds. Bile acids in gastroenterology: basic and clinical advances. London: Kluwer Academic Publishers, 1995:129–36.Google Scholar
Shamieh, I, Kibort, P, Suchy, F, Freese, D. Antioxidant therapy for neonatal iron storage disease. Pediatr Res 1993;33:109A.Google Scholar
Zimmerman, H. Hepatotoxicity. New York: Appleton-Century-Crofts, 1978.Google Scholar
Levy, H L, Sepe, S J, ShihVE, et al VE, et al. Sepsis due to Escherichia coli in neonates with galactosemia. N Engl J Med 1977;297:823–5.CrossRefGoogle ScholarPubMed
Ng, S H, Rawstron, J R. Urinary tract infections presenting with jaundice. Arch Dis Child 1971;46:173–6.CrossRefGoogle ScholarPubMed
Cooke, R J, Whitington, P F, Kelts, D. Effect of taurine supplementation on hepatic function during short-term parenteral nutrition in the premature infant. J Pediatr Gastroenterol Nutr 1984;3:234–8.CrossRefGoogle ScholarPubMed
Graham, M, Tavill, A, Halpin, T, Louis, L. The effect of amino acids on bile flow and sodium taurocholate excretion in the isolated perfused rat liver. Gastroenterology 1981;80:1334.Google Scholar
Vileisis, R A, Inwood, R J, Hunt, C E. Prospective controlled study of parenteral nutrition-associated cholestatic jaundice: effect of protein intake. J Pediatr 1980;96:893–7.Google ScholarPubMed
Duerksen, D R, Aerde, J E, Gramlich, L. Intravenous ursodeoxycholic acid reduces cholestasis in parenterally fed newborn piglets. Gastroenterology 1996;111:1111–17.CrossRefGoogle ScholarPubMed
Spagnuolo, M I, Iorio, R, Vegnente, A, Guarino, A. Ursodeoxycholic acid for treatment of cholestasis in children on long-term total parenteral nutrition: a pilot study. Gastroenterology 1996;111:716–19.CrossRefGoogle ScholarPubMed
Lilly, J R, Altman, R P, Schroter, G. Surgery of biliary atresia. Current status. Am J Dis Child 1975;129:1429–32.CrossRefGoogle ScholarPubMed
Lilly, J R, Karrer, F M, Hall, R J. The surgery of biliary atresia. Ann Surg 1989;210:289–94.CrossRefGoogle ScholarPubMed
Laurent, J, Gauthier, F, Bernard, O. Long-term outcome after surgery for biliary atresia. Study of 40 patients surviving for more than 10 years. Gastroenterology 1990;99:1793–7.Google ScholarPubMed
Barlow, B, Tabor, E, Blanc, W A. Choledochal cyst: a review of 19 cases. J Pediatr 1976;89:934–40.CrossRefGoogle ScholarPubMed
Lilly, J R, Weintraub, W H, Altman, R P. Spontaneous perforation of the extrahepatic bile ducts and bile peritonitis in infancy. Surgery 1974;75:664–73.Google ScholarPubMed
Lilly, J R. Common bile duct calculi in infants and children. J Pediatr Surg 1980;15:577–80.CrossRefGoogle ScholarPubMed
Rickham, P P, Lee, E Y. Neonatal jaundice: surgical aspects. Clin Pediatr (Phila) 1964;71:197–208.CrossRefGoogle Scholar
Scholmerich, J, Becher, M S, Schmidt, K. Influence of hydroxylation and conjugation of bile salts on their membrane-damaging properties – studies on isolated hepatocytes and lipid membrane vesicles. Hepatology 1984;4:661–6.CrossRefGoogle ScholarPubMed
Greim, H, Trulzsch, D, Roboz, J. Mechanism of cholestasis. 5. Bile acids in normal rat livers and in those after bile duct ligation. Gastroenterology 1972;63:837–45.Google ScholarPubMed
DeLange, R J, Glazer, A N. Bile acids: antioxidants or enhancers of peroxidation depending on lipid concentration. Arch Biochem Biophys 1990;276:19–25.CrossRefGoogle ScholarPubMed
Botla, R, Spivey, J R, Aguilar, H. Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glycochenodeoxycholate: a mechanism of UDCA cytoprotection. J Pharmacol Exp Ther 1995;272:930–8.Google ScholarPubMed
Sokol, R J, Devereaux, M, Khandwala, R, O'Brien, K. Evidence for involvement of oxygen free radicals in bile acid toxicity to isolated rat hepatocytes. Hepatology 1993;17:869–81.CrossRefGoogle ScholarPubMed
Faubion, W A, Guicciardi, M E, Miyoshi, H. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest 1999;103:137–45.CrossRefGoogle ScholarPubMed
Patel, T, Gores, G J. Apoptosis and hepatobiliary disease. Hepatology 1995;21:1725–41.Google ScholarPubMed
Rodrigues, C M, Fan, G, Wong, P Y. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 1998;4:165–78.Google ScholarPubMed
Heuman, D M, Pandak, W M, Hylemon, P B, Vlahcevic, Z R. Conjugates of ursodeoxycholate protect against cytotoxicity of more hydrophobic bile salts: in vitro studies in rat hepatocytes and human erythrocytes. Hepatology 1991;14:920–6.CrossRefGoogle ScholarPubMed
Galle, P R, Theilmann, L, Raedsch, R. Ursodeoxycholate reduces hepatotoxicity of bile salts in primary human hepatocytes. Hepatology 1990;12(3 pt 1):486–91.CrossRefGoogle Scholar
Hillaire, S, Ballet, F, Franco, D. Effects of ursodeoxycholic acid and chenodeoxycholic acid on human hepatocytes in primary culture. Hepatology 1995;22:82–7.CrossRefGoogle ScholarPubMed
Lillienau, J, Crombie, D L, Munoz, J. Negative feedback regulation of the ileal bile acid transport system in rodents. Gastroenterology 1993;104:38–46.CrossRefGoogle ScholarPubMed
Hofmann, A F. Pharmacology of ursodeoxycholic acid, an enterohepatic drug. Scand J Gastroenterol Suppl 1994;204:1–15.CrossRefGoogle ScholarPubMed
Kitani, K, Ohta, M, Kanai, S. Tauroursodeoxycholate prevents biliary protein excretion induced by other bile salts in the rat. Am J Physiol 1985;248(4 pt 1):G40#1–27.Google Scholar
Shimokura, G H, McGill, J M, Schlenker, T, Fitz, J G. Ursodeoxycholate increases cytosolic calcium concentration and activates Cl- currents in a biliary cell line. Gastroenterology 1995; 109:965–72.CrossRefGoogle Scholar
Berthelot, P, Erlinger, S, Dhumeaux, D, Preaux, A M. Mechanism of phenobarbital-induced hypercholeresis in the rat. Am J Physiol 1970;219:809–13.Google ScholarPubMed
Miller, N E, Nestel, P J. Altered bile acid metabolism during treatment with phenobarbitone. Clin Sci Mol Med Suppl 1973; 42:257–62.Google Scholar
Bloomer, J R, Boyer, J L. Phenobarbital effects in cholestatic liver diseases. Ann Intern Med 1975;82:310–17.CrossRefGoogle ScholarPubMed
Makino, I, Shinozaki, K, Yoshino, K, Nakagawa, S. [Dissolution of cholesterol gallstones by long-term administration of ursodeoxycholic acid]. Nippon Shokakibyo Gakkai Zasshi 1975;72:690–702.Google Scholar
Bachrach, W H, Hofmann, A F. Ursodeoxycholic acid in the treatment of cholesterol cholelithiasis. Part I. Dig Dis Sci 1982;27: 737–61.CrossRefGoogle ScholarPubMed
Ichida, F. Clinical experience with ursodeoxycholic acid (S-urso) for chronic hepatitis. Diagn Treat 1961;36:388.Google Scholar
Hofmann, A F, Popper, H. Ursodeoxycholic acid for primary biliary cirrhosis. Lancet 1987;2:398–9.CrossRefGoogle ScholarPubMed
Krahenbuhl, S, Fischer, S, Talos, C, Reichen, J. Ursodeoxycholate protects oxidative mitochondrial metabolism from bile acid toxicity: dose-response study in isolated rat liver mitochondria. Hepatology 1994;20:1595–1601.CrossRefGoogle ScholarPubMed
Heuman, D M, Mills, A S, McCall, J. Conjugates of ursodeoxycholate protect against cholestasis and hepatocellular necrosis caused by more hydrophobic bile salts. In vivo studies in the rat. Gastroenterology 1991;100:203–11.CrossRefGoogle ScholarPubMed
Hofmann, A. Targeting drugs to the enterohepatic circulation: lessons from bile acids and other endobiotics. J Controlled Release 1985;2:3–11.CrossRefGoogle Scholar
Aldini, R, Montagnani, M, Roda, A. Intestinal absorption of bile acids in the rabbit: different transport rates in jejunum and ileum. Gastroenterology 1996;110:459–68.CrossRefGoogle ScholarPubMed
Batta, A K, Arora, R, Salen, G. Characterization of serum and urinary bile acids in patients with primary biliary cirrhosis by gas-liquid chromatography-mass spectrometry: effect of ursodeoxycholic acid treatment. J Lipid Res 1989;30:1953–62.Google ScholarPubMed
Yoon, Y B, Hagey, L R, Hofmann, A F. Effect of side-chain shortening on the physiologic properties of bile acids: he- patic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterology 1986;90:837–52.CrossRefGoogle Scholar
Elsing, C, Sagesser, H, Reichen, J. Ursodeoxycholate-induced hypercholeresis in cirrhotic rats: further evidence for cholehepatic shunting. Hepatology 1994;20(4 pt 1):1048–54.CrossRefGoogle Scholar
Knyrim, K, Vakil, N, Pfab, R, Classen, M. The effects of intraduodenal bile acid administration on biliary secretion of ionized calcium and carbonate in man. Hepatology 1989;10:134–42.CrossRefGoogle ScholarPubMed
Lazaridis, K N, Tietz, P, Wu, T. Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proc Natl Acad Sci U S A 2000;97:11092–7.CrossRefGoogle ScholarPubMed
Lazaridis, K N, Pham, L, Tietz, P. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest 1997;100:2714–21.CrossRefGoogle ScholarPubMed
Erlinger, S, Dumont, M. Influence of UDCA on bile secretion. In: Paumgartner, G, Stiehl, A, Barbara, L, Roda, E, eds. Strategies for the treatment of hepatobiliary disease. Dordrecht: Kluwer Academic Publishers, 1990:35–42.Google Scholar
Spengler, U, Pape, G R, Hoffmann, R M. Differential expression of MHC class II subregion products on bile duct epithelial cells and hepatocytes in patients with primary biliary cirrhosis. Hepatology 1988;8:459–62.CrossRefGoogle ScholarPubMed
Calmus, Y, Gane, P, Rouger, P, Poupon, R. Hepatic expression of class I and class II major histocompatibility complex molecules in primary biliary cirrhosis: effect of ursodeoxycholic acid. Hepatology 1990;11:12–15.CrossRefGoogle Scholar
Calmus, Y, Arvieux, C, Gane, P. Cholestasis induces major histocompatibility complex class I expression in hepatocytes. Gastroenterology 1992;102(4 pt 1):1371–7.CrossRefGoogle Scholar
Innes, G K, Nagafuchi, Y, Fuller, B J, Hobbs, K E. Increased expression of major histocompatibility antigens in the liver as a result of cholestasis. Transplantation 1988;45:749–52.CrossRefGoogle ScholarPubMed
Calmus, Y, Weill, B, Ozier, Y. Immunosuppressive properties of chenodeoxycholic and ursodeoxycholic acids in the mouse. Gastroenterology 1992;103:617–21.CrossRefGoogle ScholarPubMed
Kurktschiev, D, Subat, S, Adler, D, Schentke, K U. Immunomodulating effect of ursodeoxycholic acid therapy in patients with primary biliary cirrhosis. J Hepatol 1993;18:373–7.CrossRefGoogle ScholarPubMed
Terasaki, S, Nakanuma, Y, Ogino, H. Hepatocellular and biliary expression of HLA antigens in primary biliary cirrhosis before and after ursodeoxycholic acid therapy. Am J Gastroenterol 1991;86:1194–9.Google ScholarPubMed
Poupon, R E, Balkau, B, Eschwege, E, Poupon, R. A multicenter, controlled trial of ursodiol for the treatment of primary biliary cirrhosis. UDCA-PBC Study Group. N Engl J Med 1991;324: 1548–54.CrossRefGoogle ScholarPubMed
Heathcote, E J, Cauch-Dudek, K, Walker, V. The Canadian Multicenter Double-blind Randomized Controlled Trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatology 1994;19:1149–56.CrossRefGoogle ScholarPubMed
Lindor, K D, Dickson, E R, Baldus, W P. Ursodeoxycholic acid in the treatment of primary biliary cirrhosis. Gastroenterology 1994;106:1284–90.CrossRefGoogle ScholarPubMed
Combes, B, Carithers, R L, Maddrey, W C. A randomized, double-blind, placebo-controlled trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatology 1995;22:759–66.Google ScholarPubMed
Lindor, K D, Jorgensen, R A, Therneau, T M. Ursodeoxycholic acid delays the onset of esophageal varices in primary biliary cirrhosis. Mayo Clin Proc 1997;72:1137–40.CrossRefGoogle ScholarPubMed
Poupon, R E, Lindor, K D, Cauch-Dudek, K. Combined analysis of randomized controlled trials of ursodeoxycholic acid in primary biliary cirrhosis. Gastroenterology 1997;113:884–90.CrossRefGoogle ScholarPubMed
Lindor, K, Therneau, T, Jorgensen, R. Effects of ursodeoxycholic acid on survival in patients with primary biliary cirrhosis. Gastroenterology 1994;110:1515–18.CrossRefGoogle Scholar
