Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-04T06:05:09.188Z Has data issue: false hasContentIssue false

28 - RNA interference studies in liver failure

Published online by Cambridge University Press:  31 July 2009

Lars Zender
Affiliation:
Department of Gastroenterology, Medical School of Hannover
Michael P. Manns
Affiliation:
Department of Gastroenterology, Medical School of Hannover
Stefan Kubicka
Affiliation:
Department of Gastroenterology, Medical School of Hannover
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

Clinical features and molecular mechanisms of acute liver failure

Both acute and chronic hepatic failure present diseases associated with high mortality. Acute liver failure (ALF) is a dramatic clinical syndrome in which a previously normal liver fails within days or weeks, resulting in haemorrhage, electrolyte and metabolic disturbance, cardiovascular instability, renal failure, cerebral oedema and encephalopathy. Worldwide the most frequent cause of acute liver failure is viral hepatitis. Advances in intensive care monitoring and the establishment of liver transplantation programmes have made a significant impact on survival of patients with ALF in the last 30 years. Depending on the time course three subgroups of ALF have been proposed: hyperacute, acute and subacute liver failure (O'Grady et al., 1993). Patients with hyperacute disease have the most favorable prognosis, while survival of patients with acute and subacute liver failure is still less than 15% (Plevris et al., 1998). Currently for the majority of the patients with acute and subacute liver failure orthotopic liver transplantation is the only curative therapy with long-term survival rates of approximately 90%. Organ availability, however, remains the most important limiting factor for liver transplantation. Although some patients may recover without liver transplantation, most of the patients die while waiting for a donor liver. Attempts have been made to remove toxins and to provide important liver products by the use of bioartificial supports systems. The objectives of these bioarteficial support system is to bridge patients to transplantation or recovery.

