Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-04T07:16:20.757Z Has data issue: false hasContentIssue false

7 - Influenza Evolution

Published online by Cambridge University Press:  10 August 2009

Robin M. Bush
Affiliation:
Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697
Nancy J. Cox
Affiliation:
Influenza Branch, Centers for Disease Control & Prevention, Atlanta, GA 30333
Krishna R. Dronamraju
Affiliation:
Foundation for Genetic Research, Houston, Texas
Get access

Summary

THE VIRUS

The influenza viruses are classified in three genera of the family Orthomyxoviridae. The genera are referred to as “types” A, B, and C. The genome, about 14 KB in size, has eight single-stranded RNA segments of negative sense (seven segments in influenza C viruses). The influenza A genome encodes three polymerase proteins (PB1, PB2, and PA); two major surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA); three structural proteins (NP, M1, and M2); and two non-structural proteins involved in nuclear export (NS1 and NS2) (Lamb, 1989). An eleventh open reading frame recently discovered within PB1 appears to code for a protein involved in host cell apoptosis (Chen et al., 2001).

Two surface glycoproteins have been the object of most evolutionary studies of influenza. Hemagglutinin (HA) is involved in binding to host cell surface receptors. Neuraminidase (NA) is necessary for release of daughter virions from host cells. These proteins protrude from the viral envelope and are exposed to host immune defenses. While the HA is the primary target for neutralizing antibodies, antibodies against NA also may reduce occurrence and severity of illness, and possibly prevent infection if present at high titer. The hemagglutinin esterase (HE) in influenza C assumes the functions of both HA and NA. Broad reviews of influenza biology can be found in Murphy and Webster (1996) and Glezen and Couch (1997).