Pasha, T, Heathcote, J, Gabriel, S. Cost-effectiveness of ursodeoxycholic acid therapy in primary biliary cirrhosis. Hepatology 1999;29:21–6.CrossRefGoogle ScholarPubMed
Beuers, U, Spengler, U, Kruis, W. Ursodeoxycholic acid for treatment of primary sclerosing cholangitis: a placebo-controlled trial. Hepatology 1992;16:707–14.CrossRefGoogle ScholarPubMed
Lindor, K D. Ursodiol for primary sclerosing cholangitis. Mayo Primary Sclerosing Cholangitis-Ursodeoxycholic Acid Study Group. N Engl J Med 1997;336:691–5.Google ScholarPubMed
Broome, U, Glaumann, H, Hultcrantz, R, Forsum, U. Distribution of HLA-DR, HLA-DP, HLA-DQ antigens in liver tissue from patients with primary sclerosing cholangitis. Scand J Gastroenterol 1990;25:54–8.CrossRefGoogle ScholarPubMed
O'Brien, C B, Senior, J R, Rora-Mirchandani, R. Ursodeoxycholic acid for the treatment of primary sclerosing cholangitis: a 30-month pilot study. Hepatology 1991;14:838–47.CrossRefGoogle ScholarPubMed
Chazouilleres, O, Poupon, R, Capron, J P. Ursodeoxycholic acid for primary sclerosing cholangitis. J Hepatol 1990;11:120–3.CrossRefGoogle ScholarPubMed
Feigelson, J, Anagnostopoulos, C, Poquet, M. Liver cirrhosis in cystic fibrosis – therapeutic implications and long term follow up. Arch Dis Child 1993;68:653–7.CrossRefGoogle ScholarPubMed
Sinaasappel, M. Hepatobiliary pathology in patients with cystic fibrosis. Acta Paediatr Scand Suppl 1989;363:45–50.CrossRefGoogle ScholarPubMed
Cotting, J, Lentze, M J, Reichen, J. Effects of ursodeoxycholic acid treatment on nutrition and liver function in patients with cystic fibrosis and longstanding cholestasis. Gut 1990;31:918–21.CrossRefGoogle ScholarPubMed
Colombo, C, Setchell, K D, Podda, M. Effect of UDCA on liver disease associated with cystic fibrosis. J Ped 1990;117:412–19.CrossRefGoogle Scholar
Galabert, C, Montet, J C, Lengrand, D. Effects of ursodeoxycholic acid on liver function in patients with cystic fibrosis and chronic cholestasis. J Pediatr 1992;121:138–41.CrossRefGoogle ScholarPubMed
Meeberg, P C, Houwen, R H, Sinaasappel, M. Low-dose versus high-dose ursodeoxycholic acid in cystic fibrosis-related cholestatic liver disease. Results of a randomized study with 1-year follow-up. Scand J Gastroenterol 1997;32:369–73.Google ScholarPubMed
Colombo, C, Castellani, M R, Balistreri, W F. Scintigraphic documentation of an improvement in hepatobiliary excretory function after treatment with ursodeoxycholic acid in patients with cystic fibrosis and associated liver disease. Hepatology 1992;15:677–84.CrossRefGoogle ScholarPubMed
Lindblad, A, Glaumann, H, Strandvik, B. A two-year prospective study of the effect of ursodeoxycholic acid on urinary bile acid excretion and liver morphology in cystic fibrosis-associated liver disease. Hepatology 1998;27:166–74.CrossRefGoogle ScholarPubMed
Lepage, G, Paradis, K, Lacaille, F. Ursodeoxycholic acid improves the hepatic metabolism of essential fatty acids and retinol in children with cystic fibrosis. J Pediatr 1997;130:52–8.CrossRefGoogle ScholarPubMed
Thomas, P S, Bellamy, M, Geddes, D. Malabsorption of vitamin E in cystic fibrosis improved after ursodeoxycholic acid. Lancet 1995;346:1230–1.CrossRefGoogle ScholarPubMed
Bittner, P, Posselt, H, SailorT, et al T, et al. The effect of treatment with ursodeoxycholic acid in cystic fibrosis and hepatopathy: results of a placebo-controlled study. In: Paumgartner, G, Stiehl, A, Gerok, W, eds. Bile acids as therapeutic agents: from basic science to clinical practice. Lancaster: Kluwer Academic Publishers, 1991:345–8.Google Scholar
Balistreri, W F, A-Kader, H, Setchell, K, and the Ursodeoxycholic Acid Study Group. Ursodeoxycholic acid therapy in pediatric patients with chronic cholestasis. In: Lentze, M, Reichen, J, eds. Paediatric cholestasis: novel approaches to treatment. Lancaster, England: Kluwer Academic Press, 1997:333–44.Google Scholar
Balistreri, W F. Ursodeoxycholic acid in the treatment of pediatric liver disease. In: Fromm, H, Leuschner, U, eds. Proceedings of the Falk Symposium 84: Advances in basic and clinical bile acid research. London: Kluwer Acad Publishers, 1995;327–42.Google Scholar
Levy, E, Bendayan, M, Thibault, L. Lipoprotein abnormalities in two children with minimal biliary excretion. J Pediatr Gastroenterol Nutr 1995;20:432–9.CrossRefGoogle ScholarPubMed
Krawinkel, M B, Santer, R, Oldigs, H D. Ursodesoxycholic acid: effect on xanthomas in Alagille-Watson syndrome. J Pediatr Gastroenterol Nutr 1994;19:476–7.CrossRefGoogle ScholarPubMed
Bijleveld, C M, Vonk, R J, Kuipers, F. Benign recurrent intrahepatic cholestasis: altered bile acid metabolism. Gastroenterology 1989;97:427–32.CrossRefGoogle ScholarPubMed
Crosignani, A, Podda, M, Bertolini, E. Failure of ursodeoxycholic acid to prevent a cholestatic episode in a patient with benign recurrent intrahepatic cholestasis: a study of bile acid metabolism. Hepatology 1991;13:1076–83.CrossRefGoogle Scholar
Jacquemin, E, Setchell, K D, O'Connell, N C. A new cause of progressive intrahepatic cholestasis: 3 beta-hydroxy-C27-steroid dehydrogenase(isomerase deficiency. J Pediatr 1994;125: 379–84.CrossRefGoogle ScholarPubMed
A-Kader, H, Santangelo, J, Setchell, K. The effects of ursodeoxycholic acid (UDCA) therapy in biliary atresia (BA): a double blind randomized, placebo controlled trial. Ped Res 1993;33:97A.Google Scholar
Nittono, H, Tokita, A, HayashiM, et al M, et al. Ursodeoxycholic acid therapy in the treatment of biliary atresia. Biomed Pharmacother 1989;43:37–41.CrossRefGoogle ScholarPubMed
A-Kader, H, Heubi, J, Setchell, K. The effects of UDCA therapy in children with EHBA. Gastroenterology 1990;98:A564.Google Scholar
Ullrich, D, Rating, D, SchroterW, et al W, et al. Treatment with ursodeoxycholic acid renders children with biliary atresia suitable for liver transplantation. Lancet 1987;2:1324.CrossRefGoogle ScholarPubMed
Nittono, H, Tokita, A, HayashiM, et al M, et al. Ursodeoxycholic acid in biliary atresia. Lancet 1988;1:528.CrossRefGoogle ScholarPubMed
Schwarzenberg, S J, Bundy, M. Ursodeoxycholic acid modifies gut-derived endotoxemia in neonatal rats. Pediatr Res 1994;35: 214–17.CrossRefGoogle ScholarPubMed
Heubi, J E, Wiechmann, D A, Creutzinger, V. Tauroursodeoxycholic acid (TUDCA) in the prevention of total parenteral nutrition-associated liver disease. J Pediatr 2002;141:237–42.CrossRefGoogle ScholarPubMed
Boucher, E, Jouanolle, H, Andre, P. Interferon and ursodeoxycholic acid combined therapy in the treatment of chronic viral C hepatitis: results from a controlled randomized trial in 80 patients. Hepatology 1995;21:322–7.Google ScholarPubMed
Takano, S, Ito, Y, Yokosuka, O. A multicenter randomized controlled dose study of ursodeoxycholic acid for chronic hepatitis C. Hepatology 1994;20:558–64.CrossRefGoogle ScholarPubMed
Angelico, M, Gandin, C, Pescarmona, E. Recombinant interferon-alpha and ursodeoxycholic acid versus interferon-alpha alone in the treatment of chronic hepatitis C: a randomized clinical trial with long-term follow-up. Am J Gastroenterol 1995;90:263–9.Google ScholarPubMed
Bellentani, S, Podda, M, Tiribelli, C. Ursodiol in the long-term treatment of chronic hepatitis: a double-blind multicenter clinical trial. J Hepatol 1993;19:459–64.CrossRefGoogle ScholarPubMed
Lacaille, F, Paradis, K. The immunosuppressive effect of ursodeoxycholic acid: a comparative in vitro study on human peripheral blood mononuclear cells. Hepatology 1993;18:165–72.Google ScholarPubMed
Yoshikawa, M, Tsujii, T, Matsumura, K. Immunomodulatory effects of ursodeoxycholic acid on immune responses. Hepatology 1992;16:358–64.CrossRefGoogle ScholarPubMed
Keiding, S, Hockerstedt, K, Bjoro, K. The Nordic multicenter double-blind randomized controlled trial of prophylactic ursodeoxycholic acid in liver transplant patients. Transplantation 1997;63:1591–4.CrossRefGoogle ScholarPubMed
Pageaux, G P, Blanc, P, Perrigault, P F. Failure of ursodeoxycholic acid to prevent acute cellular rejection after liver transplantation. J Hepatol 1995;23:119–22.CrossRefGoogle ScholarPubMed
Barnes, D, Talenti, D, Cammell, G. A randomized clinical trial of ursodeoxycholic acid as adjuvant treatment to prevent liver transplant rejection. Hepatology 1997;26:853–7.CrossRefGoogle ScholarPubMed
Essell, J H, Thompson, J M, Harman, G S. Pilot trial of prophylactic ursodiol to decrease the incidence of veno-occlusive disease of the liver in allogeneic bone marrow transplant patients. Bone Marrow Transplant 1992;10:367–72.Google ScholarPubMed
Fried, R H, Murakami, C S, Fisher, L D. Ursodeoxycholic acid treatment of refractory chronic graft-versus-host disease of the liver. Ann Intern Med 1992;116:624–9.CrossRefGoogle ScholarPubMed
Narkewicz, M R, Smith, D, Gregory, C. Effect of ursodeoxycholic acid therapy on hepatic function in children with intrahepatic cholestatic liver disease. J Pediatr Gastroenterol Nutr 1998;26:49–55.CrossRefGoogle ScholarPubMed
Balistreri, W F. Bile acid therapy in pediatric hepatobiliary disease: the role of ursodeoxycholic acid. J Pediatr Gastroenterol Nutr 1997;24:573–89.CrossRefGoogle ScholarPubMed
Cowen, A E, Korman, M G, Hofmann, A F. Metabolism of lithocholate in healthy man. II. Enterohepatic circulation. Gastroenterology 1975;69:67–76.Google ScholarPubMed
Hirano, S, Masuda, N, Oda, H. In vitro transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal flora, with particular reference to the mutual conversion between the two bile acids. J Lipid Res 1981;22:735–43.Google ScholarPubMed
Invernizzi, P, Setchell, K D, Crosignani, A. Differences in the metabolism and disposition of ursodeoxycholic acid and of its taurine-conjugated species in patients with primary biliary cirrhosis. Hepatology 1999;29:320–7.CrossRefGoogle Scholar
Setchell, K D, Rodrigues, C M, Podda, M, Crosignani, A. Metabolism of orally administered tauroursodeoxycholic acid in patients with primary biliary cirrhosis. Gut 1996;38:439–46.CrossRefGoogle ScholarPubMed
Kitani, K, Kanai, S. Tauroursodeoxycholate prevents taurocholate induced cholestasis. Life Sci 1982;30:515–23.CrossRefGoogle ScholarPubMed
Miyake, H, Tazuma, S, Miura, H. Partial characterization of mechanisms of cytoprotective action of hydrophilic bile salts against hydrophobic bile salts in rats: relation to canalicular membrane fluidity and packing density. Dig Dis Sci 1999;44: 197–202.CrossRefGoogle ScholarPubMed
Funaoka, M, Komatsu, M, Toyoshima, I. Tauroursodeoxycholic acid enhances phagocytosis of the cultured rat Kupffer cell. J Gastroenterol Hepatol 1999;14:652–8.CrossRefGoogle ScholarPubMed
Beurs, U, Nathanson, M, Isales, C, Boyer, J. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis. Clin Invest 1993;92:2984–93.CrossRefGoogle Scholar
Kinbara, S, Ishizaki, K, Sakakura, H. Improvement of estradiol-17 beta-D-glucuronide-induced cholestasis by sodium tauroursodeoxycholate therapy in rats. Scand J Gastroenterol 1997;32:947–52.CrossRefGoogle ScholarPubMed
Roda, A, Piazza, F, Baraldini, M. Taurohyodeoxycholic acid protects against taurochenodeoxycholic acid-induced cholestasis in the rat. Hepatology 1998;27:520–5.CrossRefGoogle ScholarPubMed
Larghi, A, Crosignani, A, Battezzati, P M. Ursodeoxycholic and tauro-ursodeoxycholic acids for the treatment of primary biliary cirrhosis: a pilot crossover study. Aliment Pharmacol Ther 1997;11:409–14.CrossRefGoogle ScholarPubMed
Crosignani, A, Battezzati, P M, Setchell, K D. Tauroursodeoxycholic acid for treatment of primary biliary cirrhosis. A dose-response study. Dig Dis Sci 1996;41:809–15.CrossRefGoogle ScholarPubMed
