Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T12:42:00.018Z Has data issue: false hasContentIssue false

3 - The NRAMP family: co-evolution of a host/pathogen defence system

from Part I - Recognition of bacteria

Published online by Cambridge University Press:  13 August 2009

Richard Bellamy
Affiliation:
Department of Medicine, Singleton Hospital, Sketty, Swansea, SA20FB, United Kingdom
Brian Henderson
Affiliation:
University College London
Petra C. F. Oyston
Affiliation:
Defence Science and Technology Laboratory, Salisbury
Get access

Summary

INTRODUCTION

Iron is essential for the growth of a wide range of microorganisms. Successful pathogens have developed several strategies to obtain host iron including use of siderophores to remove iron from transferrin, erythrocyte lysis and haemoglobin digestion, extracting iron at the cell surface, and procurement of host intracellular iron (Weinberg, 1999). Intracellular parasites such as mycobacteria have evolved complex mechanisms to acquire iron from their host cell, the macrophage (Wheeler and Ratledge, 1994). One such mechanism is a divalent cation transporter, known as Mramp (Agranoff et al., 1999). It is hypothesised that Mramp competes with its mammalian homologue Nramp1 for intraphagosomal iron and that this is important in determining the host's susceptibility to mycobacterial infection. This review will discuss the research that has led up to the elucidation of the Nramp1-Mramp story a fascinating example of the coevolution of prokaryotic/eukaryotic mutual evasion systems.

