Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-03T08:51:40.143Z Has data issue: false hasContentIssue false

5 - Prenatal Risk Factors for Schizophrenia

Published online by Cambridge University Press:  10 August 2009

Alan S. Brown
Affiliation:
Department of Psychiatry, Columbia University
Ezra S. Susser
Affiliation:
Department of Psychiatry, Columbia University
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

Over the past decade our research efforts have focused on the identification of prenatal risk factors for schizophrenia. In this chapter, we summarize our study designs and methods, describe our findings, discuss the implications of these findings for the field, and present our plans for future investigations. In order to provide a conceptual framework for these findings, we shall first discuss the neurodevelopmental hypothesis of schizophrenia, and briefly review previous studies by other investigators in this research domain.

NEURODEVELOPMENTAL HYPOTHESIS OF SCHIZOPHRENIA

The neurodevelopmental model of schizophrenia posits that adverse in utero events influence critical processes in the genesis of brain structures, which predispose to the emergence of schizophrenia in adulthood (Brown et al., 1999; Susser, 1999). The evidence that led to this hypothesis derives from many diverse areas of investigation; however, there appear to be three pivotal supportive findings. First, patients destined to develop schizophrenia have a tendency for diminished neurocognitive (David et al., 1997; Jones et al., 1994), neuromotor (Walker et al., 1994), and behavioral (Done et al., 1994) function. Second, patients with schizophrenia, as compared with healthy controls, have an increased frequency and severity of minor physical anomalies, particularly of the craniofacial area, which are suggestive of an in utero developmental disruption (Green et al., 1989; Waddington, 1993). Third, neuroimaging studies indicate that several of the brain abnormalities in schizophrenia, such as ventriculomegaly and diminished hippocampal volume, occur among patients in their first episode of psychosis (Bogerts et al., 1990; DeGreef et al., 1992; Nopoulos et al., 1995).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, W., Kendell, R. E., Hare, E. K., & Munk-Jorgensen, P. (1993). Epidemiological evidence that maternal influenza contributes to the aetiology of schizophrenia. British Journal of Psychiatry, 163, 522–534CrossRefGoogle ScholarPubMed
Anderson, S. A., Eisenstat, D. D., Shi, L., & Rubenstein, L. R. (1997). Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science, 278, 474–476CrossRefGoogle ScholarPubMed
Bachevalier, J., Alvarado, M. C., & Malkova, L. (1999). Memory and socioemotional behavior in monkeys after hippocampal damage incurred in infancy or in adulthood. Biological Psychiatry, 46, 329–339CrossRefGoogle ScholarPubMed
Barr, C. E., Mednick, S. A., & Munk-Jorgensen, P. (1990). Exposure to influenza epidemics during gestation and adult schizophrenia. Archives of General Psychiatry, 47, 869–874CrossRefGoogle ScholarPubMed
Bogerts, B., Ashtari, M., DeGreef, G., Alvir, J. M. J., Bilder, R. M., & Lieberman, J. A. (1990). Reduced temporal limbic structure volumes on magnetic resonance images in first episode schizophrenia. Psychiatry Research Neuroimage, 35, 1–13CrossRefGoogle ScholarPubMed