Capron, J P, Dumont, M, Feldmann, G, Erlinger, S. Barbiturate-induced choleresis: possible independence from microsomal enzyme induction. Digestion 1977;15:556–65.CrossRefGoogle ScholarPubMed
Simon, F R, Sutherland, E, Accatino, L. Stimulation of he- patic sodium and potassium-activated adenosine triphosphatase activity by phenobarbital. Its possible role in regulation of bile flow. J Clin Invest 1977;59:849–61.Google Scholar
Sinatra, F R. Cholestasis in infancy and childhood. Curr Probl Pediatr 1982;12:1–54.Google ScholarPubMed
Alagille, D. Management of chronic cholestasis in childhood. Semin Liver Dis 1985;5:254–62.CrossRefGoogle ScholarPubMed
Hahn, T J, Hendin, B A, Scharp, C R, Haddad, JG Jr. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med 1972;287:900–4.CrossRefGoogle ScholarPubMed
Ghent, C N, Bloomer, J R, Hsia, Y E. Efficacy and safety of long-term phenobarbital therapy of familial cholestasis. J Pediatr 1978;93:127–32.CrossRefGoogle ScholarPubMed
Ferrari, M, Barabas, G, Matthews, W S. Psychologic and behavioral disturbance among epileptic children treated with barbiturate anticonvulsants. Am J Psychiatry 1983;140:112–13.Google ScholarPubMed
Brent, D A, Crumrine, P K, Varma, R R. Phenobarbital treatment and major depressive disorder in children with epilepsy. Pediatrics 1987;80:909–17.Google ScholarPubMed
Brent, D A. Overrepresentation of epileptics in a consecutive series of suicide attempters seen at a children's hospital, 1978–1983. J Am Acad Child Psychiatry 1986;25:242–6.CrossRefGoogle Scholar
Brent, D A, Crumrine, P K, Varma, R. Phenobarbital treatment and major depressive disorder in children with epilepsy: a naturalistic follow-up. Pediatrics 1990;85:1086–91.Google ScholarPubMed
Karrer, F M, Lilly, J R. Corticosteroid therapy in biliary atresia. J Pediatr Surg 1985;20:693–5.CrossRefGoogle ScholarPubMed
Meyers, R L, Book, L S, O'Gorman, M A. High-dose steroids, ursodeoxycholic acid, and chronic intravenous antibiotics improve bile flow after Kasai procedure in infants with biliary atresia. J Pediatr Surg 2003;38:406–11.CrossRefGoogle Scholar
Rintala, R J, Lindahl, H, Pohjavuori, M. Total parenteral nutrition-associated cholestasis in surgical neonates may be reversed by intravenous cholecystokinin: a preliminary report. J Pediatr Surg 1995;30:827–30.CrossRefGoogle ScholarPubMed
Teitelbaum, D H, Han-Markey, T, Schumacher, R E. Treatment of parenteral nutrition-associated cholestasis with cholecystokinin-octapeptide. J Pediatr Surg 1995;30:1082–5.CrossRefGoogle ScholarPubMed
Teitelbaum, D H, Han-Markey, T, Drongowski, R A. Use of cholecystokinin to prevent the development of parenteral nutrition-associated cholestasis. JPEN J Parenter Enteral Nutr 1997;21:100–3.CrossRefGoogle ScholarPubMed
Teitelbaum, D H, Tracy, T F, Aouthmany, M M. Use of cholecystokinin-octapeptide for the prevention of parenteral nutrition-associated cholestasis. Pediatrics 2005;115:1332–40.CrossRefGoogle ScholarPubMed
Wagner, M, Trauner, M. Transcriptional regulation of hepatobiliary transport systems in health and disease: implications for a rationale approach to the treatment of intrahepatic cholestasis. Ann Hepatol 2005;4:77–99.Google ScholarPubMed
Liu, Y, Binz, J, Numerick, M J. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 2003;112:1678–87.CrossRefGoogle ScholarPubMed
Fiorucci, S, Clerici, C, Antonelli, E. Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis. J Pharmacol Exp Ther 2005;313:604–12.CrossRefGoogle ScholarPubMed
Saini, S P, Sonoda, J, Xu, L. A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol Pharmacol 2004;65:292–300.CrossRefGoogle ScholarPubMed
Huang, W, Zhang, J, Moore, D D. A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. J Clin Invest 2004;113:137–43.CrossRefGoogle ScholarPubMed
Stedman, C A, Liddle, C, Coulter, S A. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc Natl Acad Sci U S A 2005;102:2063–8.CrossRefGoogle ScholarPubMed
Zhang, J, Huang, W, Qatanani, M. The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem 2004;279:49517–22.CrossRefGoogle ScholarPubMed
Marschall, H U, Wagner, M, Zollner, G. Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology 2005;129:476–85.CrossRefGoogle ScholarPubMed
Friedman, S L. Cytokines and fibrogenesis. Semin Liver Dis 1999;19:129–40.CrossRefGoogle ScholarPubMed
Li, D, Friedman, S L. Liver fibrogenesis and the role of hepatic stellate cells: new insights and prospects for therapy. J Gastroenterol Hepatol 1999;14:618–33.CrossRefGoogle ScholarPubMed
Siegelmann, R, Peterkofsky, B. Inhibition of collagen secretion from bone and culture fibroblasts by microtubular disruptive drugs. Proc Natl Acad Sci U S A 1972;69:892–6.CrossRefGoogle Scholar
Scherft, J P, Heersche, J N. Accumulation of collagen-containing vacuoles in osteoblasts after administration of colchicine. Cell Tissue Res 1975;157:353–65.CrossRefGoogle ScholarPubMed
Dinarello, C A, Chusid, M J, Fauci, A S. Effect of prophylactic colchicine therapy on leukocyte function in patients with familial Mediterranean fever. Arthritis Rheum 1976;19:618–22.CrossRefGoogle ScholarPubMed
Gordon, S, Werb, Z. Secretion of macrophage neutral proteinase is enhanced by colchicine. Proc Natl Acad Sci U S A 1976;73:872–6.CrossRefGoogle ScholarPubMed
Warnes, T W, Smith, A, Lee, F I. A controlled trial of colchicine in primary biliary cirrhosis. Trial design and preliminary report. J Hepatol 1987;5:1–7.Google ScholarPubMed
Kaplan, M M, Alling, D W, Zimmerman, H J. A prospective trial of colchicine for primary biliary cirrhosis. N Engl J Med 1986;315:1448–54.CrossRefGoogle ScholarPubMed
Kershenobich, D, Vargas, F, Garcia-Tsao, G. Colchicine in the treatment of cirrhosis of the liver. N Engl J Med 1988;318:1709–13.CrossRefGoogle ScholarPubMed
Klion, F M, Fabry, T, Zifroni, A, Schaffner, F. Progression of PBC with and without colchicine therapy. Hepatology 1990;12:420.Google Scholar
Zifroni, A, Schaffner, F. Long-term follow-up of patients with primary biliary cirrhosis on colchicine therapy. Hepatology 1991;14:990–3.CrossRefGoogle ScholarPubMed
Collins, J, Morecki, R, McPhillips, J, Gartner, L. Colchicine treatment of paediatric chronic cholestatic liver disease. In: Lentze, M, Reichen, J, eds. Pediatric cholestasis: novel approaches to treatment. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1992:305–8.Google Scholar
Morgan, T R, Weiss, D G, Nemchausky, B. Colchicine treatment of alcoholic cirrhosis: a randomized, placebo-controlled clinical trial of patient survival. Gastroenterology 2005;128: 882–90.CrossRefGoogle ScholarPubMed
Hatziioannidou, A, Cheesman, P, Trivedi, P. Double blind controlled trial of colchicine versus placebo in extrahepatic biliary atresia: interim results. Hepatology 1992;16:60A.Google Scholar
Nimni, M E, Bavetta, L A. Collagen defect induced by penicillamine. Science 1965;150:905–7.CrossRefGoogle ScholarPubMed
Deshmukh, K, Nimni, M E. A defect in the intramolecular and intermolecular cross-linking of collagen caused by penicillamine. II. Functional groups involved in the interaction process. J Biol Chem 1969;244:1787–95.Google ScholarPubMed
Walshe, J M. Wilson's disease; new oral therapy. Lancet 1956; 270:25–6.CrossRefGoogle ScholarPubMed
Neuberger, J, Christensen, E, Portmann, B. Double blind controlled trial of d-penicillamine in patients with primary biliary cirrhosis. Gut 1985;26:114–19.CrossRefGoogle ScholarPubMed
Bodenheimer, H C, Schaffner, F, Sternlieb, I. A prospective clinical trial of D-penicillamine in the treatment of primary biliary cirrhosis. Hepatology 1985;5:1139–42.CrossRefGoogle ScholarPubMed
Dickson, E R, Fleming, T R, Wiesner, R H. Trial of penicillamine in advanced primary biliary cirrhosis. N Engl J Med 1985;312:1011–15.CrossRefGoogle ScholarPubMed
Oikarinen, A I, Vuorio, E I, Zaragoza, E J. Modulation of collagen metabolism by glucocorticoids. Receptor-mediated effects of dexamethasone on collagen biosynthesis in chick embryo fibroblasts and chondrocytes. Biochem Pharmacol 1988;37:1451–62.Google ScholarPubMed
Oikarinen, A I, Uitto, J, Oikarinen, J. Glucocorticoid action on connective tissue: from molecular mechanisms to clinical practice. Med Biol 1986;64:221–30.Google ScholarPubMed
Weiner, F R, Czaja, M J, Giambrone, M A. Transcriptional and posttranscriptional effects of dexamethasone on albumin and procollagen messenger RNAs in murine schistosomiasis. Biochemistry 1987;26:1557–62.CrossRefGoogle ScholarPubMed
Jefferson, D M, Reid, L M, Giambrone, M A. Effects of dexamethasone on albumin and collagen gene expression in primary cultures of adult rat hepatocytes. Hepatology 1985;5:14–20.CrossRefGoogle ScholarPubMed
Zhang, M, Song, G, Minuk, G Y. Effects of hepatic stimulator substance, herbal medicine, selenium/vitamin E, and ciprofloxacin on cirrhosis in the rat. Gastroenterology 1996;110:1150–5.CrossRefGoogle Scholar
Chojkier, M, Houglum, K, Lee, K S, Buck, M. Long- and short-term D-alpha-tocopherol supplementation inhibits liver collagen alpha1(I) gene expression. Am J Physiol 1998; 275(6 pt 1):G1480–5.Google Scholar
Houglum, K, Brenner, D A, Chojkier, M. d-Alpha-tocopherol inhibits collagen alpha 1(I) gene expression in cultured human fibroblasts. Modulation of constitutive collagen gene expression by lipid peroxidation. J Clin Invest 1991;87:2230–5.Google ScholarPubMed
Houglum, K, Venkataramani, A, Lyche, K, Chojkier, M. A pilot study of the effects of d-alpha-tocopherol on hepatic stellate cell activation in chronic hepatitis C. Gastroenterology 1997;113:1069–73.CrossRefGoogle ScholarPubMed
Stickel, F, Brinkhaus, B, Krahmer, N. Antifibrotic properties of botanicals in chronic liver disease. Hepatogastroenterology 2002;49:1102–8.Google ScholarPubMed
Rockey, D C. Antifibrotic therapy in chronic liver disease. Clin Gastoenterol Hepatol 2005;3:95–107.CrossRefGoogle ScholarPubMed
Gartung, C, Matern, S. Molecular regulation of sinusoidal liver bile acid transporters during cholestasis. Yale J Biol Med 1997; 70:355–63.Google ScholarPubMed
Koopen, N R, Wolters, H, Voshol, P. Decreased Na+-dependent taurocholate uptake and low expression of the sinusoidal Na+-taurocholate cotransporting protein (Ntcp) in livers of mdr2 P-glycoprotein-deficient mice. J Hepatol 1999;30:14–21.CrossRefGoogle ScholarPubMed
Gartung, C, Ananthanarayanan, M, Rahman, M A. Down-regulation of expression and function of the rat liver Na+/bile acid cotransporter in extrahepatic cholestasis. Gastroenterology 1996;110:199–209.CrossRefGoogle ScholarPubMed
Jones, E A, Bergasa, N V. The pruritus of cholestasis: from bile acids to opiate agonists. Hepatology 1990;11:884–7.CrossRefGoogle ScholarPubMed
Maddrey, W C, Thiel, D H. Liver transplantation: an overview. Hepatology 1988;8:948–59.CrossRefGoogle ScholarPubMed
Cauna, N. Fine morphological changes in the penicillate nerve endings of human hairy skin during prolonged itching. Anat Rec 1977;188:1–11.CrossRefGoogle ScholarPubMed
Herndon, JH Jr. Pathophysiology of pruritus associated with elevated bile acid levels in serum. Arch Intern Med 1972;130:632–7.CrossRefGoogle ScholarPubMed
Schoenfield, L. The relationship of bile acids to pruritus in hepatobiliary disease. In: Schiff, L, Carey, J, Dietschy, J, eds. Bile salt metabolism. Springfield, IL: Charles C Thomas Publisher, 1969:257–65.Google Scholar
Garden, J M, Ostrow, J D, Roenigk, HH Jr. Pruritus in hepatic cholestasis. Pathogenesis and therapy. Arch Dermatol 1985;121:1415–20.CrossRefGoogle ScholarPubMed
Ghent, C N, Bloomer, J R, Klatskin, G. Elevations in skin tissue levels of bile acids in human cholestasis: relation to serum levels and topruritus. Gastroenterology 1977;73:1125–30.Google ScholarPubMed