EARLY WORK ON Bcg

In 1981, Gros et al. recognised that among inbred strains of mice, innate susceptibility to infection with Mycobacterium bovis (BCG) was determined by a host genetic factor, which they named Bcg (Gros et al., 1981). Mice that possessed the dominant resistance gene, Bcgr, had 100- to 1000-fold fewer splenic colony forming units after intravenous injection of BCG-Montreal compared to the Bcgs susceptible strains (Forget et al., 1981).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, L., Sanchez, F. O., Oberti, J., Thuc, N. V., Hoa, L. V., Lap, V. L., Skamene, E., Lagrange, P. H., and Schurr, E. (1998). Susceptibility to leprosy is linked to the human NRAMP1 gene. Journal of Infectious Diseases 177, 133–145CrossRefGoogle ScholarPubMed
Agranoff, D., Monahan, I. M., Mangan, J. A., Butcher, P. D., and Krishna, S. (1999). Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family. Journal of Experimental Medicine 190, 717–724CrossRefGoogle ScholarPubMed
Arias, M., Rojas, M., Zabaleta, J., Rodriguez, J. I., Paris, S. C., Barrera, L. F., and Garcia, L. F. (1997). Inhibition of virulent Mycobacterium tuberculosis by Bcgr and Bcgs macrophages correlates with nitric oxide production. Journal of Infectious Diseases 176, 1552–1558CrossRefGoogle Scholar
Atkinson, P. G. P., Blackwell, J. M., and Barton, C. H. (1997). Nramp1 locus encodes a 65kDa interferon-γ-inducible protein in murine macrophages. Biochemical Journal 325, 779–786CrossRefGoogle Scholar
Barrera, L. F., Kramnik, I., Skamene, E., and Radzioch, D. (1997a). I-Aβ gene expression regulation in macrophages derived from mice susceptible or resistant to infecton with M. bovis BCG. Molecular Immunology 34, 343–355CrossRefGoogle Scholar
Barrera, L. F., Kramnik, I., Skamene, E., and Radzioch, D. (1997b). Nitrite production by macrophages derived from BCG-resistant and -susceptible congenic mouse strains in response to IFN-γ and infection with BCG. Immunology 82, 457–464Google Scholar
Barton, C. H., White, J. K., Roach, T. I. A., and Blackwell, J. M. (1994). NH2-terminal sequence of macrophage-expressed natural resistance-associated macrophage protein (Nramp) encodes a proline/serine-rich putative Src homology 3-binding domain. Journal of Experimental Medicine 179, 1683–1687CrossRefGoogle ScholarPubMed
Barton, C. H., Whitehead, S. H., and Blackwell, J. M. (1995). Nramp transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on oxidative burst and nitric oxide pathways. Molecular Medicine 1, 267–279Google ScholarPubMed
Bellamy, R., Ruwende, C., Corrah, T., McAdam, K. P. W. J., Whittle, H. C., and Hill, A. V. S. (1998). Variation in the human NRAMP1 gene and human tuberculosis in an African population. New England Journal of Medicine 338, 640–644CrossRefGoogle Scholar
Bellamy, R. J., Beyers, N., McAdam, K. P. W. J., Ruwende, C., Gie, R., Samaai, P., Bester, D., Meyer, M., Corrah, T., Collin, M., Camidge, D. R., Wilkinson, D., Hoal-van Helden, E., Whittle, H. C., Amos, W., Helden, P., and Hill, A. V. S. H. (2000). Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proceedings of the National Academy of Sciences, USA 97, 8005–8009CrossRefGoogle ScholarPubMed
Blackwell, J. M. (1989). The macrophage resistance gene Lsh/Ity/Bcg. 27th Forum in Immunology. Research in Immunology 140, 767–828CrossRefGoogle Scholar
Blackwell, J. M., Barton, H., White, J. K., Searle, S., Baker, A.-M., Williamsxs, H., and Shaw, M.-A. (1995). Genomic organization and sequence of the human NRAMP gene: identification and mapping of a promoter region polymorphism. Molecular Medicine 1, 194–205Google ScholarPubMed
Bradley, D. J. (1977). Genetic control of Leishmania populations within the host. II. Genetic control of acute susceptibility of mice to L. donovani infection. Clinical Experimental Immunology 30, 130–140Google Scholar
Bradley, D. J., Taylor, B. A., Blackwell, J. M., Evans, E. P., and Freeman, J. (1979). Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clinical Experimental Immunology 37, 7–14Google ScholarPubMed