Bradbury, T. N., & Miller, G. A. (1985). Season of birth in schizophrenia: A review of evidence, methodology, and etiology. Psychological Bulletin, 3, 569–594CrossRefGoogle Scholar
Brown, A. S. (1999). New perspectives on the neurodevelopmental hypothesis of schizophrenia. Psychiatric Annals, 29, 128–130CrossRefGoogle Scholar
Brown, A. S., Cohen, P., Greenwald, S., & Susser, E. (2000c). Nonaffective psychosis after prenatal exposure to rubella, American Journal of Psychiatry, 157, 438–443CrossRefGoogle Scholar
Brown, A. S., Cohen, P., Harkavy-Friedman, J., Malaspina, D., Gorman, J. M., & Susser, E. A. E. (2001). Bennett Research Award: Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biological Psychiatry, 49, 473–486CrossRefGoogle ScholarPubMed
Brown, A. S., Schaefer, C. A., Wyatt, R. J., Begg, M. D., Goetz, R., Bresnuhan, M. A., Harkavy-Friedman, J., Gorman, J. M., Malaspina, D., & Susser, E. S. (2002). Paternal age and risk of schizophrenia in adult offspring. American Journal of Psychiatry, 159, 1528–1533CrossRefGoogle ScholarPubMed
Brown, A. S., Schaefer, C. A., Wyatt, R. J., Goetz, R., Begg, M. D., Gorman, J. M., & Susser, E. S. (2000a). Maternal exposure to respiratory infections and adult schizophrenia spectrum disorders: a prospective birth cohort study, Schizophrenia Bulletin, 26, 287–295CrossRefGoogle Scholar
Brown, A. S., Susser, E. S., Butler, P. D., Richardson, A. R., Kaufmann, C. A., & Gorman, J. M. (1996). Neurobiological plausibility of prenatal nutritional deprivation as a risk factor for schizophrenia. Journal of Nervous and Mental Disease, 184, 71–85CrossRefGoogle Scholar
Brown, A. S., Susser, E. S., & Cohen, P. (1999). Childhood neurocognition, neuromotor function, and behavior as predictors of adult psychosis: A prospective cohort study of prenatal viral infection. Abstracts of the 7th International Congress on Schizophrenia Research, Sante Fe, New Mexico, April
Brown, A. S., Susser, E. S., Lin, S. P., & Gorman, J. M. (1995). Affective disorders in Holland after prenatal exposure to the 1957 A2 influenza epidemic. Biological Psychiatry, 38, 270–273CrossRefGoogle ScholarPubMed
Brown, A. S., Os, J., Driessens, C., Hoek, H. W., & Susser, E. S. (2000b). Further evidence of relation between prenatal famine and major affective disorder. American Journal of Psychiatry, 157, 190–195CrossRefGoogle Scholar
Butler, P. D., Susser, E. S., Brown, A. S., Kaufmann, C. A., & Gorman, J. M. (1994). Prenatal nutritional deprivation as a risk factor in schizophrenia: Preclinical evidence. Neuropsychopharmacology, 11, 227–235CrossRefGoogle ScholarPubMed
Cannon, M., Coter, D., Coffey, V. P., et al. (1996). Prenatal exposure to the 1957 influenza epidemic and adult schizophrenia: a follow-up study. British Journal of Psychiatry, 168, 368–371CrossRefGoogle ScholarPubMed
Chess, S., Korn, S., & Fernandez, P. (1971). Psychiatric disorders of children with congenital rubella. New York: Brunner/Mazel
Cooper, L. Z., Ziring, P. R., Ockerse, A. B., Fedun, B., Kelly, B., & Krugman, S. (1969). Rubella: Clinical manifestations and management. American Journal of Dis Child, 118, 18–29CrossRefGoogle ScholarPubMed
Crow, T. J., Done, D. J., & Johnstone, E. C. (1991). Schizophrenia and influenza. Lancet, 338, 116–117CrossRefGoogle Scholar