Freedman, M R, Holzbach, R T, Ferguson, D R. Pruritus in cholestasis: no direct causative role for bile acid retention. Am J Med 1981;70:1011–16.CrossRefGoogle ScholarPubMed
Silverberg, D S, Iaina, A, Reisin, E. Cholestyramine in uraemic pruritus. Br Med J 1977;1:752–3.CrossRefGoogle ScholarPubMed
Chanarin, I, Szur, L. Letter: relief of intractable pruritis in polycythaemia rubra vera with cholestyramine. Br J Haematol 1975;29:669–70.CrossRefGoogle ScholarPubMed
Thornton, J R, Losowsky, M S. Opioid peptides and primary biliary cirrhosis. BMJ 1988;297:1501–4.CrossRefGoogle ScholarPubMed
Swain, M G, Rothman, R B, Xu, H. Endogenous opioids accumulate in plasma in a rat model of acute cholestasis. Gastroenterology 1992;103:630–5.CrossRefGoogle Scholar
Reiz, S, Westberg, M. Side-effects of epidural morphine. Lancet 1980;2:203–4.CrossRefGoogle ScholarPubMed
Ballantyne, J C, Loach, A B, Carr, D B. Itching after epidural and spinal opiates. Pain 1988;33:149–60.CrossRefGoogle ScholarPubMed
Bernstein, J E, Grinzi, R A. Butorphanol-induced pruritus antagonized by naloxone. J Am Acad Dermatol 1981;5:227–8.CrossRefGoogle ScholarPubMed
Justins, D M, Reynolds, F. Intraspinal opiates and itching: a new reflex?Br Med J (Clin Res Ed) 1982;284:1401.CrossRefGoogle ScholarPubMed
Graham-Smith, D, Aronson, J. Narcotic analgesics. In: Graham-Smith, D, Aronson, J, eds. Oxford textbook of clinical pharmacology and drug therapy. 2nd ed. New York: Oxford, 1992:641–4.Google Scholar
Jaffe, J, Martin, W. Opioid analgesics and antagonists. In: Gilman, A, Goodman, L, Rall, T, Marad, F, eds. The pharmacologic basis of therapeutics. 7th ed. New York: MacMillan Publishing Co., 1985:491–531.Google Scholar
Bernstein, J E, Swift, R. Relief of intractable pruritus with naloxone. Arch Dermatol 1979;115:1366–7.CrossRefGoogle ScholarPubMed
Bergasa, N V, Thomas, D A, Vergalla, J. Plasma from patients with the pruritus of cholestasis induces opioid receptor-mediated scratching in monkeys. Life Sci 1993;53:1253–7.CrossRefGoogle ScholarPubMed
Bergasa, N V, Rothman, R B, Vergalla, J. Central mu-opioid receptors are down-regulated in a rat model of cholestasis. J Hepatol 1992;15:220–4.CrossRefGoogle Scholar
Gold, M S, Redmond, D E, Kleber, H D. Clonidine blocks acute opiate-withdrawal symptoms. Lancet 1978;2:599–602.CrossRefGoogle ScholarPubMed
Charney, D S, Heninger, G R, Kleber, H D. The combined use of clonidine and naltrexone as a rapid, safe, and effective treatment of abrupt withdrawal from methadone. Am J Psychiatry 1986;143:831–7.Google ScholarPubMed
Thornton, J R, Losowsky, M S. Plasma methionine enkephalin concentration and prognosis in primary biliary cirrhosis. BMJ 1988;297:1241–2.CrossRefGoogle ScholarPubMed
Kastin, A J, Nissen, C, Schally, A V, Coy, D H. Blood-brain barrier, half-time disappearance, and brain distribution for labeled enkephalin and a potent analog. Brain Res Bull 1976;1:583–9.CrossRefGoogle Scholar
Rapoport, S I, Klee, W A, Pettigrew, K D, Ohno, K. Entry of opioid peptides into the central nervous system. Science 1980;207:84–6.CrossRefGoogle ScholarPubMed
Banks, W A, Kastin, A J, Fischman, A J. Carrier-mediated transport of enkephalins and N-Tyr-MIF-1 across blood-brain barrier. Am J Physiol 1986;251(4 pt 1):E477–82.Google Scholar
Summerfield, J A. Naloxone modulates the perception of itch in man. Br J Clin Pharmacol 1980;10:180–3.CrossRefGoogle ScholarPubMed
Sharp, H L, Carey, J B, White, J G, Krivit, W. Cholestyramine therapy in patients with a paucity of intrahepatic bile ducts. J Pediatr 1967;71:723–36.CrossRefGoogle ScholarPubMed
Palmer, R H. Bile acids, liver injury, and liver disease. Arch Intern Med 1972;130:606–17.CrossRefGoogle ScholarPubMed
Levy, J S, Gelb, A M, Stenger, R J, Javitt, N B. Prolonged neonatal cholestasis: bile acid pattern and response to cholestyramine. Mt Sinai J Med 1979;46:169–73.Google ScholarPubMed
Ghent, C N, Carruthers, S G. Treatment of pruritus in primary biliary cirrhosis with rifampin. Results of a double-blind, crossover, randomized trial. Gastroenterology 1988;94:488–93.Google ScholarPubMed
Bachs, L, Pares, A, Elena, M. Comparison of rifampicin with phenobarbitone for treatment of pruritus in biliary cirrhosis. Lancet 1989;1:574–6.CrossRefGoogle ScholarPubMed
Cynamon, H A, Andres, J M, Iafrate, R P. Rifampin relieves pruritus in children with cholestatic liver disease. Gastroenterology 1990;98:1013–16.CrossRefGoogle ScholarPubMed
Podesta, A, Lopez, P, Terg, R. Treatment of pruritus of primary biliary cirrhosis with rifampin. Dig Dis Sci 1991;36:216–20.CrossRefGoogle ScholarPubMed
Bachs, L, Pares, A, Elena, M. Effects of long-term rifampicin administration in primary biliary cirrhosis. Gastroenterology 1992;102:2077–80.CrossRefGoogle ScholarPubMed
Chretien, Y, Poupon, R, Gherardt, M. Bile acid glycine and taurine conjugates in serum of patients with PBC: effect of ursodeoxycholic acid treatment. Gut 1990;30:1110–15.CrossRefGoogle Scholar
Stiehl, A, Rudolph, G, Raedsch, R. Ursodeoxycholic acid-induced changes of plasma and urinary bile acids in patients with primary biliary cirrhosis. Hepatology 1990;12(3 pt 1):492–7.CrossRefGoogle Scholar
Rail, T, Schleifer, L. Drugs effective in the therapy of epilepsies. In: Gilman, A, Goodman, L, Rail, T, Murod, F, eds. The pharmacologic basis of therapeutics. New York: MacMillan, 1985:457.Google Scholar
Hanid, M A, Levi, A J. Phototherapy for pruritus in primary biliary cirrhosis. Lancet 1980;2:530.CrossRefGoogle ScholarPubMed
Perlstein, S M. Phototherapy for primary biliary cirrhosis. Arch Dermatol 1981;117:608.CrossRefGoogle ScholarPubMed
Person, J R. Ultraviolet A (UV-A) and cholestatic pruritus. Arch Dermatol 1981;117:684.CrossRefGoogle ScholarPubMed
Lauterburg, B H, Pineda, A A, DicksonER, et al ER, et al. Plasmaperfusion for the treatment of intractable pruritus of cholestasis. Mayo Clin Proc 1978;53:403–7.Google ScholarPubMed
Lauterburg, B H, Pineda, A A, Burgstaler, E. Treatment of pruritus of cholestasis by plasma perfusion thru USP-charcoal coated glass beads. Lancet 1990;2:53–5.Google Scholar
Datta, D V, Sherlock, S. Treatment of pruritus of obstructive jaundice with cholestyramine. Br Med J 1963;5325:216–19.CrossRefGoogle Scholar
Sweeney, M E, Fletcher, B J, Rice, C R. Efficacy and compliance with cholestyramine bar versus powder in the treatment of hyperlipidemia. Am J Med 1991;90:469–73.CrossRefGoogle ScholarPubMed
Yerushalmi, B, Sokol, R J, Narkewicz, M R. Use of rifampin for severe pruritus in children with chronic cholestasis. J Pediatr Gastroenterol Nutr 1999;29:442–7.CrossRefGoogle ScholarPubMed
Gregorio, G V, Ball, C S, Mowat, A P, Mieli-Vergani, G. Effect of rifampicin in the treatment of pruritus in hepatic cholestasis. Arch Dis Child 1993;69:141–3.CrossRefGoogle ScholarPubMed
Ohnhaus, E E, Gerber-Taras, E, Park, B K. Enzyme-inducing drug combinations and their effects on liver microsomal enzyme activity in man. Eur J Clin Pharmacol 1983;24:247–50.CrossRefGoogle ScholarPubMed
Galeazzi, R, Lorenzini, I, Orlandi, F. Rifampicin-induced elevation of serum bile acids in man. Dig Dis Sci 1980;25:108–12.CrossRefGoogle ScholarPubMed
Nakashima, T, Sano, A, Seto, Y. Unusual trihydroxy bile acids in the urine of patients treated with chenodeoxycholate, ursodeoxycholate or rifampicin and those with cirrhosis. Hepatology 1990;11:255–60.CrossRefGoogle ScholarPubMed
Hollins, P J, Simmons, A V. Jaundice associated with rifampicin. Tubercle 1970;51:328–32.CrossRefGoogle ScholarPubMed
Scheuer, P J, Summerfield, J A, Lal, S, Sherlock, S. Rifampicin hepatitis. A clinical and histological study. Lancet 1974;1:421–5.Google ScholarPubMed
Miguet, J P, Mavier, P, Soussy, C J, Dhumeaux, D. Induction of hepatic microsomal enzymes after brief administration of rifampicin in man. Gastroenterology 1977;72(5 pt 1):924–6.Google Scholar
Brodie, M J, Boobis, A R, Dollery, C T. Rifampicin and vitamin D metabolism. Clin Pharmacol Ther 1980;27:810–14.CrossRefGoogle ScholarPubMed
Rothwell, D L, Richmond, D E. Hepatorenal failure with self-initiated intermittent rifampicin therapy. Br Med J 1974;2:481–2.CrossRefGoogle ScholarPubMed
Bergasa, N V, Alling, D W, Talbot, T L. Effects of naloxone infusions in patients with the pruritus of cholestasis. A double-blind, randomized, controlled trial. Ann Intern Med 1995;123: 161–7.Google ScholarPubMed
Terra, S G, Tsunoda, S M. Opioid antagonists in the treatment of pruritus from cholestatic liver disease. Ann Pharmacother 1998;32:1228–30.CrossRefGoogle ScholarPubMed
Gal, T J, DiFazio, C A, Dixon, R. Prolonged blockade of opioid effect with oral nalmefene. Clin Pharmacol Ther 1986;40:537–42.CrossRefGoogle ScholarPubMed
Bergasa, N V, Schmitt, J M, Talbot, T L. Open-label trial of oral nalmefene therapy for the pruritus of cholestasis. Hepatology 1998;27:679–84.CrossRefGoogle ScholarPubMed
Wolfhagen, F H, Sternieri, E, Hop, W C. Oral naltrexone treatment for cholestatic pruritus: a double-blind, placebo-controlled study. Gastroenterology 1997;113:1264–9.CrossRefGoogle ScholarPubMed
Carson, K L, Tran, T T, Cotton, P. Pilot study of the use of naltrexone to treat the severe pruritus of cholestatic liver disease. Am J Gastroenterol 1996;91:1022–3.Google ScholarPubMed
Croop, R S, Faulkner, E B, Labriola, D F. The safety profile of naltrexone in the treatment of alcoholism. Results from a multicenter usage study. The Naltrexone Usage Study Group. Arch Gen Psychiatry 1997;54:1130–5.Google ScholarPubMed
Sharp, H L, Mirkin, B L. Effect of phenobarbital on hyperbilirubinemia, bile acid metabolism, and microsomal enzyme activity in chronic intrahepatic cholestasis of childhood. J Pediatr 1972;81:116–26.CrossRefGoogle ScholarPubMed
Balistreri, W F, A-Kader, H, Setchell, K. UDCA therapy in patients with Alagille syndrome (syndromic paucity of intrahepatic bile ducts): results of a multicenter pilot trial. Pediatr Res 1991;29:A99.Google Scholar
Balistreri, W F, A-Kader, H, RyckmanF, et al F, et al. Biochemical and clinical response to UDCA administration in pediatric patients with chronic cholestasis. In: Paumgartner, G, Stiehl, A, Gerok, W, eds. Bile acids as therapeutic agents. Lancaster: Kluwer Academic Publishers, 1991:323–33.Google Scholar
Paradis, K, Weber, A. Sudden liver deterioration in infants receiving UDCA. Gastroenterology 1992;102:866.Google Scholar
Whitington, P F, Whitington, G L. Partial external diversion of bile for the treatment of intractable pruritus associated with intrahepatic cholestasis. Gastroenterology 1988;95:130–6.CrossRefGoogle ScholarPubMed
Emond, J C, Whitington, P F. Selective surgical management of progressive familial intrahepatic cholestasis (Byler's disease). J Pediatr Surg 1995;30:1635–41.CrossRefGoogle Scholar
Gauderer, M W, Boyle, J T. Cholecystoappendicostomy in a child with Alagille syndrome. J Pediatr Surg 1997;32:166–7.CrossRefGoogle Scholar
Rebhandl, W, Felberbauer, F X, Turnbull, J. Biliary diversion by use of the appendix (cholecystoappendicostomy) in progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr 1999;28:217–19.CrossRefGoogle Scholar
Ng, V L, Ryckman, F C, Porta, G. Long-term outcome after partial external biliary diversion for intractable pruritus in patients with intrahepatic cholestasis. J Pediatr Gastroenterol Nutr 2000;30:152–6.CrossRefGoogle ScholarPubMed
Kurbegov, A C, Setchell, K D, Haas, J E. Biliary diversion for progressive familial intrahepatic cholestasis: improved liver morphology and bile acid profile. Gastroenterology 2003; 125:1227–34.CrossRefGoogle ScholarPubMed
Chen, F, Ananthanarayanan, M, Emre, S. Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity. Gastroenterology 2004;126:756–64.CrossRefGoogle ScholarPubMed