Brown, I. N., Glynn, A. A., and Plant, J. E. (1982). Inbred mouse strain resistance to Mycobacterium lepraemurium follows the Ity/Lsh pattern. Immunology 47, 149–156Google ScholarPubMed
Cellier, M., Govoni, G., Vidal, S., Kwan, T., Groulx, N., Liu, J., Sanchez, F., Skamene, E., Schurr, E., and Gros, P. (1994). Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. Journal of Experimental Medicine 180, 1741–1752CrossRefGoogle ScholarPubMed
Cellier, M., Belouchi, A., and Gros, P. (1996). Resistance to intracellular infections: comparative genomic analysis of Nramp. Trends in Genetics 12, 201–205CrossRefGoogle ScholarPubMed
Chan, J., Xing, Y., Magliozzo, R. S., and Bloom, B. R. (1992). Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. Journal of Experimental Medicine 175, 1111–1122CrossRefGoogle ScholarPubMed
Crocker, P. R., Blackwell, J. M., and Bradley, D. J. (1984). Expression of the natural resistance gene Lsh in resident liver macrophages. Infection and Immunity 43, 1033–1040Google ScholarPubMed
Denis, M., Forget, A., Pelletier, M., and Skamene, E., (1988a). Pleiotropic effects of the Bcg gene: III. Respiratory burst in Bcg-congenic macrophages. Clinical Experimental Immunology 73, 370–375Google Scholar
Denis, M., Buschman, E., Forget, A., Pelletier, M., and Skamene, E. (1988b). Pleiotropic effects of the Bcg gene. II. Genetic restriction of responses to mitogens and allogeneic targets. Journal of Immunology 141, 3988–3993Google Scholar
Denis, M., Forget, A., Pelletier, M., Gervais, F., and Skamene, E. (1990). Killing of Mycobacterium smegmatis by macrophages from genetically susceptible and resistant mice. Journal of Leukocyte Biology 47, 25–30CrossRefGoogle ScholarPubMed
Dosik, J. K., Barton, C. H., Holiday, D. L., Krall, M. M., Blackwell, J. M., and Mock, B. A. (1994). An Nramp-related sequence maps to mouse chromosome 17. Mammalian Genome 5, 458–460CrossRefGoogle ScholarPubMed
Fleming, M. D., Trenor, C. C. 3rd, Su, M. A., Foernzler, D., Beier, D. R., Dietrich, W. F., and Andrews, N. C. (1997). Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nature Genetics 16, 383–386CrossRefGoogle ScholarPubMed
Fleming, M. D., Romano, M. A., Su, M. A., Garrick, L. M., Garrick, M. D., and Andrews, N. C. (1998). Nramp2 is mutated in the anaemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proceedings of the National Academy of Sciences, USA 95, 1148–1153CrossRefGoogle Scholar
Forget, A., Skamene, E., Gros, P., Miailhe, A.-E., and Turcott, R. (1981). Differences in response among inbred mouse strains to infection with small doses of Mycobacterium bovis BCG. Infection and Immunity 32, 42–47Google ScholarPubMed
Gomes, M. S. and Appelberg, R. (1998). Evidence for a link between iron metabolism and Nramp1 gene function in innate resistance against Mycobacterium avium. Immunology 95, 165–168CrossRefGoogle ScholarPubMed
Gordeuk, V. R., McLaren, C. E., MacPhail, A. P., Deichsel, G., and Bothwell, T. H. (1996). Associations of iron overload in Africa with hepatocellular carcinoma and tuberculosis: Strachan's 1929 thesis revisited. Blood 87, 3470–3476Google ScholarPubMed
Goto, Y., Buschman, E., and Skamene, E. (1989). Regulation of host resistance to Mycobacterium intracellulare in vivo and in vitro by the Bcg gene. Immunogenetics 30, 218–221CrossRefGoogle ScholarPubMed
Govoni, G., Vidal, S., Cellier, M., Lepage, P., Malo, D., and Gros, P. (1995). Genomic structure, promoter sequence, and induction of expression of the mouse Nramp1 gene in macrophages. Genomics 27, 9–19CrossRefGoogle ScholarPubMed
Govoni, G., Vidal, S., Gauthier, S., Skamene, E., Malo, D., and Gros, P. (1996). The Bcg/Ity/Lsh locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1D169 allele. Infection and Immunity 64, 2923–2929Google Scholar
Gros, P. and Malo, D. (1989). A reverse genetics approach to Bcg/Ity/Lsh gene cloning. Research in Immunology 140, 774–777CrossRefGoogle ScholarPubMed