Dalman, C., Allebeck, P., Cullberg, J., Grunewald, C., & Koster, M. (1999). Obstetric complications and the risk of schizophrenia: a longitudinal study of a national birth cohort. Archives of General Psychiatry, 56, 234–240CrossRefGoogle ScholarPubMed
David, A. S., Malmberg, A., Brandt, L., Allebeck, P., & Lewis, G. (1997). I. Q. and risk for schizophrenia: a population-based cohort study. Psychological Medicine, 27, 1311–1323CrossRefGoogle Scholar
David, A., Malmberg, A., Lewis, G., Brandt, L., Allebeck, P. (1995). Are there neurological and sensory risk factors for schizophrenia? Schizophrenia Research, 14, 247–251CrossRefGoogle Scholar
Davis, J. O., Puelzs, J. A., Braeua, H. S. (1995). Prenatal development of monozygotic twins and concordance for schizophrenia. Schizophrenia Bulletin, 21, 357–366CrossRefGoogle Scholar
DeGreef, G. M., Ashtari, B., & Bogerts, B. (1992). Volumes of ventricular system subdivisions measured from magnetic resonance images in first-episode schizophrenic patients. Archives of General Psychiatry, 49, 531–537CrossRefGoogle ScholarPubMed
Vries, J. I., Dekker, G. A., Huijgens, P. C., Jakobs, C., Blomberg, B. M., & Geijn, H. P. (1997). Hyperhomocysteinaemia and protein S deficiency in complicated pregnancies. British Journal of Obstetrics and Gynecology, 104, 1248–1254CrossRefGoogle ScholarPubMed
Done, D. J., Johnston, E. C., Frith, C. D., Golding, J., Shepherd, P. M., & Crow, T. J. (1991). Complications of pregnancy and delivery in relation to psychosis in adult life: Data from the British perinatal mortality survey. British Medical Journal, 302, 1576–1580CrossRefGoogle ScholarPubMed
Done, D. J., Crow, T. J., Johnston, E. C., & Sacker, A. (1994). Childhood antecedents of schizophrenia and affective illness: Social adjustment at ages 7 and 11. British Medical Journal, 309, 699–703CrossRefGoogle ScholarPubMed
Edwards, M. J. (1986). Hyperthermia as a teratogen: A review of experimental studies and their clinical significance. Teratogenesis, Carcinogenesis and Mutagenesis, 6, 563–582CrossRefGoogle ScholarPubMed
Erlenmeyer-Kimling, L., Folnegovic, Z., Hrabak-Zerjavic, V., Borcic, B., Folnegovic-Smalc, V., & Susser, E. (1994). Schizophrenia and prenatal exposure to the 1957 A2 influenza epidemic in Croatia, American Journal of Psychiatry, 151, 1496–1498Google ScholarPubMed
Fahy, T. A., Jones, P. B., & Sham, P. C. (1993). Schizophrenia in Afro-Caribbeans in the UK following prenatal exposure to the 1957 A2 influenza epidemic. Schizophrenia Research, 6, 98–99CrossRefGoogle Scholar
Girling, J., & Swiet, M. (1998). Inherited thrombophilia and pregnancy. Current Opinions in Obstetrics and Gynecology, 10, 135–144CrossRefGoogle Scholar
Goodman, A. B. (1995). Chromosomal locations and modes of action of genes of the retinoid (vitamin A) system support their involvement in the etiology of schizophrenia. American Journal of Med Genet, 60, 335–348CrossRefGoogle ScholarPubMed
Grech, A., Takei, N., & Murray, R. M. (1997). Maternal exposure to influenza and paranoid schizophrenia. Schizophrenia Research, 26, 121–125CrossRefGoogle ScholarPubMed
Green, M. F., Satz, P., Gaier, D. J., Gancell, S., & Kharabi, F. (1989). Minor physical anomalies in schizophrenia. Schizophrenia Bulletin, 15, 91–99CrossRefGoogle Scholar
Gregg, N. (1941). Congenital cataract following German measles in the mother. Trans Ophthalmol Soc, 3, 35–45Google Scholar
Hoek, H. W., & et al., unpublished data