SUBTYPES

Considerable genetic diversity exists among avian influenza A viruses (Webster et al., 1992).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Both, G. W., Sleigh, M. J., Cox, N. J., and Kendal, A. P.. 1983. Antigenic drift in influenza virus H3 hemagglutinin from 1968 to 1980: multiple evolutionary pathways and sequential amino acid changes at key antigenic sites. Journal of Virology 48: 52–60Google ScholarPubMed
Bridges, C. B., Lim, W., Hu-Primmer, J., Sims, L., Fukuda, K., Mak, K. H., Rowe, T., Thompson, W. W., Conn, L., Lu, X., Cox, N. J., and Katz, J. M.. 2002. Risk of influenza A (H5N1) infection among poultry workers, Hong Kong, 1997–1998. Journal of Infectious Diseases 185: 1005–10CrossRefGoogle ScholarPubMed
Brown, I. H. 2000. The epidemiology and evolution of influenza viruses in pigs. Veterinary Microbiology 74: 29–46CrossRefGoogle ScholarPubMed
Buonagurio, D. A., Nakada, S., Fitch, W. M., and Palese, P.. 1986. Epidemiology of influenza C virus in man: multiple evolutionary lineages and low rate of change. Virology 153: 12–21CrossRefGoogle ScholarPubMed
Bush, R. M., Bender, C. A., Subbarao, K., Cox, N. J., and Fitch, W. M.. 1999a. Predicting the evolution of human influenza A. Science 286: 1921–5CrossRefGoogle Scholar
Bush, R. M., Fitch, W. M., Bender, C. A., and Cox, N. J.. 1999b. Positive selection on the H3 hemagglutinin gene of human influenza virus A. Molecular Biology and Evolution 16: 1457–65CrossRefGoogle Scholar
Bush, R. M., Smith, C. B., Cox, N. J., and Fitch, W. M.. 2000. Effects of passage history and sampling bias on phylogenetic reconstruction of human influenza A evolution. Proceedings of the National Academy of Sciences USA 97: 6974–80CrossRefGoogle ScholarPubMed
Bush, R. M., W. M. Fitch, C. B. Smith, and N. J. Cox. 2001. Predicting influenza evolution: the impact of terminal and egg-adapted mutations. In Options for the Control of Influenza IV (Osterhaus, A. D. M. E., Ed.), pp. 147–53. Elsevier, Amsterdam
Chen, , , W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., O'Neill, R., Schickli, J., Palese, P., Henklein, P., Bennink, J. R., and Yewdell, J. W.. 2001. A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine 7: 1306–12CrossRefGoogle ScholarPubMed
Cox, N., X. Xu, C. Bender, A. Kendal, H. Regnery, M. Hemphill, and P. Rota. 1993. Evolution of hemagglutinin in epidemic variants and selection of vaccine viruses. In Options for the Control of Influenza II (Hannoun, C., A. P. Kendal, H. D. Klenk, and F. L. Ruben, Eds.), pp. 223–30. Excerpta Medica, Amsterdam
Cox, N., and H. Regnery. 1996. Global influenza surveillance: tracking a moving target in a rapidly changing world. In Options for the Control of Influenza III (Brown, L. E., Q. W. Hampson, and R. G. Webster, Eds.), pp. 591–8. Elsevier Science Publishers B. V. Amsterdam
Cox, , , N. J., and Bender, C. A.. 1995. The molecular epidemiology of influenza viruses. Seminars in Virology 6: 359–70CrossRefGoogle Scholar
Cox, N. J., and Y. Kawaoka. 1998. Orthomyxoviruses: influenza. In Topley and Wilson's Microbiology and Microbial Infections (Mahy, B. W. J., and L. Collier, Eds.), pp. 385–433. Arnold, London
Cox, N. J., and Subbarao, K.. 2000. Global epidemiology of influenza: past and present. Annual Review of Medicine 51: 407–21CrossRefGoogle ScholarPubMed
Cox, N. J., Black, R. A., and Kendal, A. P.. 1989. Pathways of evolution of influenza A (H1N1) viruses from 1977 to 1986 as determined by oligonucleotide mapping and sequencing studies. Journal of General Virology 70: 299–313CrossRefGoogle ScholarPubMed
de Jong, J. C., E. C. Claas, A. D. Osterhaus, R. G. Webster, and W. L. Lim. 1997. A pandemic warning? Nature 389: 554
Jong, J. C., Rimmelzwaan, G. F., Fouchier, R. A. M., and Osterhaus, A.. 2000. Influenza virus: a master of metamorphosis. Journal of Infection 40: 218–28CrossRefGoogle ScholarPubMed
Dowdle, W. R. 1997. The 1976 experience. Journal of Infectious Diseases 176(Suppl. 1): S69–72CrossRefGoogle ScholarPubMed
Dowdle, W. R. 1999. Influenza A virus recycling revisited. Bulletin of the World Health Organization 77: 820–8Google ScholarPubMed
Fanning, T. G., Slemons, R. D., Reid, A. H., Janczewski, T. A., Dean, J., and Taubenberger, J. K.. 2002. 1917 avian influenza virus sequences suggest that the 1918 pandemic virus did not acquire its hemagglutinin directly from birds. Journal of Virology 76: 7860–2CrossRefGoogle Scholar
