Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T09:28:50.899Z Has data issue: false hasContentIssue false

7 - Bacterial contamination in blood and blood components

from Section 1 - Agents

Published online by Cambridge University Press:  12 January 2010

Carl P. McDonald
Affiliation:
Head of Bacteriology, NHS Blood and Transplant Colindale, London, UK
M. A. Blajchman
Affiliation:
Canadian Blood Services and McMaster University, Hamilton, Ontario, Canada
Brian C. Dow
Affiliation:
Consultant, Clinical Microbiologist; Head, Scottish National Blood Transfusion Service, National Microbiology Reference Unit, West of Scotland, Transfusion Centre, Glasgow, UK
John A. J. Barbara
Affiliation:
University of the West of England, Bristol
Fiona A. M. Regan
Affiliation:
HNSBT and Hammersmith Hospitals NHS Trust, London
Marcela Contreras
Affiliation:
University of the West of England, Bristol
Get access

Summary

Introduction

Bacterial transmission remains a significant problem in transfusion medicine. This issue is not a new problem and was first identified more than 60 years ago with the first report of a bacterial transfusion-transmission from a blood component in 1941 (Novak, 1939; Strumia and McGraw, 1941). Since the 1970s remarkable progress has been made in increasing the safety of the blood supply with regard to viruses. Unfortunately, this has not been the case with bacterial contamination. Moreover, the continued emphasis in striving for ‘zero risk’ with regard to blood-borne viruses and in measures to prevent the ‘potential’ problem of prion transmission has possibly been to the detriment of resolving the issue of bacterial contamination. The current risk of receiving bacterially contaminated platelet concentrates, however, may be 1000 times higher than the combined risk of transfusion-transmitted infection with the human immunodeficiency virus (HIV), hepatitis C virus, hepatitis B virus and human T-cell lymphotropic virus (HTLV) (Blajchman, 2002).

In the USA, from 1985 to 1999, bacterial contamination was the most frequently reported cause of mortality after haemolytic reactions, accounting for over 10% (77/694) of transfusion fatalities (Centre for Biologics Evaluation and Research, 1999). From 1986 to 1991, 29 out of 182 (16%) transfusion-associated fatalities reported to the USA Food and Drug Administration (FDA) were caused by bacterial contamination of blood components (Hoppe, 1992).