Hoek, H. W., Susser, E., Buck, K. A., Lumey, L. H., Liu, S. P., & Gorman, J. M. (1996). Schizoid personality disorder after prenatal exposure to famine. American Journal of Psychiatry, 53, 19–24Google Scholar
Hoek, H. W., Brown, A. S., & Susser, E. S. (1999). The Dutch famine studies: Prenatal nutritional deficiency and schizophrenia. In E. S. Susser, A. S. Brown, & J. M. Gorman (Eds), Prenatal exposures in schizophrenia (pp. 135–161). Washington, D.C.: American Psychiatric Press
Hollister, J. M., Laing, P., & Mednick, S. A. (1996). Rheusus incompatibility as a risk factor for schizophrenia in male adults. Archives of General Psychiatry, 53, 19–24CrossRefGoogle Scholar
Hulshoff-Pol, H. E., Hoek, H. W., Susser, E. S., Brown, A. S., Kahn, R. S., & Cispen-de Wied, C. C. (2000). Prenatal exposure to famine and brain morphology in schizophrenia. American Journal of Psychiatry, 157, 1170–1172CrossRefGoogle Scholar
Hultman, C. M., Ohman, A., Cnattingius, S., Wieselgren, I. M., & Lindstrom, L. H. (1997). Prenatal and neonatal risk factors for schizophrenia. British Journal of Psychiatry, 170, 128–133CrossRefGoogle Scholar
Hultman, C. M., Sparen, P., Takei, N., Murray, R. M., & Cnattingius, S. (1999). Prenatal and perinatal risk factors for schizophrenia, affective psychosis, and reactive psychosis of early onset: case-control study. British Medical Journal, 318, 421–426CrossRefGoogle ScholarPubMed
Huttunen, M. O., & Niskanen, P. (1978). Prenatal loss of father and psychiatric disorders. Archives of General Psychiatry, 35, 429–431CrossRefGoogle ScholarPubMed
Institute of Medicine, Committee on Nutritional Status During Pregnancy and Lactation. (1990). Nutrition during pregnancy. Washington, D.C.: National Academy Press
Jones, P. B., Rantakallio, P., Hartikainen, A. L., Isohanni, M., & Sipila, P. (1998). Schizophrenia as a long-term outcome of pregnancy, delivery, and perinatal complications: A 28-year follow-up of the 1966 North Finland general population birth cohort. American Journal of Psychiatry, 155, 355–364CrossRefGoogle ScholarPubMed
Jones, P., Rodgers, B., Murray, R., & Marmon, M. (1994). Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet, 344, 1398–1402CrossRefGoogle ScholarPubMed
Kelsey, J. L. (1996). Methods in observational epidemiology. New York: Oxford University Press, pp. 37–38
Kunugi, H., Nanko, S., Takei, N., Saito, K., Hayashi, N., & Kazamatsuri, H. (1995). Schizophrenia following in utero exposure to the 1957 influenza epidemics in Japan. American Journal of Psychiatry, 152, 450–452Google ScholarPubMed
LaMantia, A. S. (1999). Forebrain induction, retinoic acid, and vulnerability to schizophrenia: insights from molecular and genetic analysis in developing mice. Biological Psychiatry, 46, 19–30CrossRefGoogle ScholarPubMed
Lewis, G., David, A., Andreason, S., & Allebeck, P. (1992). Schizophrenia and city life. Lancet, 340, 137–140CrossRefGoogle ScholarPubMed
Lipska, B. K., Khaing, Z. Z., & Weinberger, D. R. (1999). Neonatal hippocampal damage in the rat: A heuristic model of schizophrenia. Psychiatric Annals, 29, 157–160CrossRefGoogle Scholar
Lynberg, M. C., Khoury, M. J., Lu, X., & Cocian, T. (1994). Maternal flu, fever, and the risk of neural tube defects: A population-based case-control study. American Journal of Epidemiology, 140, 244–255CrossRefGoogle ScholarPubMed