Fitch, W. M., Bush, R. M., Bender, C. A., and Cox, N. J.. 1997. Long term trends in the evolution of H(3) HA1 human influenza type A. Proceedings of the National Academy of Sciences USA 94: 7712–8CrossRefGoogle ScholarPubMed
Francis, T. 1953. Influenza, the new acquaintance. Annals of Internal Medicine 39: 203–21Google Scholar
Garcia, M., Suarez, D. L., Crawford, J. M., Latimer, J. W., Slemons, R. D., Swayne, D. E., and Perdue, M. L.. 1997. Evolution of H5 subtype avian influenza A viruses in North America. Virus Research 51: 115–24CrossRefGoogle ScholarPubMed
Glezen, W. P., and R. B. Couch. 1997. Influenza viruses. In Viral Infections of Humans (Evans, A. S., and R. A. Kaslow, Eds.), pp. 473–505. Plenum Medical Book Company, New York
Gorman, O. T., Bean, W. J., and Webster, R. G.. 1992. Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis. Current Topics in Microbiology and Immunology 176: 75–97Google ScholarPubMed
Gregory, V., Bennett, M., Orkhan, M., Hajjar, S. Al, Varsano, N., Mendelson, E., Zambon, M., Ellis, J., Hay, A., and Lin, Y.. 2002. Emergence of influenza A H1N2 reassortant viruses in the human population during 2001. Virology 300: 1–7CrossRefGoogle ScholarPubMed
Guan, Y., Shortridge, K. F., Krauss, S., and Webster, R. G.. 1999. Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proceedings of the National Academy of Sciences USA 96: 9363–7CrossRefGoogle ScholarPubMed
Guo, Y. J., Jin, F. G., Wang, P., Wang, M., and Zhu, J. M.. 1983. Isolation of influenza C virus from pigs and experimental infection of pigs with influenza C virus. Journal of General Virology 64: 177–82Google ScholarPubMed
Guo, Y. J., Xu, X. Y., and Cox, N. J.. 1992. Human influenza A (H1N2) viruses isolated from China. Journal of General Virology 73: 383–7CrossRefGoogle ScholarPubMed
Hatta, M., and Kawaoka, Y.. 2002. The continued pandemic threat posed by avian influenza viruses in Hong Kong. Trends in Microbiology 10: 340–4CrossRefGoogle ScholarPubMed
Horimoto, T., and Kawaoka, Y.. 2001. Pandemic threat posed by avian influenza A viruses. Clinical Microbiology Reviews 14: 129–49CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P., Ronquist, F., Nielsen, R., and Bollback, J. P.. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–4CrossRefGoogle ScholarPubMed
Katz, J. M., Lim, W., Bridges, C. B., Rowe, T., Hu-Primmer, J., Lu, X., Abernathy, R. A., Clarke, M., Conn, L., Kwong, H., Lee, M., Au, G., Ho, Y. Y., Mak, K. H., Cox, N. J., and Fukuda, K.. 1999. Antibody response in individuals infected with avian influenza A (H5N1) viruses and detection of anti-H5 antibody among household and social contacts. Journal of Infectious Diseases 180: 1763–70CrossRefGoogle ScholarPubMed
Kawaoka, Y., Chambers, T. M., Sladen, W. L., and Webster, R. G.. 1988. Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology 163: 247–50CrossRefGoogle ScholarPubMed
Kawaoka, Y., Krauss, S., and Webster, R. G.. 1989. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. Journal of Virology 63: 4603–8Google ScholarPubMed
Lamb, R. A. 1989. Genes and proteins of the influenza viruses. In The Influenza Viruses (Krug, R. M., H. Fraenkel-Conrat, and R. R. Wagner, Eds.), pp. 1–88. Plenum Press, New York
Lindstrom, S. E., Hiromoto, Y., Nishimura, H., Saito, T., Nerome, R., and Nerome, K.. 1999. Comparative analysis of evolutionary mechanisms of the hemagglutinin and three internal protein genes of influenza B virus: multiple cocirculating lineages and frequent reassortment of the NP, M, and NS genes. Journal of Virology 73: 4413–26Google ScholarPubMed
Manuguerra, J. C., Zientara, S., Sailleau, C., Rousseaux, C., Gicquel, B., Rijks, I., and Werf, S.. 2000. Evidence for evolutionary stasis and genetic drift by genetic analysis of two equine influenza H3 viruses isolated in France. Veterinary Microbiology 74: 59–70CrossRefGoogle ScholarPubMed
Matsuzaki, Y., Muraki, Y., Sugawara, K., Hongo, S., Nishimura, H., Kitame, F., Katsushima, N., Numazaki, Y., and Nakamura, K.. 1994. Cocirculation of two distinct groups of influenza C virus in Yamagata City, Japan. Virology 202: 796–802CrossRefGoogle ScholarPubMed
Mounts, A. W., Kwong, H., Izurieta, H. S., Ho, Y., Au, T., Lee, M., Bridges, C. Buxton, Williams, S. W., Mak, K. H., Katz, J. M., Thompson, W. W., Cox, N. J., and Fukuda, K.. 1999. Case-control study of risk factors for avian influenza A (H5N1) disease, Hong Kong, 1997. Journal of Infectious Diseases 180: 505–8CrossRefGoogle Scholar
