Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T11:45:34.127Z Has data issue: false hasContentIssue false

67 - New approaches to antiviral drug discovery (genomics/proteomics)

from Part VI - Antiviral therapy

Published online by Cambridge University Press:  24 December 2009

Mark N. Prichard
Affiliation:
Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Discovery of antiviral drugs has always been an opportunistic endeavor. Small molecules in general and nucleoside analogues in particular have led investigators to discover uncharacterized viral gene products that could be exploited for the purpose of antiviral chemotherapy. Great strides have also been made in understanding fundamental events in the viral replication cycle including the binding of viral glycoproteins to cellular receptors, viral regulatory proteins that control expression of viral and cellular gene expression, viral genes that affect the synthesis and packaging of the viral genome, and viral factors that subvert the host immune response (Whitley and Roizman, 2001). Many of the viral genes that contribute to these processes are known and for some of them, the precise function is understood at the molecular level. For these targets it is comparatively simple to reduce the essential function to a biochemical assay, such as a polymerase or protease assay for use in a high throughput screen in order to identify small molecule inhibitors of enzyme function (Liu and Roizman, 1993). This approach has facilitated the proactive and rational search for specific enzyme inhibitors and has led to the development of effective antiviral therapies. Although this approach is effective, it requires well-characterized targets with a defined biochemical function, and can be applied only to a very small proportion of the essential viral gene products. At present, the best targets for antiviral chemotherapy likely remain undescribed and unutilized.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1211 - 1218
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashburner, M., Ball, C. A., Blake, J. A.et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25, 25–29.CrossRefGoogle ScholarPubMed
Baba, M., Konno, K., Shigeta, S., and Clercq, E. (1986). Inhibitory effects of selected antiviral compounds on newly isolated clinical varicella-zoster virus strains. Tohoku J. Exp. Med., 148, 275–283.CrossRefGoogle ScholarPubMed
Baer, R., Bankier, A. T., Biggin, M. D.et al. (1984). DNA sequence and expression of the B95–8 Epstein-Barr virus genome. Nature, 310, 207–211.CrossRefGoogle ScholarPubMed
Biron, K. K. and Elion, G. B. (1980). In vitro susceptibility of varicella-zoster virus to acyclovir. Antimicrob. Agents Chemother., 18, 443–447.CrossRefGoogle ScholarPubMed
Biron, K. K., Harvey, R. J., Chamberlain, S. C.et al. (2002). Potent and selective inhibition of human cytomegalovirus replication by 1263W94, a benzimidazole L-riboside with a unique mode of action. Antimicrob. Agents Chemother., 46, 2365–2372.CrossRefGoogle ScholarPubMed
Boyd, M. R., Bacon, T. H., Sutton, D., and Cole, M. (1987). Antiherpesvirus activity of 9-(4-hydroxy-3-hydroxy-methylbut-1-yl)guanine (BRL 39123) in cell culture. Antimicrob. Agents Chemother., 31, 1238–1242.CrossRefGoogle Scholar
Browne, E. P., Wing, B., Coleman, D., and Shenk, T. (2001). Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J. Virol., 75, 12319–12330.CrossRefGoogle ScholarPubMed
Cha, T. A., Tom, E., Kemble, G. W., Duke, G. M., Mocarski, E. S., and Spaete, R. R. (1996). Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol., 70, 78–83.Google Scholar
Chee, M. S., Bankier, A. T., Beck, S.et al. (1990). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol., 154, 125–169.Google ScholarPubMed