Gros, P., Skamene, E., and Forget, A. (1981). Genetic control of natural resistance to Mycobacterium bovis BCG. Journal of Immunology 127, 417–421Google ScholarPubMed
Gruenheid, S., Cellier, M., Vidal, S., and Gros, P. (1995). Identification and characterization of a second mouse Nramp gene. Genomics 25, 514–525CrossRefGoogle ScholarPubMed
Gruenheid, S., Pinner, E., Desjardins, M., and Gros, P. (1997). Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. Journal of Experimental Medicine 185, 717–730CrossRefGoogle ScholarPubMed
Gruenheid, S., Canonne-Hergaux, F., Gauthier, S., Hackam, D. J., Grinstein, S., and Gros, P. (1999). The iron transport protein Nramp2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. Journal of Experimental Medicine 189, 831–841CrossRefGoogle ScholarPubMed
Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., Nussberger, S., Goilan, J. L., and Hediger, M. A. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488CrossRefGoogle ScholarPubMed
Hackham, D. J., Rotstein, O. D., Zhang, W.-J., Gruenheid, S., Gros, P., and Grinstein, S. (1998). Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosome acidification. Journal of Experimental Medicine 188, 351–364CrossRefGoogle Scholar
Kishi, F. and Tabuchi, M. (1998). Human natural resistance-associated macrophage protein 2: gene cloning and protein identification. Biochemical and Biophysical Research Communications 251, 775–783CrossRefGoogle ScholarPubMed
Lissner, C. R., Swanson, R. N., and O'Brien, A. D. (1983). Genetic control of innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. Journal of Immunology 131, 3006–3013Google ScholarPubMed
Liu, J., Fujiwara, M., Buu, N. T., Sanchez, F. O., Cellier, M., Paradis, A. J., Frappier, D., Skamene, E., Gros, P., Morgan, K., and Schurr, E. (1995). Identification of polymorphisms and sequence variants in the human homologue of the mouse natural resistance-associated macrophage protein gene. American Journal of Human Genetics 56, 845–853Google ScholarPubMed
Malo, D., Vidal, S. M., Hu, J., Skamene, E., and Gros, P. (1993a). High resolution linkage map in the vicinity of the host resistance locus Bcg. Genomics 16, 655–663CrossRefGoogle Scholar
Malo, D., Vidal, S., Lieman, J. H., Ward, D. C., and Gros, P. (1993b). Physical delineation of the minimal chromosomal segment encompassing the murine host resistance locus Bcg. Genomics 17, 667–675CrossRefGoogle Scholar
Malo, D., Vogan, K., Vidal, S., Hu, J., Cellier, M., Schurr, E., Fuks, A., Bumstead, N., Morgan, K., and Gros, P. (1994). Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23, 51–61CrossRefGoogle ScholarPubMed
Medina, E. and North, R. J. (1996). Evidence inconsistent with a role for the Bcg gene (Nramp1) in resistance of mice to infection with virulent Mycobacterium tuberculosis. Journal of Experimental Medicine 183, 1045–1051CrossRefGoogle ScholarPubMed
Plant, J. E. and Glynn, A. A. (1976). Genetics of resistance to infection with Salmonella typhimurium in mice. Journal of Infectious Diseases 133, 72–78CrossRefGoogle ScholarPubMed
Plant, J. E. and Glynn, A. A. (1979). Locating Salmonella resistance gene on mouse chromosome 1. Clinical Experimental Immunology 37, 1–6Google ScholarPubMed
Plant, J. E., Blackwell, J. M., O'Brien, A. D., Bradley, D. J., and Glynn, A. A. (1982). Are the Lsh and Ity disease resistance genes at one locus on mouse chromosome 1?Nature 297, 510–511CrossRefGoogle ScholarPubMed
Risch, N. and Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science 273, 1516–1517CrossRefGoogle ScholarPubMed
Roach, T. I. A., Chatterjee, D., and Blackwell, J. M. (1994). Induction of early-response genes KC and JE by mycobacterial lipoarabinomannans: regulation of KC expression in murine macrophages by Lsh/Ity/Bcg (candidate Nramp). Infection and Immunity 62, 1176–1184Google Scholar