Whitington, P, Freese, D, AlonsoE, et al E, et al. Surgery for treatment of Pediatric Cholestasis. In: Schoelmerich, J, Sraub, R, Lentntze, M J, Reichen, J, eds. Pediatric cholestasis: novel approaches to treatment. London: Kluwer Academic Publishers, 1992:173.Google Scholar
Kalicinski, P J, Ismail, H, Jankowska, I. Surgical treatment of progressive familial intrahepatic cholestasis: comparison of partial external biliary diversion and ileal bypass. Eur J Pediatr Surg 2003;13:307–11.Google ScholarPubMed
Stapelbroek, J M, Erpecum, K J, Klomp, L W. Nasobiliary drainage induces long-lasting remission in benign recurrent intrahepatic cholestasis. Hepatology 2006;43:51–53.CrossRefGoogle ScholarPubMed
Duncan, J S, Kennedy, H J, Triger, D R. Treatment of pruritus due to chronic obstructive liver disease. Br Med J (Clin Res Ed) 1984; 289:22.CrossRefGoogle ScholarPubMed
Alva, J, Iber, F L. Relief of the pruritus of jaundice with methandrostenolone and speculations on the nature of pruritus in liver disease. Am J Med Sci 1965;250:60–5.CrossRefGoogle ScholarPubMed
Walt, R P, Daneshmend, T K, Fellows, I W, Toghill, P J. Effect of stanozolol on itching in primary biliary cirrhosis. Br Med J (Clin Res Ed) 198827;296:607.CrossRefGoogle Scholar
Osborn, E C, Wootton, I D, da Silva, S L, Sherlock, S. Serum-bile-acid levels in liver disease. Lancet 1959;2:1049–53.CrossRefGoogle ScholarPubMed
Fischer, J A, Schmid, M. Treatment of primary biliary cirrhosis with azothioprine. Lancet 1967;1:421–4.CrossRefGoogle ScholarPubMed
Arcon-Segovia, D, Mayorga-Cortes, A, Wolpert, E. Primary biliary cirrhosis. Prompt relief of pruritus with azathioprine treatment. JAMA 1970;214:367–8.Google Scholar
Schworer, H, Hartmann, H, Ramadori, G. Relief of cholestatic pruritus by a novel class of drugs: 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists: effectiveness of ondansetron. Pain 1995;61:33–7.CrossRefGoogle ScholarPubMed
Borgeat, A, Wilder-Smith, O H, Mentha, G. Subhypnotic doses of propofol relieve pruritus associated with liver disease. Gastroenterology 1993;104:244–7.CrossRefGoogle ScholarPubMed
Witt-Sullivan, H, Heathcote, J, Cauch, K. The demography of primary biliary cirrhosis in Ontario, Canada. Hepatology 1990;12:98–105.CrossRefGoogle ScholarPubMed
Cauch-Dudek, K, Abbey, S, Stewart, D, Heathcote, E J. Fatigue and quality of life in primary biliary cirrhosis. Hepatology 1995; 22:108A.Google Scholar
Swain, M G, Maric, M. Defective corticotropin-releasing hormone mediated neuroendocrine and behavioral responses in cholestatic rats: implications for cholestatic liver disease-related sickness behaviors. Hepatology 1995;22:1560–4.Google ScholarPubMed
Swain, M G, Maric, M. Improvement in cholestasis-associated fatigue with a serotonin receptor agonist using a novel rat model of fatigue assessment. Hepatology 1997;25:291–4.CrossRefGoogle ScholarPubMed
Bergasa, N V, Vergalla, J, Turner, M L. Alpha-melanocyte-stimulating hormone in primary biliary cirrhosis. Ann N Y Acad Sci 1993;680:454–8.CrossRefGoogle ScholarPubMed
Sokol, R J, Devereaux, M, Khandwala, R A. Effect of dietary lipid and vitamin E on mitochondrial lipid peroxidation and hepatic injury in the bile duct-ligated rat. J Lipid Res 1991;32:1349–57.Google ScholarPubMed
Jones, E A. Relief from profound fatigue associated with chronic liver disease by long-term ondansetron therapy. Lancet 1999;354:397.CrossRefGoogle ScholarPubMed
Sabesin, S M. Cholestatic lipoproteins – their pathogenesis and significance. Gastroenterology 1982;83:704–9.Google ScholarPubMed
Seidel, D. Lipoproteins in liver disease. J Clin Chem Clin Biochem 1987;25:541–51.Google ScholarPubMed
Alagille, D, Estrada, A, Hadchouel, M. Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr 1987;110:195–200.CrossRefGoogle ScholarPubMed
Sokol, R J. Medical management of neonatal cholestasis. In: Balistreri, W F, Stocker, J, eds. Pediatric hepatology. Philadelphia: Hemisphere Publishing, 1990:41–76.Google Scholar
Thannhauser, S J. Hypercholesterolemic zanthomatosis secondary to liver disease. Lipidosis. New York: Oxford University Press, 1950:143.Google Scholar
Crippin, J S, Lindor, K D, JorgensenR, et al R, et al. Hypercholesterolemia and atherosclerosis in primary biliary cirrhosis: what is the risk?Hepatology 1992;15:858–62.CrossRefGoogle ScholarPubMed
Shepherd, J, Packard, C J, Bicker, S. Cholestyramine promotes receptor-mediated low-density-lipoprotein catabolism. N Engl J Med 1980;302:1219–22.CrossRefGoogle ScholarPubMed
Schaffner, F, Klion, F M, Latuff, A J. The long term use of cholestyramine in the treatment of primary biliary cirrhosis. Gastroenterology 1965;48:293–8.Google Scholar
Armstrong, M J, Carey, M C. The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities. J Lipid Res 1982;23:70–80.Google ScholarPubMed
Carulli, N, Loria, P, Bertolotti, M. Effects of acute changes of bile acid pool composition on biliary lipid secretion. J Clin Invest 1984;74:614–24.CrossRefGoogle ScholarPubMed
Fromm, H. Bile acid-lipoprotein interactions: effects of ursodeoxycholic acid (ursodiol). Dig Dis Sci 1989;34(12 suppl):21S–23S.Google Scholar
Hawton, K, Fagg, J, Marsack, P. Association between epilepsy and attempted suicide. J Neurol Neurosurg Psychiatry 1980;43:168–70.CrossRefGoogle ScholarPubMed
Balistreri, W F, A-Kader, H, Heubi, J E. UDCA decreases serum cholesterol levels, ameliorates symptoms and improves biochemical parameters in pediatric patients w/chronic intrahepatic cholestasis. Gastroenterology 1990;96:A566.Google Scholar
Mol, M J, Erkelens, D W, LeuvenJA, et al JA, et al. Effects of synvinolin (MK-733) on plasma lipids in familial hypercholesterolaemia. Lancet 1986;2:936–9.CrossRefGoogle ScholarPubMed
Grundy, S M. HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N Engl J Med 1988;319:24–33.Google ScholarPubMed
Duane, W C, Hunninghake, D B, Freeman, M L. Simvastatin, a competitive inhibitor of HMG-CoA reductase, lowers cholesterol saturation index of gallbladder bile. Hepatology 1988;8:1147–50.CrossRefGoogle ScholarPubMed
Logan, G M, Duane, W C. Lovastatin added to ursodeoxycholic acid further reduces biliary cholesterol saturation. Gastroenterology 1990;98:1572–6.CrossRefGoogle ScholarPubMed
Mazzella, G, Parini, P, Festi, D. Effect of simvastatin, ursodeoxycholic acid and simvastatin plus ursodeoxycholic acid on biliary lipid secretion and cholic acid kinetics in nonfamilial hypercholesterolemia. Hepatology 1992;15:1072–8.CrossRefGoogle ScholarPubMed
Linarelli, L G, Hengstenberg, F H, Drash, A L. Effect of phenobarbital on hyperlipemia in patients with intrahepatic and extrahepatic cholestasis. J Pediatr 1973;83:291–8.Google ScholarPubMed
Becker, M, Bergmann, K, Rotthauwe, H W, Leiss, O. Effects of phenobarbital on biliary lipid metabolism in children with chronic intrahepatic cholestasis. Eur J Pediatr 1984;143:41–44.CrossRefGoogle ScholarPubMed
Matsubara, S, Abe, Y, Blasutig, E. Treatment for cholestatic liver disease (CLD): plasma sorption and filtration for improved bilirubin removal. Trans Am Soc Artif Intern Organs 1983;29:693–7.Google ScholarPubMed
Buchwald, H, Fitch, L, Campos, C. Partial ileal bypass in the treatment of hypercholesterolemia. J Fam Practice 1992;35:69–76.Google ScholarPubMed
Hollands, C M, Rivera-Pedrogo, F J, Gonzalez-Vallina, R. Ileal exclusion for Byler's disease: an alternative surgical approach with promising early results for pruritus. J Pediatr Surg 1998; 33:220–4.CrossRefGoogle ScholarPubMed
Emerick, K M, Whitington, P F. Partial external biliary diversion for intractable pruritus and xanthomas in Alagille syndrome. Hepatology 2002;35:1501–6.CrossRefGoogle ScholarPubMed
Buckley, D A, Higgins, E M, du Vivier, A W. Resolution of xanthomas in Alagille syndrome after liver transplantation. Pediatr Dermatol 1998;15:199–202.CrossRefGoogle ScholarPubMed
Cardona, J, Houssin, D, Gauthier, F. Liver transplantation in children with Alagille syndrome – a study of twelve cases. Transplantation 1995;60:339–42.CrossRefGoogle ScholarPubMed
Watkins, J. Fat digestion in cholestasis. In: Adcock, E I, Lester, R, eds. Neonatal cholestasis: causes, syndromes, therapies. Report of the 87th Ross Conference in Pediatric Research. Columbus, OH: Ross Laboratories, 1984:94.Google Scholar
Badley, B W, Murphy, G M, Bouchier, I A, Sherlock, S. Diminished micellar phase lipid in patients with chronic nonalcoholic liver disease and steatorrhea. Gastroenterology 1970;58:781–9.Google ScholarPubMed
Freund, H, Dienstag, J, Lehrich, J. Infusion of branched-chain enriched amino acid solution in patients with hepatic encephalopathy. Ann Surg 1982;196:209–20.CrossRefGoogle ScholarPubMed
Weisdorf, S A, Freese, D K, Fath, J J. Amino acid abnormalities in infants with extrahepatic biliary atresia and cirrhosis. J Pediatr Gastroenterol Nutr 1987;6:860–4.CrossRefGoogle ScholarPubMed
Devenyi, A G, Barron, T F, Mamourian, A C. Dystonia, hyperintense basal ganglia, and high whole blood manganese levels in Alagille's syndrome. Gastroenterology 1994;106:1068–71.CrossRefGoogle ScholarPubMed
Goulet, O J, Ville, G J, Otte, J B, Ricour, C. Preoperative nutritional evaluation and support for liver transplantation in children. Transplant Proc 1987;19:3249–55.Google ScholarPubMed
Pierro, A, Koletzko, B, Carnielli, V. Resting energy expenditure is increased in infants and children with extrahepatic biliary atresia. J Pediatr Surg 1989;24:534–8.CrossRefGoogle ScholarPubMed
O'Keefe, S J, El-Zayadi, A R, Carraher, T E. Malnutrition and immuno-incompetence in patients with liver disease. Lancet 1980;2(8195 pt 1):615–17.CrossRefGoogle Scholar
Kaufman, S S, Murray, N D, Wood, R P. Nutritional support for the infant with extrahepatic biliary atresia. J Pediatr 1987;110:679–86.CrossRefGoogle ScholarPubMed
Bucuvalas, J C, Cutfield, W, Horn, J. Resistance to the growth-promoting and metabolic effects of growth hormone in children with chronic liver disease. J Pediatr 1990;117:397–402.CrossRefGoogle ScholarPubMed
Maes, M, Sokal, E, Otte, J B. Growth factors in children with end-stage liver disease before and after liver transplantation: a review. Pediatr Transplant 1997;1:171–5.Google ScholarPubMed
Holt, R I, Baker, A J, Jones, J S, Miell, J P. The insulin-like growth factor and binding protein axis in children with end-stage liver disease before and after orthotopic liver transplantation. Pediatr Transplant 1998;2:76–84.Google ScholarPubMed
Holt, R I, Baker, A J, Miell, J P. The pathogenesis of growth failure in paediatric liver disease. J Hepatol 1997;27:413–23.CrossRefGoogle ScholarPubMed
Greer, R M, Quirk, P, Cleghorn, G J, Shepherd, R W. Growth hormone resistance and somatomedins in children with end-stage liver disease awaiting transplantation. J Pediatr Gastroenterol Nutr 1998;27:148–54.CrossRefGoogle ScholarPubMed
Sokol, R J, Stall, C. Anthropometric evaluation of children with chronic liver disease. Am J Clin Nutr 1990;52:203–8.CrossRefGoogle ScholarPubMed
Stewart, S M, Uauy, R, Kennard, B D. Mental development and growth in children with chronic liver disease of early and late onset. Pediatrics 1988;82:167–72.Google ScholarPubMed
Stewart, S M, Uauy, R, Waller, D A. Mental and motor development, social competence, and growth one year after successful pediatric liver transplantation. J Pediatr 1989;114(4 pt 1):574–81.CrossRefGoogle Scholar
Wayman, K I, Cox, K L, Esquivel, C O. Neurodevelopmental outcome of young children with extrahepatic biliary atresia 1 year after liver transplantation. J Pediatr 1997;131:894–8.CrossRefGoogle ScholarPubMed
Merritt, R J, Suskind, R M. Nutritional survey of hospitalized pediatric patients. Am J Clin Nutr 1979;32:1320–5.CrossRefGoogle ScholarPubMed