Cheng, Y. C., Grill, S., Derse, D., et al. (1981). Mode of action of phosphonoformate as an anti-herpes simplex virus agent. Biochim. Biophys. Acta, 652, 90–98.CrossRefGoogle ScholarPubMed
Colby, B. M., Shaw, J. E., Elion, G. B., and Pagano, J. S. (1980). Effect of acyclovir [9-(2-hydroxyethoxymethyl)guanine] on Epstein–Barr virus DNA replication. J. Virol., 34, 560–568.Google ScholarPubMed
Collins, F. S., Green, E. D., Guttmacher, A. E., and Guyer, M. S. (2003). A vision for the future of genomics research. Nature, 422, 835–847.CrossRefGoogle ScholarPubMed
Collins, P. and Oliver, N. M. (1985). Comparison of the in vitro and in vivo antiherpes virus activities of the acyclic nucleosides, acyclovir (Zovirax) and 9-[(2-hydroxy-1-hydroxymethylethoxy)methyl]guanine (BWB759U). Antiviral Res., 5, 145–156.CrossRefGoogle Scholar
Darby, G., Larder, B. A., Bastow, K. F., and Field, H. J. (1980). Sensitivity of viruses to phosphorylated 9-(2-hydroxyethoxymethyl)guanine revealed in TK-transformed cells. J. Gen. Virol., 48, 451–454.CrossRefGoogle ScholarPubMed
Datta, A. K. and Hood, R. E. (1981). Mechanism of inhibition of Epstein–Barr virus replication by phosphonoformic acid. Virology, 114, 52–59.CrossRefGoogle ScholarPubMed
Davison, A. J. and Scott, J. E. (1986). The complete DNA sequence of varicella-zoster virus. J. Gen. Virol., 67(9), 1759–1816.CrossRefGoogle ScholarPubMed
Davison, A. J., Dargan, D. J., and Stow, N. D. (2002). Fundamental and accessory systems in herpesviruses. Antiviral Res., 56, 1–11.CrossRefGoogle ScholarPubMed
Davison, A. J., Dolan, A., Akter, P.et al. (2003). The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J. Gen. Virol., 84, 17–28.CrossRefGoogle ScholarPubMed
De Clercq, E., Sakuma, T., Baba, M.et al. (1987). Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines. Antiviral Res., 8, 261–272.CrossRefGoogle ScholarPubMed
Dolan, A., Jamieson, F. E., Cunningham, C., Barnett, B. C. and McGeoch, D. J. (1998). The genome sequence of herpes simplex virus type 2. J. Virol., 72, 2010–21.Google ScholarPubMed
Earnshaw, D. L., Bacon, T. H., Darlison, S. J., Edmonds, K., Perkins, R. M., and Vere Hodge, R. A. (1992). Mode of antiviral action of penciclovir in MRC-5 cells infected with herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus. Antimicrob. Agents Chemother., 36, 2747–2757.CrossRefGoogle Scholar
Elion, G. B. (1982). Mechanism of action and selectivity of acyclovir. Am. J. Med., 73, 7–13.CrossRefGoogle ScholarPubMed
Fruh, K., Simmen, K., Luukkonen, B. G., Bell, Y. C., and Ghazal, P. (2001). Virogenomics: a novel approach to antiviral drug discovery. Drug Discov. Today, 6, 621–627.CrossRefGoogle ScholarPubMed
Gompels, U. A., Nicholas, J., Lawrence, G.et al. (1995). The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology, 209, 29–51.CrossRefGoogle ScholarPubMed
Greco, A., Bienvenut, W., Sanchez, J. C.et al. (2001). Identification of ribosome-associated viral and cellular basic proteins during the course of infection with herpes simplex virus type 1. Proteomics, 1, 545–549.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Gustafson, E. A., Schinazi, R. F., and Fingeroth, J. D. (2000). Human herpesvirus 8 open reading frame 21 is a thymidine and thymidylate kinase of narrow substrate specificity that efficiently phosphorylates zidovudine but not ganciclovir. J. Virol., 74, 684–692.CrossRefGoogle Scholar
Hahnenberger, K. M., Krystal, M., Esposito, K., Tang, W., and Kurtz, S. (1996). Use of microphysiometry for analysis of heterologous ion channels expressed in yeast. Nat. Biotechnol., 14, 880–883.CrossRefGoogle Scholar
Harmenberg, J., Wahren, B., and Oberg, B. (1980). Influence of cells and virus multiplicity on the inhibition of herpesviruses with acycloguanosine. Intervirology, 14, 239–244.CrossRefGoogle ScholarPubMed