From 1994 to 1998, the French Haemovigilance system attributed 18 deaths (four occurring in 1997) to blood components contaminated with bacteria (Debeir et al., 1999; Morel, 1999a).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schryver, A. and Meheus, A. (1990) Syphilis and blood transfusion: a global perspective. Transfusion, 30, 844–7.CrossRefGoogle ScholarPubMed
Egglestone, S. I. and Turner, A. J. L. for the PHLS Syphilis Serology Working Group (2000) Serological diagnosis of syphilis. Commun Dis Public Health, 3, 158–62.Google ScholarPubMed
Orton, S. (2001) Syphilis and blood donors: what we know, what we do not know, and what we need to know. Transfus Med Rev, 15, 282–92.CrossRefGoogle Scholar
Young, H. (1992) Syphilis: new diagnostic directions. Int J STD AIDS, 3, 391–413.CrossRefGoogle ScholarPubMed
Adams, M. R., Johnson, D. K. and Busch, M. P. (1997) Automatic volumetric capillary cytometry for counting white cells in white cell-reduced platelet-pheresis components. Transfusion, 37, 29–37.CrossRefGoogle Scholar
Amorim, L., Lopes, M., Oliveira, J. F., et al. (2004) Bacterial detection in platelet concentrates: a comparison between urine strips and culture. Transfusion, 44 (Supplement), 48A.Google Scholar
Anderson, K. C., Lew, M. A. and Gorgone, B. C. (1986) Transfusion-related sepsis after prolonged platelet storage. Am J Med, 81, 405–11.CrossRefGoogle ScholarPubMed
Arduino, A. M., Bland, L. A. and Tipple, M. A. (1989) Growth and endotoxin productions of Yersinia enterocolitica and Enterobacter agglomerans in packed erythrocytes. J Clin Microbiol, 27, 1483–5.Google Scholar
AuBuchon, J. P., Cooper, L. K., Leach, M. F., et al. (2002a) Experience with universal bacterial culturing to detect contamination of apheresis platelet units in a hospital transfusion service. Transfusion, 42, 855–61.CrossRefGoogle Scholar
AuBuchon, J. P., Pickard, C. and Herschel, L. (1995) Sterility of plastic tubing welds in components stored at room temperature. Transfusion, 35, 303–7.CrossRefGoogle ScholarPubMed
AuBuchon, J. P., Pickard, C. A., Herschel, L. H., et al. (2002b) Production of pathogen-inactivated RBC concentrates using PEN 110 chemistry: a phase I clinical study. Transfusion, 42, 146–52.CrossRefGoogle Scholar
Bang, F. B. (1953) The toxic effect of a marine bacterium on Limulus and the formation of blood clots. Bio Bull, 105, 361–2.Google Scholar
Barrett, B. B., Andersen, J. W. and Anderson, K. C. (1993) Strategies for the avoidance of bacterial contamination of blood components. Transfusion, 33, 228–33.CrossRefGoogle ScholarPubMed
Beausang, L. A., Levin, A. and Kovalenko, V. (2004) A rapid assay for the detection of bacteria in platelet units. Transfusion, 44 (Supplement), 47A.Google Scholar
Benavides, S., Nicol, K., Koranyi, K., et al. (2003) Yersinia septic shock following an autologous transfusion in a pediatric patient. Transfus Apheresis, Sci, 28, 19–23.CrossRefGoogle Scholar
Benjamin, R. J. and Mintz, P. D. (2005) Bacterial detection and extended platelet storage: the next step forward. Transfusion, 45, 1832–5.CrossRefGoogle ScholarPubMed
Bertolini, F. and Murphy, S. (1994) A multicenter evaluation of reproducibility of swirling in platelet concentrates. Transfusion, 34, 796–801.CrossRefGoogle ScholarPubMed
Betts, W. B. and Brown, A. P. (1999) Dielectrophoretic analysis of microbes in water. Journal of Applied Microbiology Symposium Supplement, 85, 201S–13S.CrossRefGoogle Scholar
Bhanji, S., Williams, B., Sheller, B., et al. (2002) Transient bacteremia induced by toothbrushing: a comparison of the Sonicare toothbrush with a conventional toothbrush. Pediatr Dent, 24, 295–9.Google ScholarPubMed
Bjork, P. and Johnson, U. (1998) Detection of bacterial growth in platelet concentrates (Abstract). Vox Sang, 74 (Suppl.), 1267.Google Scholar
Blajchman, M. A. (2002) Incidence and significance of the bacterial contamination of blood components. Dev Bio, 108, 59–67.Google ScholarPubMed