Lyon, M. (1990). Animal models of mania and schizophrenia. In P. Willner (Ed.), Behavioral models in psychopharmacology: Theoretical, industrial and clinical perspectives (pp. 253–310). Cambridge: Cambridge University Press
Machon, R., Mednick, S., & Huttenen, M. (1997). Adult major affective disorder after prenatal exposure to an influenza epidemic. Archives of General Psychiatry, 54, 322–328CrossRefGoogle Scholar
Malaspina, D., Hurlaz, S., Fennig, S., Heiman, D., Nahon, D., Feldman, D., & Susser, E. S. (2001). Advancing paternal age and the risk of schizophrenia. Archives of General Psychiatry 58, 361–367CrossRefGoogle ScholarPubMed
Malaspina, D., Sohler, N. L., & Susser, E. S. (1999). Interaction of genes and prenatal exposures in schizophrenia. In E. S. Susser, A. S. Brown, J. M. Gorman (Eds.), Prenatal exposures in schizophrenia (pp. 35–59). Washington, D.C.: American Psychiatric Press
Marcelis, M., Navarro-Mateu, F., Murray, R., Selton, J. P., & Os, J. (1998). Urbanization and psychosis: a study of 1942–1978 birth cohorts in The Netherlands. Psychol Med, 28, 871–879CrossRefGoogle ScholarPubMed
McGrath, J. J., Pemberton, M., Welham, J. L., et al. (1994). Schizophrenia and the influenza epidemics of 1954, 1957 and 1959: a Southern Hemisphere study. Schizophrenia Research, 14, 1–8CrossRefGoogle ScholarPubMed
McGuffin, P., Owens, M. J., & Farmer, A. E. (1995). Genetic basis of schizophrenia. Lancet, 346, 678–682CrossRefGoogle ScholarPubMed
McNeil, T. F., & Kaij, L. (1978). Obstetric factors in the development of schizophrenia: Complications in the birth of preschizophrenics and in reproduction by schizophrenic parents. In L. C. Wynne, R. L. Cromwell, & S. Matthysse (Eds), The nature of schizophrenia (pp. 401–429). New York: Wiley
Mednick, S. A., Machon, R. A., Huttunen, M. O., et al. (1988). Adult schizophrenia following prenatal exposure to an influenza epidemic. Archives of General Psychiatry, 45, 189–192CrossRefGoogle Scholar
Menon, N. K., & Dhopeshwarkar, G. A. (1982). Essential fatty acid deficiency and brain development. Prog Lipid Res, 21, 309–326CrossRefGoogle ScholarPubMed
Morgan, V., Castle, D., Page, A., Fazio, S., Gurrin, L., Burton, P., Montgomery, P., & Jablensky, A. (1997). Influenza epidemics and incidence of schizophrenia, affective disorders and mental retardation in Western Australia: no evidence of a major effect. Schizophrenia Research, 26, 25–29CrossRefGoogle ScholarPubMed
Moore, H., Ghajarnia, M., & Grace, A. A. (1998). Anatomy and function of prefrontal and limbic corticostriatal circuits in a rodent model of schizophrenia, Abstracts of the 37th Annual Meeting of the American College of Neuropsychopharmacology, Las Croabas, Puerto Rico, December 14–18
Mortensen, P. B., Pedersen, C. B., Westergaard, T., Wohlfahrt, J., Ewald, H., Mors, O., Andersen, P. K., & Melbye, M. (1999). Effects of family history and place and season of birth on the risk of schizophrenia. New England Journal of Medicine, 340, 603–608CrossRefGoogle ScholarPubMed
MRC Vitamin Research Study Group. (1991). Prevention of neural tube defects: Results of the Medical Research Council Vitamin Study. Lancet, 338, 131–137CrossRef
Nelson, K. B., Dambrosia, J. M., Grether, J. K., & Philips, T. M. (1998). Neonatal cytokines and coagulation factors in children with cerebral palsy. Annals of Neurology, 44, 665–675CrossRefGoogle ScholarPubMed