Jarvest, R. L., Pinto, I. L., Ashman, S. M.et al. (1999). Inhibition of herpes proteases and antiviral activity of 2-substituted thieno[2,3-d]oxazinones. Bioorg. Med. Chem. Lett., 9, 443–448.CrossRefGoogle Scholar
Kedes, D. H. and Ganem, D. (1997). Sensitivity of Kaposi's sarcoma-associated herpesvirus replication to antiviral drugs. Implications for potential therapy. J. Clin. Invest., 99, 2082–2086.CrossRefGoogle ScholarPubMed
Kern, E. R., Richards, J. T., Overall, J. C. Jr., and Glasgow, L. A. (1981). A comparison of phosphonoacetic acid and phosphonoformic acid activity in genital herpes simplex virus type 1 and type 2 infections of mice. Antiviral Res., 1, 225–235.CrossRefGoogle Scholar
Krosky, P. M., Underwood, M. R., Turk, S. R.et al. (1998). Resistance of human cytomegalovirus to benzimidazole ribonucleosides maps to two open reading frames: UL89 and UL56. J. Virol., 72, 4721–4728.Google ScholarPubMed
Littler, E., Stuart, A. D., and Chee, M. S. (1992). Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature, 358, 160–162.CrossRefGoogle ScholarPubMed
Liu, F., and Roizman, B. (1993). Characterization of the protease and other products of amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. J. Virol., 67, 1300–1309.Google ScholarPubMed
Liuzzi, M., Deziel, R., Moss, N.et al. (1994). A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature, 372, 695–698.CrossRefGoogle ScholarPubMed
Long, M. C., Bidanset, D. J., Williams, S. L., Kushner, N. L. and Kern, E. R. (2003). Determination of antiviral efficacy against lymphotropic herpesviruses utilizing flow cytometry. Antiviral Res., 58, 149–157.CrossRefGoogle ScholarPubMed
Lurain, N. S., Weinberg, A., Crumpacker, C. S., and Chou, S. (2001). Sequencing of cytomegalovirus UL97 gene for genotypic antiviral resistance testing. Antimicrob. Agents Chemother., 45, 2775–2780.CrossRefGoogle ScholarPubMed
Martin, J. C., Dvorak, C. A., Smee, D. F., Matthews, T. R., and Verheyden, J. P. (1983). 9-[(1,3-Dihydroxy-2-propoxy) methyl]guanine: a new potent and selective antiherpes agent. J. Med. Chem., 26, 759–761.CrossRefGoogle ScholarPubMed
McGeoch, D. J., Dalrymple, M. A., Davison, A. J.et al. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol., 69(7), 1531–1574.Google Scholar
McGeoch, D. J., Cunningham, C., McIntyre, G., and Dolan, A. (1991). Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. J. Gen. Virol., 72(12), 3057–3075.Google Scholar
Medveczky, M. M., Horvath, E., Lund, T., and Medveczky, P. G. (1997). In vitro antiviral drug sensitivity of the Kaposi's sarcoma-associated herpesvirus. AIDS, 11, 1327–1332.CrossRefGoogle ScholarPubMed
Montague, M. G. and Hutchison, C. A., 3rd. (2000). Gene content phylogeny of herpesviruses. Proc. Natl Acad. Sci. USA, 97, 5334–5339.CrossRefGoogle ScholarPubMed
Moses, A. V., Jarvis, M. A., Raggo, C.et al. (2002). A functional genomics approach to Kaposi's sarcoma. Ann. NY Acad. Sci., 975, 180–191.CrossRefGoogle ScholarPubMed
Novotny, J., Rigoutsos, I., Coleman, D., and Shenk, T. (2001). In silico structural and functional analysis of the human cytomegalovirus (HHV5) genome. J. Mol. Biol., 310, 1151–1166.CrossRefGoogle ScholarPubMed
Oien, N. L., Brideau, R. J., Hopkins, T. A.et al. (2002). Broad-spectrum antiherpes activities of 4-hydroxyquinoline carboxamides, a novel class of herpesvirus polymerase inhibitors. Antimicrob. Agents Chemother., 46, 724–730.CrossRefGoogle ScholarPubMed
Pfeiffer, B., Thomson, B., and Chandran, B. (1995). Identification and characterization of a cDNA derived from multiple splicing that encodes envelope glycoprotein gp105 of human herpesvirus 6. J. Virol., 69, 3490–3500.Google ScholarPubMed
Pinto, I. L., Jarvest, R. L., Clarke, B. (1999). Inhibition of human cytomegalovirus protease by enedione derivatives of thieno[2,3-d]oxazinones through a novel dual acylation/alkylation mechanism. Bioorg. Med. Chem. Lett., 9, 449–452.CrossRefGoogle ScholarPubMed