Blajchman, M. A., Beckers, E. A., Dickmeiss, E., et al. (2005) Bacterial detection of platelets: current problems and possible resolutions. Transfus Med Rev, 19, 259–72.CrossRefGoogle ScholarPubMed
Blajchman, M. A., Thornley, J. H., and Richardson, H. (1979) Platelet transfusion-induced Serratia marcescens sepsis due to vacuum tube contamination. Transfusion, 19, 39–44.CrossRefGoogle ScholarPubMed
Block, S. S., ed. (2001) Disinfection, Sterilization, and Preservation. 5th edn. Lippincott Williams & Wilkins, Philadelphia.Google Scholar
Bos, H., Yedema, T. H. and Luten, M. (2002) Reduction of the incidence of bacterial contamination by pre-donation drawing blood for safety tests. Vox Sang, 83 (Suppl.2), 14.Google Scholar
Boulton, F. E., Chapman, S. T. and Walsh, T. H. (1998) Fatal reaction to transfusion of red-cell concentrate contaminated with Serratia liquefaciens. Transfus Med, 8, 15–8.CrossRefGoogle ScholarPubMed
Bradley, R. M., Gander, R. M. and Patel, S. K. (1997) Inhibitory effect of 0°C storage on the proliferation of Yersinia enterocolitica in donated blood. Transfusion, 37, 691–5.CrossRefGoogle Scholar
Brecher, M. E., Hay, S. N., and Rothenberg, S. J. (2004) Validation of BacT/ALERT plastic culture bottles for use in testing of whole-blood-derived leukoreduced platelet-rich-plasma-derived platelets. Transfusion, 44, 1174–8.CrossRefGoogle ScholarPubMed
Brecher, M. E., Heath, D. and Hay, S. (2005) Evaluation of a new generation culture bottle using the BacT/ALERT 3D microbial detection system on 9 common contaminating organisms found in platelet components. Transfusion, 42, 774–9.CrossRefGoogle Scholar
Brecher, M. E., Hogan, J. J. and Boothe, G. (1993) The use of a chemiluminescence-linked universal bacterial ribosomal RNA gene probe and blood gas analysis for the rapid detection of bacterial contamination in white cell reduced and non-reduced platelets. Transfusion, 33, 450–7.CrossRefGoogle Scholar
Brecher, M. E., Hogan, J. J. and Boothe, G. (1994) Platelet bacterial contamination and the use of a chemiluminescence-linked universal bacterial ribosomal RNA gene probe. Transfusion, 34, 750–5.CrossRefGoogle ScholarPubMed
Brecher, M. E., Holland, P. V., Pineda, A. A., et al. (2000a) Growth of bacteria in inoculated platelets: implications for bacteria detection and the extension of platelet storage. Transfusion, 40, 1308–12.CrossRefGoogle Scholar
Brecher, M. E., Means, N. and Jere, C. S. (2001) Evaluation of the BacT/ALERT 3D microbial detection system for platelet bacterial contamination: an analysis of 15 contaminating organisms. Transfusion, 41, 477–82.CrossRefGoogle Scholar
Brecher, M. E., Wong, E. C. C., Chen, S. E., et al. (2000b) Antibiotic-labeled probes and microvolume fluorimetry for the rapid detection of bacterial contamination in platelet components: a preliminary report. Transfusion, 40, 411–3.CrossRefGoogle Scholar
Bruneau, C., Perez, P., Chassaigne, M., et al. (2001) Efficacy of a new collection procedure for preventing bacterial contamination of whole-blood donations. Transfusion, 41, 74–81.CrossRefGoogle ScholarPubMed
Budowsky, E. I., Zalesskaya, M. A., Nepomnyashchaya, N. M., et al. (1996) Principles of selective inactivation of the viral genome: dependence for the rate of viral RNA modification on the number of protonizable groups in ethyleneimine. Vaccine Res, 5, 29–39.Google Scholar
Burstain, J. M., Brecher, M. E., Workman, K., et al. (1997) Rapid identification of bacterially contaminated platelets using reagent strips: glucose and pH analysis as markers of bacterial metabolism. Transfusion, 37, 255–8.CrossRefGoogle ScholarPubMed
Casewell, M. W., Slater, N. and Cooper, J. E. (1981) Operating theatre water-baths as a cause of Pseudomonas septicaemia. J Hosp Infect, 2, 237–40.CrossRefGoogle ScholarPubMed
Center for Biologics Evaluation and Research (1999) Workshop on bacterial contamination of platelets, Bethesda. www.fda.gov.cber/minutes/bact092499.pdf.