Hehir, D J, Jenkins, R L, Bistrian, B R, Blackburn, G L. Nutrition in patients undergoing orthotopic liver transplant. JPEN J Parenter Enteral Nutr 1985;9:695–700.CrossRefGoogle ScholarPubMed
Tuten, M B, Wogt, S, Dasse, F, Leider, Z. Utilization of prealbumin as a nutritional parameter. JPEN J Parenter Enteral Nutr 1985;9:709–11.CrossRefGoogle ScholarPubMed
Meritt, R, Blackburn, G. In: Suskind, R, ed. Textbook of pediatric nutrition. New York: Raven, 1981:294.Google Scholar
Moreno, L A, Gottrand, F, Hoden, S. Improvement of nutritional status in cholestatic children with supplemental nocturnal enteral nutrition. J Pediatr Gastroenterol Nutr 1991;12:213–16.CrossRefGoogle ScholarPubMed
Smith, J, Horowitz, J, Henderson, J M, Heymsfield, S. Enteral hyperalimentation in undernourished patients with cirrhosis and ascites. Am J Clin Nutr 1982;35:56–72.CrossRefGoogle ScholarPubMed
Fuchs, I G. Enteral support of the hospitalized child. In: Suskind, R, Lewinter-Suskind, L, eds. Textbook of pediatric nutrition. 2nd ed. New York: Raven, 1993:239–48.Google Scholar
Parker, P, Stroop, S, Greene, H. A controlled comparison of continuous versus intermittent feeding in the treatment of infants with intestinal disease. J Pediatr 1981;99:360–4.CrossRefGoogle ScholarPubMed
Ferry, G D, Selby, M, Pietro, T J. Clinical response to short-term nasogastric feeding in infants with gastroesophageal reflux and growth failure. J Pediatr Gastroenterol Nutr 1983;2:57–61.CrossRefGoogle ScholarPubMed
Weber, A, Roy, C C. The malabsorption associated with chronic liver disease in children. Pediatrics 1972;50:73–83.Google ScholarPubMed
Cohen, M I, Gartner, L M. The use of medium-chain triglycerides in the management of biliary atresia. J Pediatr 1971;79:379–84.CrossRefGoogle ScholarPubMed
Sokal, E M, Baudoux, M C, Collette, E. Branched chain amino acids improve body composition and nitrogen balance in a rat model of extra hepatic biliary atresia. Pediatr Res 1996;40:66–71.CrossRefGoogle Scholar
Chin, S E, Shepherd, R W, Thomas, B J. Nutritional support in children with end-stage liver disease: a randomized crossover trial of a branched-chain amino acid supplement. Am J Clin Nutr 1992;56:158–63.CrossRefGoogle ScholarPubMed
Charlton, C P, Buchanan, E, Holden, C E. Intensive enteral feeding in advanced cirrhosis: reversal of malnutrition without precipitation of hepatic encephalopathy. Arch Dis Child 1992;67:603–7.CrossRefGoogle ScholarPubMed
Wene, J D, Connor, W E, DenBesten, L. The development of essential fatty acid deficiency in healthy men fed fat-free diets intravenously and orally. J Clin Invest 1975;56:127–34.CrossRefGoogle ScholarPubMed
Marcus, A J. The role of lipids in platelet function: with particular reference to the arachidonic acid pathway. J Lipid Res 1978;19:793–826.Google ScholarPubMed
Barr, L H, Dunn, G D, Brennan, M F. Essential fatty acid deficiency during total parenteral nutrition. Ann Surg 1981;193:304–11.CrossRefGoogle ScholarPubMed
Hansen, A, Wiese, H, Boelshe, A. Role of linoleic acid in infant nutrition. Pediatr 1963;31:171–92.Google Scholar
Caldwell, M D, Jonsson, H T, Othersen, HB Jr. Essential fatty acid deficiency in an infant receiving prolonged parenteral alimentation. J Pediatr 1972;81:894–8.CrossRefGoogle Scholar
Clandinin, M T, Chappell, J E, Heim, T. Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum Dev 1981;5:355–66.CrossRefGoogle ScholarPubMed
Swart, G, Frenkel, M, Berg, J. Minimum protein requirements in advanced liver disease: a metabolic ward study of the effects of BCAA. In: Walser, M, Williamson, R, eds. Metabolism and clinical implications of branched chain amino and ketoacids. New York: Elsevier North Holland, 1981:427–32.Google Scholar
Holman, R. EFA deficiency in humans. In: Rechcigl, M, ed. CRC handbook series in nutrition and food: section E, nutritional disorders. West Palm Beach, FL: CRC Press, 1978:335–68.Google Scholar
Gourley, G R, Farrell, P M, Odell, G B. Essential fatty acid deficiency after hepatic portoenterostomy for biliary atresia. Am J Clin Nutr 1982;36:1194–9.CrossRefGoogle ScholarPubMed
Miyano, T, Yamashiro, Y, Shimizu, T. Essential fatty acid deficiency in congenital biliary atresia: successful treatment to reverse deficiency. J Pediatr Surg 1986;21:277–81.CrossRefGoogle ScholarPubMed
Pettei, M J, Daftary, S, Levine, J J. Essential fatty acid deficiency associated with the use of a medium-chain-triglyceride infant formula in pediatric hepatobiliary disease. Am J Clin Nutr 1991;53:1217–21.CrossRefGoogle ScholarPubMed
Socha, P, Koletzko, B, Swiatkowska, E. Essential fatty acid metabolism in infants with cholestasis. Acta Paediatr 1998;87: 278–83.CrossRefGoogle ScholarPubMed
Thompson, G. Absorption of fat-soluable vitamins and sterols. J Clin Pathol 1971;24(suppl 5):85.CrossRefGoogle Scholar
Book, L. Fat soluble vitamins in cholestasis. In: Adcock, E I, Lester, R, eds. Neonatal cholestasis: causes, syndromes, therapies. Report of the Eighty-Seventh Ross Conference in Pediatric Research. Columbus, OH: Ross Laboratories, 1984:104–10.Google Scholar
The National Research Council Recommended Dietary Allowances. 10th ed. Washington, DC: National Research Council, 1989.
Blomhoff, R, Wake, K. Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis. FASEB J 1991;5:271–7.CrossRefGoogle ScholarPubMed
Andrews, W S, Pau, C M, Chase, H P. Fat soluble vitamin deficiency in biliary atresia. J Pediatr Surg 1981;16:284–90.CrossRefGoogle ScholarPubMed
Chin, S E, Shepherd, R W, Thomas, B J. The nature of malnutrition in children with end-stage liver disease awaiting orthotopic liver transplantation. Am J Clin Nutr 1992;56:164–8.CrossRefGoogle ScholarPubMed
Amedee-Manesme, O, Furr, H C, Alvarez, F. Biochemical indicators of vitamin A depletion in children with cholestasis. Hepatology 1985;5:1143–8.CrossRefGoogle ScholarPubMed
Mobarhan, S, Russell, R M, Underwood, B A. Evaluation of the relative dose response test for vitamin A nutriture in cirrhotics. Am J Clin Nutr 1981;34:2264–70.CrossRefGoogle ScholarPubMed
McClain, C J, Thiel, D H, Parker, S. Alterations in zinc, vitamin A, and retinol-binding protein in chronic alcoholics: a possible mechanism for night blindness and hypogonadism. Alcohol Clin Exp Res 1979;3:135–41.CrossRefGoogle ScholarPubMed
Mourey, M S, Siegenthaler, G, Amedee-Manesme, O. Regulation of metabolism of retinol-binding protein by vitamin A status in children with biliary atresia. Am J Clin Nutr 1990;51:638–43.CrossRefGoogle ScholarPubMed
Amedee-Manesme, O, Mourey, M S, Hanck, A, Therasse, J. Vitamin A relative dose response test: validation by intravenous injection in children with liver disease. Am J Clin Nutr 1987;46: 286–9.CrossRefGoogle ScholarPubMed
Ong, D E, Amedee-Manesme, O. Liver levels of vitamin A and cellular retinol-binding protein for patients with biliary atresia. Hepatology 1987;7:253–6.CrossRefGoogle ScholarPubMed
Carlier, C, Coste, J, Etchepare, M, Amedee-Manesme, O. Conjunctival impression cytology with transfer as a field-applicable indicator of vitamin A status for mass screening. Int J Epidemiol 1992;21:373–80.CrossRefGoogle ScholarPubMed
Natadisastra, G, Wittpenn, J R, West, K P. Impression cytology for detection of vitamin A deficiency. Arch Ophthalmol 1987;105:1224–8.CrossRefGoogle ScholarPubMed
Sommer, A, Sugana, T. Corneal xerophthalmia and keratomalacia. Arch Ophthalmol 1982;100:404–11.CrossRefGoogle ScholarPubMed
Solomons, N W, Russell, R M, Vinton, E. Application of a rapid dark adaptation test in children. J Pediatr Gastroenterol Nutr 1982;1:571–4.CrossRefGoogle ScholarPubMed
Russell, R M, Iber, F L, Krasinski, S D, Miller, P. Protein-energy malnutrition and liver dysfunction limit the usefulness of the relative dose response (RDR) test for predicting vitamin A deficiency. Hum Nutr Clin Nutr 1983;37:361–71.Google ScholarPubMed
Feranchak, A P, Gralla, J, King, R. Comparison of indices of vitamin A status in children with chronic liver disease. Hepatology 2005;42:782–92.CrossRefGoogle ScholarPubMed
Scheffer, C, Tseng, G. Staging of conjunctival squamous metaplasia by impression cytology. J Ophthalmol 1985;92:728–33.Google Scholar
Amedee-Manesme, O, Luzeau, R, Wittepen, J R. Impression cytology detects subclinical vitamin A deficiency. Am J Clin Nutr 1988;47:875–8.CrossRefGoogle ScholarPubMed
Kjolhede, C L, Gadomski, A M, Wittpenn, J. Conjunctival impression cytology: feasibility of a field trial to detect subclinical vitamin A deficiency. Am J Clin Nutr 1989;49:490–4.CrossRefGoogle ScholarPubMed
Gadomski, A M, Kjolhede, C L, Wittpenn, J. Conjunctival impression cytology (CIC) to detect subclinical vitamin A deficiency: comparison of CIC with biochemical assessments. Am J Clin Nutr 1989;49:495–500.CrossRefGoogle ScholarPubMed
Feranchak, A, Ramirez, R, Shivaram, K. Assessment of vitamin A status in children with cholestasis liver disease using a modified oral relative dose response test. J Pediatr Gastro and Nutr 1996;23:A351.CrossRefGoogle Scholar
Balistreri, W F. Neonatal cholestasis. J Pediatr 1985;106:171–84.CrossRefGoogle ScholarPubMed
Sokol, R J, Johnson, K E, Karrer, F M. Improvement of cyclosporin absorption in children after liver transplantation by means of water-soluble vitamin E. Lancet 1991;338:212–14.CrossRefGoogle ScholarPubMed
Argao, E A, Heubi, J E, Hollis, B W, Tsang, R C. d-Alpha-tocopheryl polyethylene glycol-1000 succinate enhances the absorption of vitamin D in chronic cholestatic liver disease of infancy and childhood. Pediatr Res 1992;31:146–50.CrossRefGoogle ScholarPubMed
Russell, R M, Boyer, J L, Bagheri, S A, Hruban, Z. Hepatic injury from chronic hypervitaminosis a resulting in portal hypertension and ascites. N Engl J Med 1974;291:435–40.CrossRefGoogle ScholarPubMed
Geubel, A P, Galocsy, C, Alves, N. Liver damage caused by therapeutic vitamin A administration: estimate of dose-related toxicity in 41 cases. Gastroenterology 1991 Jun;100:1701–9.CrossRefGoogle Scholar
Minuk, G Y, Kelly, J K, Hwang, W S. Vitamin A hepatotoxicity in multiple family members. Hepatology 1988;8:272–5.CrossRefGoogle ScholarPubMed
Rubin, E, Florman, A L, Degnan, T, Diaz, J. Hepatic injury in chronic hypervitaminosis A. Am J Dis Child 1970;119:132–8.Google ScholarPubMed
Lippe, B, Hensen, L, Mendoza, G. Chronic vitamin A intoxication. A multisystem disease that could reach epidemic proportions. Am J Dis Child 1981;135:634–6.Google ScholarPubMed
Oliver, TK Jr. Chronic vitamin A intoxication; report of a case in an older child and review of the literature. AMA J Dis Child 1958;95(1 part 1):57–68.CrossRefGoogle Scholar
Mahoney, C P, Margolis, M T, Knauss, T A, Labbe, R F. Chronic vitamin A intoxication in infants fed chicken liver. Pediatrics 1980;65:893–7.Google ScholarPubMed
Fisher, G, Skillern, P G. Hypercalcemia due to hypervitaminosis A. JAMA 1974;227:1413–14.CrossRefGoogle ScholarPubMed
Frame, B, Jackson, C E, Reynolds, W A, Umphrey, J E. Hypercalcemia and skeletal effects in chronic hypervitaminosis A. Ann Intern Med 1974;80:44–8.CrossRefGoogle ScholarPubMed
Smith, F R, Goodman, D S. Vitamin A transport in human vitamin A toxicity. N Engl J Med 1976;294:805–8.CrossRefGoogle ScholarPubMed
Heubi, J E, Hollis, B W, Specker, B, Tsang, R C. Bone disease in chronic childhood cholestasis. I. Vitamin D absorption and metabolism. Hepatology 1989;9:258–64.Google ScholarPubMed
Skinner, R, Long, R, Sherlock, S, Willis, M. 25hydroxylation of vitamin D in PBC. Lancet 1972;1:720–1.Google Scholar
Plourde, V, Gascon-Barre, M, Willems, B, Huet, P M. Severe cholestasis leads to vitamin D depletion without perturbing its C-25 hydroxylation in the dog. Hepatology 1988;8:1577–85.CrossRefGoogle ScholarPubMed