Roger, M., Levee, G., Chanteau, S., Gicquel, B., and Schurr, E. (1997). No evidence for linkage between leprosy susceptibility and the human natural resistance-associated macrophage protein 1 (NRAMP1) gene in French Polynesia. International Journal of Leprosy 65, 197–202Google ScholarPubMed
Schurr, E., Skamene, E., Forget, A., and Gros, P. (1989). Linkage analysis of the Bcg gene on mouse chromosome 1: identification of a tightly linked marker. Journal of Immunology 141, 4507–4513Google Scholar
Schurr, E., Skamene, E., Morgan, K., Chu, M. L., and Gros, P. (1990). Mapping of Col3a1 and Col6a3 to proximal murine chromosome 1 identifies conserved linkage of structural protein genes between murine chromosome 1 and human chromosome 2q. Genomics 8, 477–486CrossRefGoogle ScholarPubMed
Shaw, M. A., Collins, A., Peacock, C. S., Miller, E. N., Black, G. F., Sibthorpe, D., Lins-Lainson, Z., Shaw, J. J., Ramos, F., Silveira, F., and Blackwell, J. M. (1997). Evidence that genetic susceptibility to Mycobacterium tuberculosis in a Brazilian population is under oligogenic control: linkage study of the candidate genes NRAMP1 and TNFA. Tubercle and Lung Disease 78, 35–45CrossRefGoogle Scholar
Skamene, E., Gros, P., Forget, A., Kongshavn, P. A. L., St.-Charles, C., and Taylor, B. A. (1982). Genetic regulation of resistance to intracellular pathogens. Nature 297, 506–509CrossRefGoogle ScholarPubMed
Skamene, E., Gros, P., Forget, A., Patel, P. J., and Nesbitt, M. (1984). Regulation of resistance to leprosy by chromosome 1 locus in the mouse. Immunogenetics 19, 117–120CrossRefGoogle ScholarPubMed
Stach, J. L., Gros, P., Forget, A., and Skamene, E. (1984). Phenotypic expression of genetically-controlled natural resistance to Mycobacterium bovis (BCG). Journal of Immunology 132, 888–892Google Scholar
Supek, F., Supekova, L., Nelson, H., and Nelson, N. (1996). A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proceedings of the National Academy of Sciences, USA 93, 5105–5110CrossRefGoogle ScholarPubMed
Tabuchi, M., Yoshimori, T., Yamaguchi, K., Yoshida, T., and Kishi, F. (2000). Human NRAMP2/DMT1, which mediates iron transport across membranes, is localized to late endosomes and lysosomes in Hep-2 cells. Journal of Biological Chemistry 275, 22,220–22,228CrossRefGoogle ScholarPubMed
Unkles, S. E., Hawker, K. L., Grieve, C., Campbell, E. I., Montagne, P., and Kinghorn, J. R. (1991). crnA encodes a nitrate transporter in Aspergillus nidulans. Proceedings of the National Academy of Sciences, USA 88, 204–208CrossRefGoogle ScholarPubMed
Vidal, S. M., Malo, D., Vogan, K., Skamene, E., and Gros, P. (1993). Natural resistance to infection with intracellular parasites: isolation of a candidate gene for Bcg. Cell 73, 469–485CrossRefGoogle ScholarPubMed
Vidal, S., Tremblay, M. L., Govoni, G., Gauthier, S., Sebastiani, G., Malo, D., Skamene, E., Olivier, M., Jothy, S., and Gros, P. (1995a). The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. Journal of Experimental Medicine 182, 655–666CrossRefGoogle Scholar
Vidal, S., Belouchi, A.-M., Cellier, M., Beatty, B., and Gross, P. (1995b). Cloning and characterization of a second human NRAMP gene on chromosome 12q13. Mammalian Genome 6, 224–230CrossRefGoogle Scholar
Vidal, S. M., Pinner, E., Lepage, P., Gauthier, S., and Gros, P. (1996). Natural resistance to intracellular infections. Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1D169 mouse strains. Journal of Immunology 157, 3559–3568Google Scholar
Weinberg, E. D. (1999). Iron loading and disease surveillance. Emerging Infectious Diseases 5, 346–352CrossRefGoogle ScholarPubMed
Wheeler, P. R. and Ratledge, C. (1994). Metabolism of Mycobacterium tuberculosis. In Tuberculosis: pathogenesis, protection and control, ed. B. R. Bloom, pp. 353–385. Washington DC: ASM PressCrossRef
Zwilling, B. S., Vespa, L., and Massie, M. (1987). Regulation of I-A expression by murine peritoneal macrophages: differences linked to the Bcg gene. Journal of Immunology 138, 1372–1376Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×