Mumford, J. A., and T. M. Chambers. 1998. Equine influenza. In Textbook of Influenza (Nicholson, K. G., R. G. Webster, and A. J. Hay, Eds.), pp. 146–62. Blackwell Science, Oxford
Murphy, B. R., and R. G. Webster. 1996. Orthomyxoviruses. In Book Orthomyxoviruses (Fields, B. N., D. M. Knipe, and P. M. Howley, Eds.), pp. 1397–445. Lippincott-Raven Publishers, Philadelphia
Nakajima, K., Desselberger, U., and Palese, P.. 1978. Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 274: 334–9CrossRefGoogle ScholarPubMed
Nakajima, S., Nakajima, K., and Kendal, A. P.. 1983. Identification of the binding sites to monoclonal antibodies on A/USSR/90/77 (H1N1) hemagglutinin and their involvement in antigenic drift in H1N1 influenza viruses. Virology 131: 116–27CrossRefGoogle ScholarPubMed
Nakajima, S., Nishikawa, F., and Nakajima, K.. 2000. Comparison of the evolution of recent and late phase of old influenza A (H1N1) viruses. Microbiology and Immunology 44: 841–7CrossRefGoogle ScholarPubMed
Nielsen, R., and J. P. Huelsenbeck. 2002. Detecting positively selected amino acid sites using posterior predictive P-values. Pacific Symposium on Biocomputing pp. 576–88
Noble, G. R. 1982. Epidemiological and clinical aspects of influenza. In Basic and Applied Influenza Research (Beare, A. S., Ed.), pp. 11–50. CDC Press, Boca Raton, FL
Osterhaus, A., Rimmelzwaan, G. F., Martina, B. E. E., Bestebroer, T. M., and Fouchier, R. A. M.. 2000. Influenza B virus in seals. Science 288: 1051–3CrossRefGoogle ScholarPubMed
Parvin, J. D., Moscona, A., Pan, W. T., Leider, J. M., and Palese, P.. 1986. Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type 1. Journal of Virology 59: 377–83Google ScholarPubMed
Peng, G., Hongo, S., Muraki, Y., Sugawara, K., Nishimura, H., Kitame, F., and Nakamura, K.. 1994. Genetic reassortment of influenza C viruses in man. Journal of General Virology 75: 3619–22CrossRefGoogle ScholarPubMed
Potter, C. W. 2001. A history of influenza. Journal of Applied Microbiology 91: 572–9CrossRefGoogle ScholarPubMed
Raymond, F. L., Caton, A. J., Cox, N. J., Kendal, A. P., and Brownlee, G. G.. 1986. The antigenicity and evolution of influenza H1 haemagglutinin, from 1950–1957 and 1977–1983: two pathways from one gene. Virology 148: 275–87CrossRefGoogle ScholarPubMed
Reid, A. H., Fanning, T. G., Hultin, J. V., and Taubenberger, J. K.. 1999. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proceedings of the National Academy of Sciences USA 96: 1651–6CrossRefGoogle ScholarPubMed
Robertson, J. S. 1993. Clinical influenza virus and the embryonated hens egg. Reviews in Medical Virology 3: 97–106CrossRefGoogle Scholar
Rota, P. A., Wallis, T. R., Harmon, M. W., Rota, J. S., Kendal, A. P., and Nerome, K.. 1990. Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology 175: 59–68CrossRefGoogle ScholarPubMed
Scholtissek, C. 1990. Pigs as ‘mixing vessels’ for the creation of new pandemic influenza A viruses. Medical Principles and Practice 2: 65–71CrossRefGoogle Scholar
Scholtissek, C. 1998. Genetic reassortment of human influenza viruses in nature. Textbook of Influenza (Nicholson, K. G., R. G. Webster, and A. J. Hay, Eds.), pp. 120–5. Blackwell Science, Oxford
Scholtissek, C., U. Schultz, S. Ludwig, and W. M. Fitch. 1993. The role of swine in the origin of pandemic influenza. Options for the Control of Influenza II (Hannoun, H. C., Ed.), pp. 193–201. Elsevier, Amsterdam
Shortridge, K. F., Zhou, N. N., Guan, Y., Gao, P., Ito, T., Kawaoka, Y., Kodihalli, S., Krauss, S., Markwell, D., Murti, K. G., Norwood, M., Senne, D., Sims, L., Takada, A., and Webster, R. G.. 1998. Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252: 331–42CrossRefGoogle ScholarPubMed
Smith, W., Andrewes, D. H., and Laidlaw, P. P.. 1933. A virus obtained from influenza patients. Lancet 2: 66–8CrossRefGoogle Scholar
Snacken, R., Kendal, A. P., Haaheim, L. R., and Wood, J. M.. 1999. The next influenza pandemic: lessons from Hong Kong, 1997. Emerging Infectious Diseases 5: 195–203CrossRefGoogle ScholarPubMed
Stallknecht, D. E., 1997. Ecology and epidemiology of avian influenza viruses in wild bird populations: waterfowl, shorebirds, pelicans, cormorants, etc. Fourth International Symposium on Avian Influenza (Swayne, E. E., and R. D. Slemons, Eds.), pp. 61–7. American Association of Avian Pathologists, Athens, GA