Bouillon, R, Reynaert, J, Claes, J H. The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D, calcium, and parathyroid hormone. J Clin Endocrinol Metab 1975;41:1130–5.CrossRefGoogle ScholarPubMed
Holda, M E, Ryan, J R. Hepatobiliary rickets. J Pediatr Orthop 1982;2:285–7.CrossRefGoogle ScholarPubMed
Roberts, C, Book, L, Chan, G. Rickets in children with cholestatic liver disease: evaluation and treatment. Pediatr Res 1981;15:544.CrossRefGoogle Scholar
Bucuvalas, J C, Heubi, J E, SpeckerBL, et al BL, et al. Calcium absorption in bone disease associated with chronic cholestasis during childhood. Hepatology 1990;12:1200–5.CrossRefGoogle ScholarPubMed
Heubi, J E, Higgins, J V, Argao, E A. The role of magnesium in the pathogenesis of bone disease in childhood cholestatic liver disease: a preliminary report. J Pediatr Gastroenterol Nutr 1997;25:301–6.CrossRefGoogle ScholarPubMed
Heubi, J E, Tsang, R C, Steichen, J J. 1,25-Dihydroxyvitamin D3 in childhood hepatic osteodystrophy. J Pediatr 1979;94:977–82.CrossRefGoogle ScholarPubMed
Vleggaar, F P, Buuren, H R, Wolfhagen, F H. Prevention and treatment of osteoporosis in primary biliary cirrhosis. Eur J Gastroenterol Hepatol 1999;11:617–21.CrossRefGoogle ScholarPubMed
Norman, A, Miller, B. Vitamin D. In: Machlin, J, ed. Handbook of vitamins –- nutritional, biochemical and clinical aspects. New York: Marcel-Dekker, Inc., 1984:45–98.Google Scholar
Sokol, R J, Heubi, J E, Iannaccone, S. Mechanism causing vitamin E deficiency during chronic childhood cholestasis. Gastroenterology 1983;85:1172–82.Google ScholarPubMed
Traber, M G, Olivecrona, T, Kayden, H J. Bovine milk lipoprotein lipase transfers tocopherol to human fibroblasts during triglyceride hydrolysis in vitro. J Clin Invest 1985;75:1729–34.CrossRefGoogle ScholarPubMed
Traber, M G, Kayden, H J. Vitamin E is delivered to cells via the high affinity receptor for low-density lipoprotein. Am J Clin Nutr 1984;40:747–51.CrossRefGoogle ScholarPubMed
Guggenheim, M A, Jackson, V, Lilly, J, Silverman, A. Vitamin E deficiency and neurologic disease in children with cholestasis: a prospective study. J Pediatr 1983;102:577–9.CrossRefGoogle ScholarPubMed
Sokol, R J, Guggenheim, M A, Heubi, J E. Frequency and clinical progression of the vitamin E deficiency neurologic disorder in children with prolonged neonatal cholestasis. Am J Dis Child 1985;139:1211–15.Google ScholarPubMed
Sokol, R J, Guggenheim, M A, Iannaccone, S T. Improved neurologic function after long-term correction of vitamin E deficiency in children with chronic cholestasis. N Engl J Med 1985;313:1580–6.CrossRefGoogle ScholarPubMed
Sokol, R J. Vitamin E deficiency and neurologic disease. Annu Rev Nutr 1988;8:351–73.CrossRefGoogle ScholarPubMed
Rosenblum, J L, Keating, J P, Prensky, A L, Nelson, J S. A progressive neurologic syndrome in children with chronic liver disease. N Engl J Med 1981;304:503–8.CrossRefGoogle ScholarPubMed
Sokol, R J, Bove, K E, Heubi, J E, Iannaccone, S T. Vitamin E deficiency during chronic childhood cholestasis: presence of sural nerve lesion prior to 2 1/2 years of age. J Pediatr 1983;103:197–204.CrossRefGoogle ScholarPubMed
Stewart, S M, Uauy, R, Waller, D A. Mental and motor development correlates in patients with end-stage biliary atresia awaiting liver transplantation. Pediatrics 1987;79:882–8.Google ScholarPubMed
Satel, S L, Riely, C A. Vitamin E deficiency and neurologic dysfunction in children. N Engl J Med 1986;314:1389–90.Google ScholarPubMed
Arria, A M, Tarter, R E, Warty, V, Thiel, D H. Vitamin E deficiency and psychomotor dysfunction in adults with primary biliary cirrhosis. Am J Clin Nutr 1990;52:383–90.CrossRefGoogle ScholarPubMed
Alvarez, F, Landrieu, P, Feo, C. Vitamin E deficiency is responsible for neurologic abnormalities in cholestatic children. J Pediatr 1985;107:422–5.CrossRefGoogle ScholarPubMed
Oski, F A, Barness, L A. Vitamin E deficiency: a previously unrecognized cause of hemolytic anemia in the premature infant. J Pediatr 1967;70:211–20.CrossRefGoogle ScholarPubMed
Tappel, A. Vitamin E as the biological lipid antioxidant. Vitam Horm 1962;20:493–510.CrossRefGoogle Scholar
Burton, G W, Joyce, A, Ingold, K U. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes?Arch Biochem Biophys 1983;221:281–90.CrossRefGoogle ScholarPubMed
Traber, M G. Vitamin E, nuclear receptors and xenobiotic metabolism. Arch Biochem Biophys 2004;423:6–11.CrossRefGoogle ScholarPubMed
Sokol, R J, Devereaux, M, Mierau, G W. Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper overload. Modification by vitamin E deficiency. Gastroenterology 1990;99:1061–71.Google ScholarPubMed
Sokol, R, Harris, R, Heubi, J. Effect of vitamin E on neutrophil chemotasis in chronic childhood cholestasis. Hepatology 1984;4:1048.Google Scholar
Kowdley, K V, Mason, J B, MeydaniSN, et al SN, et al. Vitamin E deficiency and impaired cellular immunity related to intestinal fat malabsorption. Gastroenterology 1992;102:2139–42.CrossRefGoogle ScholarPubMed
Horwitt, M K, Harvey, C C, Dahm, C H, Searcy, M T. Relationship between tocopherol and serum lipid levels for determination of nutritional adequacy. Ann N Y Acad Sci 1972;203:223–36.CrossRefGoogle ScholarPubMed
Sokol, R J, Heubi, J E, Iannaccone, S T. Vitamin E deficiency with normal serum vitamin E concentrations in children with chronic cholestasis. N Engl J Med 1984;310:1209–12.CrossRefGoogle ScholarPubMed
Farrell, P M, Levine, S L, Murphy, M D, Adams, A J. Plasma tocopherol levels and tocopherol-lipid relationships in a normal population of children as compared to healthy adults. Am J Clin Nutr 1978;31:1720–6.CrossRefGoogle Scholar
Gordon, H H, Nitowsky, H M, Cornblath, M. Studies of tocopherol deficiency in infants and children. I. Hemolysis of erythrocytes in hydrogen peroxide. AMA Am J Dis Child 1955;90:669–81.Google ScholarPubMed
Cynamon, H A, Isenberg, J N, Nguyen, C H. Erythrocyte malondialdehyde release in vitro: a functional measure of vitamin E status. Clin Chim Acta 1985;151:169–76.CrossRefGoogle ScholarPubMed
Sokol, R J, Butler-Simon, N, Conner, C. Multicenter trial of d-alpha-tocopheryl polyethylene glycol 1000 succinate for treatment of vitamin E deficiency in children with chronic cholestasis. Gastroenterology 1993;104:1727–35.CrossRefGoogle ScholarPubMed
Bendich, A, Machlin, L J. Safety of oral intake of vitamin E. Am J Clin Nutr 1988;48:612–19.CrossRefGoogle ScholarPubMed
Farrell, P M, Bieri, J G. Megavitamin E supplementation in man. Am J Clin Nutr 1975;28:1381–6.CrossRefGoogle Scholar
Corrigan, J J, Marcus, F I. Coagulopathy associated with vitamin E ingestion. JAMA 1974;230:1300–1.CrossRefGoogle ScholarPubMed
Corrigan, JJ Jr. The effect of vitamin E on warfarin-induced vitamin K deficiency. Ann N Y Acad Sci 1982;393:361–8.CrossRefGoogle ScholarPubMed
Johnson, L, Bowen, F W, Abbasi, S. Relationship of prolonged pharmacologic serum levels of vitamin E to incidence of sepsis and necrotizing enterocolitis in infants with birth weight 1,500 grams or less. Pediatrics 1985;75:619–38.Google ScholarPubMed
Lorch, V, Murphy, D, Hoersten, L R. Unusual syndrome among premature infants: association with a new intravenous vitamin E product. Pediatrics 1985;75:598–602.Google ScholarPubMed
Suttie, J. Vitamin K. In: Diplock, A, ed. Fat soluble vitamins. Lancaster, PA: Technomic Publishing Co., 1985:225.Google Scholar
Olson, R E. The function and metabolism of vitamin K. Annu Rev Nutr 1984;4:281–337.CrossRefGoogle ScholarPubMed
Shah, D V, Suttie, J W. The vitamin K dependent, in vitro production of prothrombin. Biochem Biophys Res Commun 1974;60:1397–402.CrossRefGoogle ScholarPubMed
Price, P A, Williamson, M K, Lothringer, J W. Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J Biol Chem 1981;256:12760–6.Google Scholar
Price, P A, Parthemore, J G, Deftos, L J. New biochemical marker for bone metabolism. Measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J Clin Invest 1980;66:878–83.Google ScholarPubMed
Vermeer, C, Knapen, M H, Schurgers, L J. Vitamin K and metabolic bone disease. J Clin Pathol 1998;51:424–6.CrossRefGoogle ScholarPubMed
Feskanich, D, Weber, P, Willett, W C. Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr 1999;69:74–9.CrossRefGoogle ScholarPubMed
Verity, C, Carswell, F, Scott, G. Vitamin K deficiency causing infantile intracranial hemorrhage after the neonatal period. Lancet 1983;i:1439–40.CrossRefGoogle Scholar
Bancroft, J, Cohen, M B. Intracranial hemorrhage due to vitamin K deficiency in breast-fed infants with cholestasis. J Pediatr Gastroenterol Nutr 1993;16:78–80.CrossRefGoogle ScholarPubMed
Yanofsky, R A, Jackson, V G, Lilly, J R. The multiple coagulopathies of biliary atresia. Am J Hematol 1984;16:171–80.CrossRefGoogle ScholarPubMed
Lane, P A, Hathaway, W E. Vitamin K in infancy. J Pediatr 1985;106: 351–9.CrossRefGoogle ScholarPubMed
Silverman, A, Roy, C. Pediatric clinical gastroenterology. St. Louis: C. V. Mosby, 1983:526.Google Scholar
Zinkham, W H. Peripheral blood and bilirubin values in normal full-term primaquine-sensitive Negro infants: effect of vitamin K. Pediatrics 1963;31:983–95.Google ScholarPubMed
Rossouw, J E, Labadarios, D, Davis, M, Williams, R. Water-soluble vitamins in severe liver disease. S Afr Med J 1978;54:183–6.Google ScholarPubMed
Goksu, N, Ozsoylu, S. Hepatic and serum levels of zinc, copper, and magnesium in childhood cirrhosis. J Pediatr Gastroenterol Nutr 1986;5:459–62.CrossRefGoogle ScholarPubMed
Cohen, M I, McNamara, H, Finberg, L. Serum magnesium in children with cirrhosis. J Pediatr 1970;76:453–5.CrossRefGoogle ScholarPubMed
Kaya, G, Ozsoylu, S. Serum magnesium levels in children with cirrhosis. Acta Paediatr Scand 1972;161:442–4.CrossRefGoogle Scholar
Stutzman, F L, Matuzio, D S. Blood serum magnesium in portal cirrhosis and diabetes mellitus. J Lab Clin Med 1953;41:215–19.Google ScholarPubMed
Zelikovic, I, Dabbagh, S, Friedman, A L. Severe renal osteodystrophy without elevated serum immunoreactive parathyroid hormone concentrations in hypomagnesemia due to renal magnesium wasting. Pediatrics 1987;79:403–9.Google ScholarPubMed
Wiegmann, T, Kaye, M. Hypomagnesemic hypocalcemia. Early serum calcium and late parathyroid hormone increase with magnesium therapy. Arch Intern Med 1977;137:953–5.Google ScholarPubMed
Anast, C S, Winnacker, J L, Forte, L R, Burns, T W. Impaired release of parathyroid hormone in magnesium deficiency. J Clin Endocrinol Metab 1976;42:707–17.CrossRefGoogle ScholarPubMed
Rude, R K, Oldham, S B, Sharp, C F, Singer, F R. Parathyroid hormone secretion in magnesium deficiency. J Clin Endocrinol Metab 1978;47:800–6.CrossRefGoogle ScholarPubMed
Duran, M J, Borst, GC 3rd, Osburne, R C, Eil, C. Concurrent renal hypomagnesemia and hypoparathyroidism with normal parathormone responsiveness. Am J Med 1984;76:151–4.CrossRefGoogle ScholarPubMed
Ralston, S, Boyle, I T, Cowan, R A. PTH and vitamin D responses during treatment of hypomagnesaemic hypoparathyroidism. Acta Endocrinol (Copenh) 1983;103:535–8.Google ScholarPubMed
Rude, R K, Adams, J S, Ryzen, E. Low serum concentrations of 1,25-dihydroxyvitamin D in human magnesium deficiency. J Clin Endocrinol Metab 1985;61:933–40.CrossRefGoogle ScholarPubMed
Medalle, R, Waterhouse, C, Hahn, T J. Vitamin D resistance in magnesium deficiency. Am J Clin Nutr 1976;29:854–8.CrossRefGoogle ScholarPubMed
Hambidge, K M, Krebs, N F, Lilly, J R, Zerbe, G O. Plasma and urine zinc in infants and children with extrahepatic biliary atresia. J Pediatr Gastroenterol Nutr 1987;6:872–7.CrossRefGoogle ScholarPubMed
Committee on Nutrition. Zinc. Pediatrics 1978;62:408–12.