Nopoulos, P., Swayze, V., Flaum, M., Ehrhardt, J. C., Yuh, W. T. C., & Andreasen, N. C. (1997). Cavum septi pellucidi in normals and patients with schizophrenia as detected by magnetic resonance imaging. Biological Psychiatry, 41, 1102–1108CrossRefGoogle ScholarPubMed
Nopoulos, P. I., Tores, M., Flaum, N. C., Andreasen, J. C., & Ehrhardt, Yuh W. T. (1995). Brain morphology in first-episode schizophrenia. American Journal of Psychiatry, 152, 1721–1723Google ScholarPubMed
Nowakowski, R. S. (1999). Prenatal development of the brain. In E. Susser, A. Brown, & J. Gorman (Eds.), Prenatal exposure in schizophrenia (pp. 61–85). Washington, D.C.: American Psychiatric Press
O'Callaghan, E., Sham, P., Takei, N., Glover, G., & Murray, R. M. (1991). Schizophrenia after prenatal exposure to 1957 A2 influenza epidemic. Lancet, 337, 1248–1250CrossRefGoogle ScholarPubMed
O'Rahilly R., & Muller, F. (1999). The embryonic human brain: An atlas of developmental stages, 2nded. New York: Wiley, pp. 39–338
Pfefferbaum, A., & Marsh, L. (1995). Structural brain imaging in schizophrenia. Clinical Neuroscience, 3, 105–111Google Scholar
Richardson Andrews, R. C. (1990). Unification of the findings in schizophrenia by reference to the effects of gestational zinc deficiency. Medical Hypotheses, 31, 141–153CrossRefGoogle Scholar
Richardson Andrews, R. C. (1992). An update of the zinc deficiency theory of schizophrenia. Identification of the sex determining system as the site of action of reproductive zinc deficiency. Medical Hypotheses, 38, 284–291CrossRefGoogle Scholar
Rothman K. J. (1986). Modern epidemiology. Boston: Little Brown, pp. 36–37
Sacker, A., Doue, D. J., Crow, T. J., & Golding, J. (1995). Antecedents of schizophrenia and affective illness. Obstetric Complications. British Journal of Psychiatry, 166, 734–741CrossRefGoogle ScholarPubMed
Schaefer, C., Brown, A. S., Wyatt, R. J., Kline, J., Begg, M., Bresnahan, M. A., & Susser, E. S. (2000). Maternal prepregnant body mass and risk of schizophrenia in adult offspring. Schizophrenia Bulletin, 26, 275–286CrossRefGoogle ScholarPubMed
Selten, P. J., Slaets, J., & Kahn, R. (1998). Prenatal exposure to influenza and schizophrenia in Surinamese and Dutch Antillean immigrants to The Netherlands. Schizophrenia Research, 30, 101–103CrossRefGoogle ScholarPubMed
Sham, P. C., O'Callaghan, E., Takei, N., Murray, G. K., Hare, E. H., & Murray, R. M. (1992). Schizophrenia following prenatal exposure to influenza epidemics between 1939 and 1960. British Journal of Psychiatry, 160, 461–466CrossRefGoogle ScholarPubMed
South, M., & Sever, J. (1985). Teratogen update: The congenital rubella syndrome. Teratology, 31, 297–307CrossRefGoogle ScholarPubMed
Stein, Z., Susser, M., Saenger, G., & Marolla, F. (Eds). (1975). Famine and human development: The Dutch Hunger Winter of 1944–1945. New York: Oxford University Press
Suddath, R. L., Christianson, G. W., Torrey, E. F., Casanova, M. F., & Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. New England Journal of Medicine, 322, 789–794CrossRefGoogle Scholar
Susser, E. S. (1999). Life course cohort studies of schizophrenia. Psychiatric Anuals, 29, 161-165Google Scholar
Susser, E., & Lin, S. P. (1992). Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–45. Archives of General Psychiatry, 49, 983–988CrossRefGoogle Scholar