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 396 - 405
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertrand, J. R., Pottier, M., Vekris, A., Opolon, P., Maksimenko, A.and Malvy, C. (2002). Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochemical and Biophysical Research Communications, 296, 1000–1004CrossRefGoogle ScholarPubMed
Bijsterbosch, M. K., Manoharan, M., Dorland, R., Van Veghel, R., Biessen, E. A., and Berkel, T. J. (2002). bis-Cholesteryl-conjugated phosphorothioate oligodeoxynucleotides are highly selectively taken up by the liver. Journal of Pharmacology and Experimental Therapeutics, 302, 619–626CrossRefGoogle ScholarPubMed
Cauwels, A.Janssen, A. B., Waeytens, A., Cuvelier, C.and Brouckaert, P. (2003). Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nature Immunology, 4, 387–393CrossRefGoogle ScholarPubMed
Ejlersen, E., Larsen, F. S., Pott, F., Gyrtrup, H. J., Kirkegaard, P.and Secher, N. H. (1994). Hepatectomy corrects cerebral hyperperfusion in fulminant hepatic failure. Transplantion Proceedings, 26, 1794–1795Google ScholarPubMed
Galle, P. R., Hofmann, W. J., Walczak, H., Schaller, H., Otto, G., Stremmel, W., Krammer, P. H. and Runkel, L. (1995). Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. Journal of Experimental Medicine, 182, 1223–1230CrossRefGoogle ScholarPubMed
Galloway, D. A. and McDougall, J. K. (1983). The oncogenic potential of herpes simplex viruses: Evidence for a ‘hit-and-run’ mechanism. Nature, 302, 21–24CrossRefGoogle ScholarPubMed
Gitlin, L., Karelsky, S.and Andino, R. (2002). Short interfering RNA confers intracellular antiviral immunity in human cells. Nature, 418, 430–434CrossRefGoogle ScholarPubMed
Gonzalez-Cuadrado, S., Lorz, C., Garcia, D. M., O'Valle, F., Alonso, C., Ramiro, F.Ortiz-Gonzalez, A., Egido, J.and Ortiz, A. (1997). Agonistic anti-Fas antibodies induce glomerular cell apoptosis in mice in vivo. Kidney International, 51, 1739–1746CrossRefGoogle ScholarPubMed
Guillot, C., Coathalem, H., Chetritt, J., David, A., Lowenstein, P., Gilbert, E., Tesson, L., Rooijen, N., Cuturi, M. C., Soulillou, J. P. and Anegon, I. (2001). Lethal hepatitis after gene transfer of IL-4 in the liver is independent of immune responses and dependent on apoptosis of hepatocytes: a rodent model of IL-4-induced hepatitis. Journal of Immunology, 166, 5225–5235CrossRefGoogle ScholarPubMed
Herweijer, H.and Wolff, J. A. (2003). Progress and prospects: Naked DNA gene transfer and therapy. Gene Therapy, 10, 453–458CrossRefGoogle ScholarPubMed
Jacque, J. M., Triques, K.and Stevenson, M. (2002). Modulation of HIV-1 replication by RNA interference. Nature, 418, 435–438CrossRefGoogle ScholarPubMed
Janin, A., Deschaumes, C., Daneshpouy, M., Estaquier, J., Micic-Polianski, J., Rajagopalan-Levasseur, P., Akarid, K., Mounier, N., Gluckman, E., Socie, G.and Ameisen, J. C. (2002). CD95 engagement induces disseminated endothelial cell apoptosis in vivo: Immunopathologic implications. Blood, 99, 2940–2947CrossRefGoogle ScholarPubMed
Kim, K. M., Kim, Y. M., Park, M., Park, K., Chang, H. K., Park, T. K., Chung, H. H. and Kang, C. Y. (2000). A broad-spectrum caspase inhibitor blocks concanavalin A-induced hepatitis in mice. Clinical Immunology, 97, 221–233CrossRefGoogle ScholarPubMed
Kjaergard, L. L., Liu, J., Als-Nielsen, B.and Gluud, C. (2003). Artificial and bioartificial support systems for acute and acute-on-chronic liver failure: A systematic review. Journal of American Medical Association, 289, 217–222CrossRefGoogle ScholarPubMed
Klein, C., Bock, C. C., Wedemeyer, H., Wustefeld, T., Locarnini, S., Dienes, H. H., Kubicka, S., Manns, M. M. and Trautwein, C. (2003). Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology, 125, 9–18CrossRefGoogle ScholarPubMed
Kondo, T., Suda, T., Fukuyama, H., Adachi, M.and Nagata, S. (1997). Essential roles of the Fas ligand in the development of hepatitis. Nature Medicine, 3, 409–413CrossRefGoogle ScholarPubMed
Kubicka, S., Kuhnel, F., Zender, L., Rudolph, K. L., Plumpe, J., Manns, M.and Trautwein, C. (1999). p53 represses CAAT enhancer-binding protein (C/EBP)-dependent transcription of the albumin gene. A molecular mechanism involved in viral liver infection with implications for hepatocarcinogenesis. Journal of Biological Chemistry, 274, 32137–32144CrossRefGoogle ScholarPubMed
Kubo, S., Sun, M., Miyahara, M., Umeyama, K., Urakami, K., Yamamoto, T., Jakobs, C., Matsuda, I.and Endo, F. (1998). Hepatocyte injury in tyrosinemia type 1 is induced by fumarylacetoacetate and is inhibited by caspase inhibitors. Proceedings of the National Academy of Sciences USA, 95, 9552–9557CrossRefGoogle ScholarPubMed
Kuhnel, F., Zender, L., Paul, Y., Tietze, M. K., Trautwein, C., Manns, M.and Kubicka, S. (2000). NFkappaB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis. Journal Biological Chemistry, 275, 6421–6427CrossRefGoogle Scholar
Lee, N. S., Dohjima, T., Bauer, G., Li, H., Li, M. J., Ehsani, A., Salvaterra, P.and Rossi, J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnology, 20, 500–505CrossRefGoogle ScholarPubMed