Narkewicz, M R, Krebs, N, Karrer, F. Correction of hypozincemia following liver transplantation in children is associated with reduced urinary zinc loss. Hepatology 1999;29:830–3.CrossRefGoogle ScholarPubMed
Litov, R E, Combs, GF Jr. Selenium in pediatric nutrition. Pediatrics 1991;87:339–51.Google ScholarPubMed
Collipp, P J, Chen, S Y. Cardiomyopathy and selenium deficiency in a two-year-old girl. N Engl J Med 1981;304:1304–5.Google Scholar
Fleming, C R, Lie, J T, McCall, J T. Selenium deficiency and fatal cardiomyopathy in a patient on home parenteral nutrition. Gastroenterology 1982;83:689–93.Google Scholar
Brown, M R, Cohen, H J, Lyons, J M. Proximal muscle weakness and selenium deficiency associated with long term parenteral nutrition. Am J Clin Nutr 1986;43:549–54.CrossRefGoogle ScholarPubMed
Vinton, N E, Dahlstrom, K A, Strobel, C T, Ament, M E. Macrocytosis and pseudoalbinism: manifestations of selenium deficiency. J Pediatr 1987;111:711–17.CrossRefGoogle ScholarPubMed
Hambidge, K, Krebs, N. Normal childhood nutrition and its disorders. In: Hathaway, W, Hay, W, Groothius, J, Paisley, J, eds. Current pediatric diagnosis and treatment. 11th ed. Norwalk, CT: Appleton & Lange, 1993:244.Google Scholar
Levander, O A. The importance of selenium in total parenteral nutrition. Bull N Y Acad Med 1984;60:144–55.Google ScholarPubMed
Evans, J, Newman, S, Sherlock, S. Liver copper levels in intrahepatic cholestasis of childhood. Gastroenterology 1978;75:875–8.Google ScholarPubMed
Benson, G D. Hepatic copper accumulation in primary biliary cirrhosis. Yale J Biol Med 1979;52:83–8.Google ScholarPubMed
Hochstein, P, Kumar, K S, Forman, S J. Lipid peroxidation and the cytotoxicity of copper. Ann N Y Acad Sci 1980;355:240–8.CrossRefGoogle ScholarPubMed
Jones, M, Grand, K, Perrault, J, Dickson, E. Clinical response to penicillamine in cholestatic liver disease. In: Daum, F, ed. Extrahepatic biliary atresia. New York: Marcel-Dekker, 1983:227.Google Scholar
Evans, J, Zerpa, H, Nuttall, L. Copper chelation therapy in intrahepatic cholestasis of childhood. Gut 1983;24:42–8.CrossRefGoogle ScholarPubMed
Dickson, E R, Fleming, T R, Wiesner, R H. Trial of penicillamine in advanced primary biliary cirrhosis. N Engl J Med 1985;312:1011–15.CrossRefGoogle ScholarPubMed
Matloff, D S, Alpert, E, Resnick, R H, Kaplan, M M. A prospective trial of D-penicillamine in primary biliary cirrhosis. N Engl J Med 1982;306:319–26.CrossRefGoogle ScholarPubMed
Sinatra, R. Does total parenteral nutrition produce cholestasis? Neonatal cholestasis. Proceedings of the 87th Ross Conference on Pediatric Research. Columbus, OH: Ross Laboratories, 1984:85.Google Scholar
Farrell, M K, Balistreri, W F, Suchy, F J. Serum-sulfated lithocholate as an indicator of cholestasis during parenteral nutrition in infants and children. JPEN J Parenter Enteral Nutr 1982;6:30–3.CrossRefGoogle ScholarPubMed
Underwood, E. Manganese. In: Underwood, E (ed). Trace elements in human and animal nutrition. 4th ed. New York: Academic Press, 1977:170–95.Google Scholar
Bayliss, E A, Hambidge, K M, Sokol, R J. Hepatic concentrations of zinc, copper and manganese in infants with extrahepatic biliary atresia. J Trace Elem Med Biol 1995;9:40–3.CrossRefGoogle ScholarPubMed
Plaa, G L, Lamirande, E, Lewittes, M, Yousef, I M. Liver cell plasma membrane lipids in manganese-bilirubin-induced intrahepatic cholestasis. Biochem Pharmacol 1982;31:3698–701.CrossRefGoogle ScholarPubMed
Fell, J M, Reynolds, A P, Meadows, N. Manganese toxicity in children receiving long-term parenteral nutrition. Lancet 1996;347:1218–21.CrossRefGoogle ScholarPubMed
Spahr, L, Butterworth, R F, Fontaine, S. Increased blood manganese in cirrhotic patients: relationship to pallidal magnetic resonance signal hyperintensity and neurological symptoms. Hepatology 1996;24:1116–20.CrossRefGoogle ScholarPubMed
Hauser, R A, Zesiewicz, T A, Martinez, C. Blood manganese correlates with brain magnetic resonance imaging changes in patients with liver disease. Can J Neurol Sci 1996;23:95–8.CrossRefGoogle ScholarPubMed
Rose, C, Butterworth, R F, Zayed, J. Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver dysfunction. Gastroenterology 1999;117:640–4.CrossRefGoogle ScholarPubMed
Morgan, M Y. Cerebral magnetic resonance imaging in patients with chronic liver disease. Metab Brain Dis 1998;13:273–90.CrossRefGoogle ScholarPubMed
Layrargues, G P, Rose, C, Spahr, L. Role of manganese in the pathogenesis of portal-systemic encephalopathy. Metab Brain Dis 1998;13:311–17.CrossRefGoogle ScholarPubMed
Krieger, D, Krieger, S, Jansen, O. Manganese and chronic hepatic encephalopathy. Lancet 1995;346:270–4.CrossRefGoogle ScholarPubMed
Layrargues, G P, Shapcott, D, Spahr, L, Butterworth, R F. Accumulation of manganese and copper in pallidum of cirrhotic patients: role in the pathogenesis of hepatic encephalopathy?Metab Brain Dis 1995;10:353–6.CrossRefGoogle ScholarPubMed
Ayotte, P, Plaa, G L. Biliary excretion in Sprague-Dawley and Gunn rats during manganese-bilirubin-induced cholestasis. Hepatology 1988;8:1069–78.CrossRefGoogle ScholarPubMed
Hambidge, K M, Sokol, R J, Fidanza, S J, Goodall, M A. Plasma manganese concentrations in infants and children receiving parenteral nutrition. JPEN J Parenter Enteral Nutr 1989;13:168–71.CrossRefGoogle ScholarPubMed
Kurkus, J, Alcock, N W, Shils, M E. Manganese content of large-volume parenteral solutions and of nutrient additives. JPEN J Parenter Enteral Nutr 1984;8:254–7.CrossRefGoogle ScholarPubMed
Malecki, E A, Devenyi, A G, Barron, T F. Iron and manganese homeostasis in chronic liver disease: relationship to pallidal T1-weighted magnetic resonance signal hyperintensity. Neurotoxicology 1999;20:647–52.Google ScholarPubMed
Klein, G L, Alfrey, A C, Miller, N L. Aluminum loading during total parenteral nutrition. Am J Clin Nutr 1982;35:1425–9.CrossRefGoogle ScholarPubMed
Klein, G L, Ott, S M, Alfrey, A C. Aluminum as a factor in the bone disease of long-term parenteral nutrition. Trans Assoc Am Physicians 1982;95:155–64.Google ScholarPubMed
Popinska, K, Kierkus, J, Lyszkowska, M. Aluminum contamination of parenteral nutrition additives, amino acid solutions, and lipid emulsions. Nutrition 1999;15:683–6.CrossRefGoogle ScholarPubMed
Sedman, A B, Klein, G L, Merritt, R J. Evidence of aluminum loading in infants receiving intravenous therapy. N Engl J Med 1985;312:1337–43.CrossRefGoogle ScholarPubMed
Milliner, D S, Shinaberger, J H, Shuman, P, Coburn, J W. Inadvertent aluminum administration during plasma exchange due to aluminum contamination of albumin-replacement solutions. N Engl J Med 1985;312:165–7.CrossRefGoogle ScholarPubMed
Klein, G, Heyman, M, Lee, T, Alfrey, A. Intravenous aluminum loading induces cholestasis. Hepatology 1986;6:1127.Google Scholar
Williams, J W, Vera, S R, PetersTG, et al TG, et al. Biliary excretion of aluminum in aluminum osteodystrophy with liver disease. Ann Intern Med 1986;104:782–5.CrossRefGoogle ScholarPubMed
Andersen, K J, Nordgaard, K, Julshamn, K, Schjoensby, H. Increased serum aluminum in patients with jaundice. N Engl J Med 1979;301:728–9.Google ScholarPubMed
Burgess, D B, Martin, H P, Lilly, J R. The developmental status of children undergoing the Kasai procedure for biliary atresia. Pediatrics 1982;70:624–9.Google ScholarPubMed
Bayley, N. The value and limitation of infant testing. Children 1958;5:129.Google Scholar
Escalona, S K, Moriarty, A. Prediction of schoolage intelligence from infant tests. Child Dev 1961;32:597–605.Google ScholarPubMed
Thomas, H. Some problems of studies concerned with evaluating the predictive validity of infant tests. J Child Psychol Psychiatry 1967;8:197.CrossRefGoogle Scholar
Lewis, M, McGurk, H. Evaluation of infatn intelligence. Science 1972;178:1174.CrossRefGoogle Scholar
Matheny, R. Testing infant intelligence. Science 1973;182:734.CrossRefGoogle ScholarPubMed
Conn, H, Atterbury, C. Cirrhosis. In: Schiff, L, Schiff, E, eds. Diseases of the liver. Philadelphia: JB Lippincott, 1987:725–864.Google Scholar
Potter, C, Willis, D, Sharp, H L, Scharzenberg, S J. Primary and secondary amenorrhea associated with spironolactone therapy in chronic liver disease. J Pediatr 1992;121:141–3.CrossRefGoogle ScholarPubMed
Rosenthal, P, Ramos, A, Mungo, R. Management of children with hyperbilirubinemia and green teeth. J Pediatr 1986;108:103–5.CrossRefGoogle ScholarPubMed
Eisenberg, E. Anomalies of the teeth with stains and discolorations. J Prev Dent 1975;2:7–20.Google ScholarPubMed
Simon, N B, Smith, D. Living with chronic pediatric liver disease: the parents' experience. Pediatr Nurs 1992;18:453–8, 489.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Medical and Nutritional Management of Cholestasis in Infants and Children
    • By Andrew P. Feranchak, M.D., Assistant Professor, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pediatric Gastroenterology and Hepatology, Children's Medical Center of Dallas, Dallas, Texas, Ronald J. Sokol, M.D., Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Medical and Nutritional Management of Cholestasis in Infants and Children
    • By Andrew P. Feranchak, M.D., Assistant Professor, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pediatric Gastroenterology and Hepatology, Children's Medical Center of Dallas, Dallas, Texas, Ronald J. Sokol, M.D., Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Medical and Nutritional Management of Cholestasis in Infants and Children
    • By Andrew P. Feranchak, M.D., Assistant Professor, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pediatric Gastroenterology and Hepatology, Children's Medical Center of Dallas, Dallas, Texas, Ronald J. Sokol, M.D., Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.012
Available formats
×