Centers for Disease Control. (1991) Yersinia enterocolitica bacteremia and endotoxin shock associated with red blood cell transfusion – United States. Morbidity and Mortality Weekly Report, 40, 176–8.
Chaney, R., Rider, J. and Pamphilon, D. (1999) Direct detection of bacteria in cellular blood products using bacterial ribosomal RNA-directed probes coupled to electrochemiluminescence. Transfus Med, 9, 177–88.CrossRefGoogle ScholarPubMed
Chiu, E. K., Yuen, K. Y., Lie, A. K., et al. (1994) A prospective study of symptomatic bacteremia following platelet transfusion and of its management. Transfusion, 34, 950–4.CrossRefGoogle ScholarPubMed
Chongokolwatana, V., Morgan, M. and Feagin, J. C. (1993) Comparison of microscopy and a bacterial DNA probe for detecting bacterially contaminated platelets (Abstract). Transfusion, 33(Suppl.), 50S.Google Scholar
Choo, Y., Rudon, L., Czajkowska, Z., et al. (2004) Bacterial screening of platelet concentrates using dipstick measurements of glucose and pH: validation in a tertiary care hospital. Transfusion, 44 (Suppl.), 51A.Google Scholar
Claeys, H. and Verhaeghe, B. (2000) Bacterial screening of platelets (abstract). Vox Sang, 78 (Suppl. 1), 374.Google Scholar
Cocco, A. E., Yomtovian, R. A., Jacobs, M. R., et al. (2004) Platelet bacterial contamination masquerading as a RBC febrile non-hemolytic transfusion reaction (FNHTR): a case report. Transfusion, 44 (Suppl.), 134A.Google Scholar
Cook, D. and Wollowitz, D. (1997) Method for inactivating pathogens in red cell compositions using quinacrine mustard. [5691132], USA Patient.
Cooper, J. F. (2001) The bacterial endotoxins test: past, present and future. European Journal of Parenteral Sciences, 6, 89–93.
Corbin, F. III. (2002) Pathogen inactivation of blood components: current status and introduction of an approach using riboflavin as a photosensitizer. Int J Hematol, 76 Suppl. 2, 253–7.CrossRefGoogle ScholarPubMed
Cummings, B., Colville, V., Hudson, N., et al. (2001) Routine surveillance is a sensitive and practical way to detect bacterial contamination of platelet units (abstract). Transfusion Clinique et Biologique, 8 (Suppl. 1), 23S.Google Scholar
Currie, L. M., Harper, J. R. and Allan, H. (1997) Inhibition of cytokine accumulation and bacterial growth during storage of platelet concentrates of 4 °C with retention of in vitro functional activity. Transfusion, 37, 18–24.CrossRefGoogle ScholarPubMed
Debeir, J., Noel, L., Allen, J.-P., et al. (1999) The French hemovigilance system. Vox Sang, 77, 77–81.CrossRefGoogle Scholar
Dietz, L., Debrow, R. S. and Manian, B. S. (1996) Volumetric capillary cytometry – a new method for absolute cell enumeration. Cytometry, 23, 177–86.3.0.CO;2-G>CrossRefGoogle Scholar
Duncan, K. L., Ransley, J. and Elterman, M. (1994) Transfusion-transmitted Serratia liquifaciens from an autologous blood unit (letter). Transfusion 34, 738–9.CrossRefGoogle Scholar
Dzieczkowski, J. S., Barrett, B. B., Nester, D., et al. (1995) Characterization of reactions after exclusive transfusion of white cell-reduced cellular blood components. Transfusion, 35, 20–5.CrossRefGoogle ScholarPubMed
Dzik, W. (1995) Use of leukodepletion filters for the removal of bacteria. Immunol Invest, 24, 95–115.CrossRefGoogle Scholar
Dzik, W. H. (1997) A general method for concentrating blood samples in preparation for counting very low numbers of white cells. Transfusion, 37, 277–83.Google Scholar
Ennever, J. F. and Speck, W. T. (1983) Photochemical reactions to riboflavin: covalent binding to DNA and to poly (dA). poly (dT) (short communication). Pediatr Res, 17, 234–6.CrossRefGoogle Scholar
Fang, C. T., Chambers, L. A., Kennedy, J., et al. (2005) Detection of bacterial contamination in apheresis platelet products: American Red Cross experience, 2004, Transfusion, 45, 1845–52.CrossRefGoogle ScholarPubMed