Matute-Bello, G., Winn, R. K., Jonas, M., Chi, E. Y., Martin, T. R. and Liles, W. C. (2001). Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: Implications for acute pulmonary inflammation. American Journal of Pathology, 158, 153–161CrossRefGoogle ScholarPubMed
McCaffrey, A. P., Nakai, H., Pandey, K., Huang, Z., Salazar, F. H., Xu, H., Wieland, S. F., Marion, P. L. and Kay, M. A. (2003). Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotechnology, 21, 639–644CrossRefGoogle ScholarPubMed
Mundt, B., Kuhnel, F., Zender, L., Paul, Y., Tillmann, H., Trautwein, C., Manns, M. P. and Kubicka, S. (2003). Involvement of TRAIL and its receptors in viral hepatitis. FASEB Journal, 17, 94–96CrossRefGoogle ScholarPubMed
Nishimura, Y., Hirabayashi, Y., Matsuzaki, Y., Musette, P., Ishii, A., Nakauchi, H., Inoue, T.and Yonehara, S. (1997). In vivo analysis of Fas antigen-mediated apoptosis: Effects of agonistic anti-mouse Fas mAb on thymus, spleen and liver. International Immunology, 9, 307–316CrossRefGoogle ScholarPubMed
Novina, C. D., Murray, M. F., Dykxhoorn, D. M., Beresford, P. J., Riess, J., Lee, S. K., Collman, R. G., Lieberman, J., Shankar, P.and Sharp, P. A. (2002). siRNA-directed inhibition of HIV-1 infection. Nature Medicine, 8, 681–686CrossRefGoogle ScholarPubMed
O'Grady, J. G., Schalm, S. W. and Williams, R. (1993). Acute liver failure: Redefining the syndromes. Lancet, 342, 273–275CrossRefGoogle ScholarPubMed
Plevris, J. N., Schina, M.and Hayes, P. C. (1998). Review article: The management of acute liver failure. Alimental Pharmacology Therapy, 12, 405–418CrossRefGoogle ScholarPubMed
Randall, G., Grakoui, A.and Rice, C. M. (2003). Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proceedings of the National Academy of Science USA, 100, 235–240CrossRefGoogle ScholarPubMed
Rodriguez, I., Matsuura, K., Ody, C., Nagata, S. and Vassalli, P. (1996a). Systemic injection of a tripeptide inhibits the intracellular activation of CPP32-like proteases in vivo and fully protects mice against Fas-mediated fulminant liver destruction and death. Journal of Experimental Medicine, 184, 2067–2072CrossRefGoogle Scholar
Rodriguez, I., Matsuura, K., Khatib, K., Reed, J. C., Nagata, S.and Vassalli, P. (1996b). A bcl-2 transgene expressed in hepatocytes protects mice from fulminant liver destruction but not from rapid death induced by anti-Fas antibody injection. Journal of Experimental Medicine, 183, 1031–1036CrossRefGoogle Scholar
Seino, K., Kayagaki, N., Takeda, K., Fukao, K., Okumura, K.and Yagita, H. (1997). Contribution of Fas ligand to T cell-mediated hepatic injury in mice. Gastroenterology, 113, 1315–1322CrossRefGoogle Scholar
Shadidi, M.and Sioud, M. (2003). Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. Federation of the American Society for Experimental Biologists Journal, 17, 256–258CrossRefGoogle ScholarPubMed
Song, E., Lee, S. K., Wang, J., Ince, N., Ouyang, N., Min, J., Chen, J., Shankar, P.and Lieberman, J. (2003). RNA interference targeting Fas protects mice from fulminant hepatitis. Nature Medicine, 9, 347–351CrossRefGoogle ScholarPubMed
Strand, S., Hofmann, W. J., Grambihler, A., Hug, H., Volkmann, M., Otto, G., Wesch, H., Mariani, S. M., Hack, V., Stremmel, W., Krammer, P. H. and Galle, P. R. (1998). Hepatic failure and liver cell damage in acute Wilson's disease involve CD95 (APO-1/Fas) mediated apoptosis. Nature Medicine, 4, 588–593CrossRefGoogle ScholarPubMed
Streetz, K., Leifeld, L., Grundmann, D., Ramakers, J., Eckert, K., Spengler, U., Brenner, D., Manns, M.and Trautwein, C. (2000). Tumor necrosis factor alpha in the pathogenesis of human and murine fulminant hepatic failure. Gastroenterology, 119, 446–460CrossRefGoogle ScholarPubMed
Wanner, G. A., Mica, L., Wanner-Schmid, E., Kolb, S. A., Hentze, H., Trentz, O. and Ertel, W. (1999). Inhibition of caspase activity prevents CD95-mediated hepatic microvascular perfusion failure and restores Kupffer cell clearance capacity. Federation of the American Society for Experimental Biologists Journal, 13, 1239–1248CrossRefGoogle ScholarPubMed
Watanabe, Y., Morita, M.and Akaike, T. (1996). Concanavalin A induces perforin-mediated but not Fas-mediated hepatic injury. Hepatology, 24, 702–710CrossRefGoogle Scholar
Williams, D. A. and Baum, C. (2003). Medicine. Gene therapy – new challenges ahead. Science, 302, 400–401CrossRefGoogle ScholarPubMed
Zender, L., Hutker, S., Liedtke, C., Tillmann, H. L., Zender, S., Mundt, B., Waltemathe, M., Gosling, T., Flemming, P., Malek, N. P., Trautwein, C., Manns, M. P., Kuhnel, F.and Kubicka, S. (2003). Caspase 8 small interfering RNA prevents acute liver failure in mice. Proceedings of the National Academy of Sciences USA, 100, 7797–7802CrossRefGoogle ScholarPubMed
Zhang, H., Cook, J., Nickel, J., Yu, R., Stecker, K., Myers, K.and Dean, N. M. (2000). Reduction of liver Fas expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nature Biotechnology, 18, 862–867CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×