Susser, E. S., Lin, S. P., Brown, A. S., Lumey, L. H., & Erlenmeyer-Kimling, L. (1994). No relation between risk of schizophrenia and prenatal exposure to influenza in Holland. American Journal of Psychiatry, 151, 117–119Google ScholarPubMed
Susser, E. S., Neugebauer, R., Hoek, H. W., Brown, A. S., Lin, S., Labovitz, D., & Gorman, J. M. (1996). Schizophrenia after prenatal famine. Archives of General Psychiatry, 53, 25–31CrossRefGoogle ScholarPubMed
Susser, E. S., Schaefer, C. A., Brown, A. S., Begg, M., & Wyatt, R. J. (2000). The design of the prenatal determinants of schizophrenia study. Schizophrenia Bulletin, 26, 257–273CrossRefGoogle ScholarPubMed
Takei, N., Mortensen, P. B., Klaening, U., Murray, R. M., Sham, P. C., O'Callaghan, E., & Munk-Jorgensen, P. (1996). Relationship between in utero exposure to influenza epidemics and risk of schizophrenia in Denmark. Biological Psychiatry, 40(9), 817–824CrossRefGoogle ScholarPubMed
Takei, N., O'Callaghan, E., Sham, P. C., Glover, G., & Murray, R. M. (1993). Does prenatal influenza divert susceptible females from later affective psychosis to schizophrenia? Acta Psychiatr Scand, 88(5), 328–336CrossRefGoogle Scholar
Takei, N., Sham, P. C., O'Callaghan, E., et al. (1994). Prenatal exposure to influenza and the development of schizophrenia: is the effect confined to females? American Journal of Psychiatry, 151, 117–119Google ScholarPubMed
Torrey, E. F., Bowler, A. E., & Rawlings, R. (1991). An influenza epidemic and the seasonality of schizophrenic births. In E. Kurstah (Ed.), Psychiatry and biological factors. New York: Plenum, pp. 109–116CrossRef
Torrey, E. F., Rawlings, R. R., Ennis, J. M., Merrill, D. D., & Flores, D. S. (1996). Birth seasonality in bipolar disorder, schizophrenia, schizoaffective disorder, and stillbirth. Schizophrenia Research, 21, 141–149CrossRefGoogle Scholar
Uauy, R., Birch, E., Birch, D., & Peirano, P. (1992). Visual and brain function measurements in studies of n-3 fatty acid requirements of infants. Journal of Pediatrics, 120, S168–S180CrossRefGoogle ScholarPubMed
Os, J., & Selten, J. P. (1998). Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. Br J Psychiatry, 172, 324–326Google ScholarPubMed
Waddington, J. L. (1993). Neurodynamics of abnormalities in cerebral metabolism and structure in schizophrenia. Schizophrenia Bulletin, 19, 55–69CrossRefGoogle Scholar
Walker, E. F., Savoie, T., & Davis, D. (1994). Neuromotor precursor of schizophrenia. Schizophrenia Bulletin, 20, 441–451CrossRefGoogle Scholar
Welham, J. L., McGrath, J. J., & Pemberton, M. R. (1993). Schizophrenia, birthrates, and three Australian epidemics. Abstracts of the IVth International Congress on Schizophrenia Research
Willatts, P., Forsyth, J. S., DiModugno, M. K., Varma, S., & Colvin, M. (1998). Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet, 352, 688–691CrossRefGoogle ScholarPubMed
Wright, P., & Murray, R. M. (1995). Prenatal influenza, immunogenes and schizophrenia. In J. L. Waddington, P. F. Buckley (Eds), The neurodevelopmental basis of schizophrenia. Austin, Tex: RG Landes, (pp. 43–59)
Wright, P., Takei, N., Murray, R. M., & Sham, P. C. (1999). Seasonality, prenatal influenza exposure, and schizophrenia. In E. S. Susser, A. S. Brown, J. M. Gorman (Eds.), Prenatal exposures in schizophrenia (pp. 89–112). Washington D.C.: American Psychiatric Press

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×