Rigoutsos, I., Novotny, J., Huynh, T.et al. (2003). In silico pattern-based analysis of the human cytomegalovirus genome. J. Virol., 77, 4326–4344.CrossRefGoogle ScholarPubMed
Russo, J. J., Bohenzky, R. A., Chien, M. C.et al. (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA, 93, 14862–14867.CrossRefGoogle Scholar
Shoemaker, D. D., Schadt, E. E., Armour, C. D.et al. (2001). Experimental annotation of the human genome using microarray technology. Nature, 409, 922–927.CrossRefGoogle ScholarPubMed
Stingley, S. W., Ramirez, J. J., Aguilar, S. A.et al. (2000). Global analysis of herpes simplex virus type 1 transcription using an oligonucleotide-based DNA microarray. J. Virol., 74, 9916–9927.CrossRefGoogle ScholarPubMed
Stoll, V., Stewart, K. D., Maring, C. J.et al. (2003). Influenza neuraminidase inhibitors: structure-based design of a novel inhibitor series. Biochemistry, 42, 718–727.CrossRefGoogle ScholarPubMed
Strausberg, R. L. and Schreiber, S. L. (2003). From knowing to controlling: a path from genomics to drugs using small molecule probes. Science, 300, 294–295.CrossRefGoogle ScholarPubMed
Sullivan, V., Talarico, C. L., Stanat, S. C., Davis, M., Coen, D. M., and Biron, K. K. (1992). A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature, 358, 162–164.CrossRefGoogle ScholarPubMed
Tatusov, R. L., Koonin, E. V., and Lipman, D. J. (1997). A genomic perspective on protein families. Science, 278, 631–637.CrossRefGoogle ScholarPubMed
Thomsen, D. R., Oien, N. L., Hopkins, T. A.et al. (2003). Amino acid changes within conserved region III of the herpes simplex virus and human cytomegalovirus DNA polymerases confer resistance to 4-oxo-dihydroquinolines, a novel class of herpesvirus antiviral agents. J. Virol., 77, 1868–1876.CrossRefGoogle ScholarPubMed
Townsend, L. B., Devivar, R. V., Turk, S. R., Nassiri, M. R., and Drach, J. C. (1995). Design, synthesis, and antiviral activity of certain 2,5,6-trihalo-1-(beta-D-ribofuranosyl)benzimidazoles. J. Med. Chem., 38, 4098–4105.CrossRefGoogle ScholarPubMed
Tugendreich, S., Perkins, E., Couto, J.et al. (2001). A streamlined process to phenotypically profile heterologous cDNAs in parallel using yeast cell-based assays. Genome Res., 11, 1899–1912.Google ScholarPubMed
Underwood, M. R., Harvey, R. J., Stanat, S. C.et al. (1998). Inhibition of human cytomegalovirus DNA maturation by a benzimidazole ribonucleoside is mediated through the UL89 gene product. J. Virol., 72, 717–725.Google ScholarPubMed
Venter, J. C., Levy, S., Stockwell, T., Remington, K., and Halpern, A. (2003). Massive parallelism, randomness and genomic advances. Nat. Genet., 33(Suppl), 219–227.CrossRefGoogle ScholarPubMed
Wahren, B. and Oberg, B. (1980). Inhibition of cytomegalovirus late antigens by phosphonoformate. Intervirology, 12, 335–339.CrossRefGoogle ScholarPubMed
Waring, J. F., Gum, R., Morfitt, D.et al. (2002). Identifying toxic mechanisms using DNA microarrays: evidence that an experimental inhibitor of cell adhesion molecule expression signals through the aryl hydrocarbon nuclear receptor. Toxicology, 181–182, 537–550.CrossRefGoogle ScholarPubMed
Whitley, R. J. and Roizman, B. (2001). Herpes simplex virus infections. Lancet, 357, 1513–1518.CrossRefGoogle ScholarPubMed
Williams, S. L., Hartline, C. B., Kushner, N. L.et al. (2003). In vitro activities of benzimidazole D- and L-ribonucleosides against herpesviruses. Antimicrob. Agents Chemother., 47, 2186–2192.CrossRefGoogle Scholar
Zacny, V. L., Gershburg, E., Davis, M. G., Biron, K. K., and Pagano, J. S. (1999). Inhibition of Epstein–Barr virus replication by a benzimidazole L-riboside: novel antiviral mechanism of 5, 6-dichloro-2-(isopropylamino)-1-beta-L-ribofuranosyl-1H-benzimidazole. J. Virol., 73, 7271–7277.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×