Stallknecht, D. E., and Shane, S. M.. 1988. Host range of avian influenza virus in free-living birds. Veterinary Research Communications 12: 125–41CrossRefGoogle ScholarPubMed
Suarez, D. L. 2000. Evolution of avian influenza viruses. Veterinary Microbiology 74: 15–27CrossRefGoogle ScholarPubMed
Taubenberger, J. K., Reid, A. H., Krafft, A. E., Bijwaard, K. E., and Fanning, T. G.. 1997. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275: 1793–6CrossRefGoogle ScholarPubMed
Taubenberger, J. K., Reid, A. H., and Fanning, T. G.. 2000. The 1918 influenza virus: a killer comes into view. Virology 274: 241–5CrossRefGoogle ScholarPubMed
Webby, R. J., Swenson, S. L., Krauss, S. L., Gerrish, P. J., Goyal, S. M., and Webster, R. G.. 2000. Evolution of swine H3N2 influenza viruses in the United States. Journal of Virology 74: 8243–51CrossRefGoogle ScholarPubMed
Webster, R. G., and Laver, W. G.. 1980. Determination of the number of nonoverlapping antigenic areas on Hong Kong (H3N2) influenza virus hemagglutinin with monoclonal antibodies and the selection of variants with potential epidemiological significance. Virology 104: 139–48CrossRefGoogle ScholarPubMed
Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M., and Kawaoka, Y.. 1992. Evolution and ecology of influenza A viruses. Microbiological Reviews 56: 152–79Google ScholarPubMed
Webster, R. G., Shortridge, K. F., and Kawaoka, Y.. 1997. Influenza: interspecies transmission and emergence of new pandemics. Fems Immunology and Medical Microbiology 18: 275–9CrossRefGoogle ScholarPubMed
Wiley, D. C., Wilson, I. A., and Skehel, J. J.. 1981. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289: 373–8CrossRefGoogle ScholarPubMed
Wilson, I. A., and Cox, N. J.. 1990. Structural basis of immune recognition of influenza virus hemagglutinin. Annual Review of Immunology 8: 737–71CrossRefGoogle ScholarPubMed
Wood, J. M., Major, D., Newman, R. W., Dunleavy, U., Nicolson, C., Robertson, J. S., and Schild, G. C.. 2002. Preparation of vaccines against H5N1 influenza. Vaccine 20(Suppl. 2): S84–7CrossRefGoogle ScholarPubMed
Xu, X., Y. Guo, P. Rota, M. Hemphill, A. P. Kendal, and N. Cox. 1993. Genetic reassortment of human influenza virus in nature. In Options for the Control of Influenza II (Hannoun, C., A. P. Kendal, H. D. Klenk, and F. L. Ruben, Eds.), pp. 203– 7. Excerpta Medica, Amsterdam
Yamashita, M., Krystal, M., Fitch, W. M., and Palese, P.. 1988. Influenza B virus evolution: co-circulating lineages and comparison of evolutionary pattern with those of influenza A and C viruses. Virology 163: 112–22CrossRefGoogle ScholarPubMed
Yang, Z. 2000. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. Journal of Molecular Evolution 51: 423–32CrossRefGoogle ScholarPubMed
Yang, Z., Nielsen, R., Goldman, N., and Pedersen, A. M.. 2000. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155: 431–49Google ScholarPubMed
Ziegler, T., Hemphill, M. L., Ziegler, M. L., Perez-Oronoz, G., Klimov, A. I., Hampson, A. W., Regnery, H. L., and Cox, N. J.. 1999. Low incidence of rimantadine resistance in field isolates of influenza A viruses. Journal of Infectious Diseases 180: 935–9CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Influenza Evolution
    • By Robin M. Bush, Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, Nancy J. Cox, Influenza Branch, Centers for Disease Control & Prevention, Atlanta, GA 30333
  • Edited by Krishna R. Dronamraju, Foundation for Genetic Research, Houston, Texas
  • Book: Infectious Disease and Host-Pathogen Evolution
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546259.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Influenza Evolution
    • By Robin M. Bush, Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, Nancy J. Cox, Influenza Branch, Centers for Disease Control & Prevention, Atlanta, GA 30333
  • Edited by Krishna R. Dronamraju, Foundation for Genetic Research, Houston, Texas
  • Book: Infectious Disease and Host-Pathogen Evolution
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546259.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Influenza Evolution
    • By Robin M. Bush, Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, Nancy J. Cox, Influenza Branch, Centers for Disease Control & Prevention, Atlanta, GA 30333
  • Edited by Krishna R. Dronamraju, Foundation for Genetic Research, Houston, Texas
  • Book: Infectious Disease and Host-Pathogen Evolution
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546259.008
Available formats
×