Fenwick, S. G. (1992) Pharyngitis and infections with Yersinia enterocolitica (letter). NZ Med J, 105, 112.Google Scholar
Fenwick, S. G. and McCarthy, M. D. (1995) Yersinia enterocolitica is a common cause of gastroenteritis in Auckland. N Z Med J, 108 (1003), 269–71.Google ScholarPubMed
Franzin, L. and Gioannini, P. (1992) Growth of Yersinia species in artificially contaminated blood bags. Transfusion, 32, 673–6.CrossRefGoogle ScholarPubMed
Gibson, T. and Norris, W. (1958) Skin fragments removed by injection needles. Lancet, 2, 983–5.CrossRefGoogle ScholarPubMed
Goldman, M. and Blajchman, M. A. (1991) Blood product-associated bacterial sepsis. Transfusion Med Rev, 5, 73–83.CrossRefGoogle ScholarPubMed
Goldman, M. and Blajchman, M. A. (2001) Bacterial contamination. In Transfusion Reaction, ed. Popovsky, M., 2nd edn, pp. 133–59. Bethesda, MD, American Association of Blood Banks
Goldman, M., Roy, G., Frechette, N., et al. (1997) Evaluation of donor skin disinfection methods. Transfusion, 37, 309–12.CrossRefGoogle ScholarPubMed
Gong, J., Högman, C. F. and Lundholm, M. (1994) Novel automated microbial screening of platelet concentrates. APMIS, 102, 72–8.CrossRefGoogle ScholarPubMed
Gonzales, R., Durham, L. and Mark, O. (2004) Validation of the versatrek blood detection system for detection of bacterial contamination of platelets (abstract). Transfusion, 44, 47A.Google Scholar
Goodnough, L. T., Shander, A. and Brecher, M. E. (2003) Transfusion medicine: looking to the future. Lancet, 361, 161–9.CrossRefGoogle Scholar
Goodrich, L., Douglas, I. and Urioste, M. (2002) Riboflavin photoinactivation procedure inactivates significant levels of bacteria and produces a culture negative product (abstract). Transfusion, 42 (Suppl.), 16S.Google Scholar
Goodrich, L. L., Hasen, E. T. and Gampp, D. (2001) Riboflavin pathogen inactivation process yields good platelet cell quality and expedient viral kill (abstract). Blood, 98 (Suppl.), 540a.Google Scholar
Greenman, W. M., Grass, J. A., Talib, S. et al. (1998) Method of treating leukocytes, leukocyte compositions and methods of use thereof. Cerus Corp (US) EP1005531. www.freepatentsonline.com/EP1005531A2.html.
Haditsch, M., Binder, L., Gabriel, C., et al. (1994) Yersinia enterocolitica septicemia in autologous blood transfusion. Transfusion, 34, 907–9.CrossRefGoogle ScholarPubMed
Hahn, L. F., Casciola, T. M., Triulzi, D. J., et al. (2004) Validation of pH determination on random donor platelets for the detection of bacteria. Transfusion, 44 (Suppl.), 48A.Google Scholar
Hall, J. and Lajoie, C. (2004) Correlation of PGD test result and pH of platelet concentrates inoculated with bacteria. Transfusion, 44 (Suppl.), 49A.Google Scholar
Hay, S. N., Brecher, M. E., Rothenberg, S. J., et al. (2004) Validation of the BacT/Notify remote notification software system. Transfusion, 44 (Suppl.), 53A.Google Scholar
Heal, J. M., Jones, M. E., Forey, J., et al. (1987) Fatal salmonella septicemia after platelet transfusion. Transfusion, 27, 2–5.CrossRefGoogle ScholarPubMed
Hebert, P. C., Wells, G. and Blajchman, M. A. (1999) A multicenter, randomized controlled clinical trial of transfusion requirements in critical care. N Engl J Med, 340, 409–17.CrossRefGoogle ScholarPubMed
Heltberg, O., Skov, F., Gerner-Smidt, P., et al. (1993) Nosocomial epidemic of Serratia marcescens septicemia ascribed to contaminated blood transfusion bags. Transfusion, 33, 221–7.CrossRefGoogle ScholarPubMed
Hemminki, K. (1984) Reactions of ethyleneimine with guanosine and deoxyguanosine. Chem Biol Interact, 48, 249–60.CrossRefGoogle ScholarPubMed
Hochstei, H. D. (1987) The LAL test versus the rabbit pyrogen test for endotoxin detection: Update 87. Pharm Technol, 11(6), 124–9.Google Scholar
Hoffmeister, K. M., Felbinger, T. W., Falet, H., et al. (2003b) The clearance mechanism of chilled blood platelets. Cell, 112, 87–97.CrossRefGoogle Scholar
Hoffmeister, K. M., Josefsson, E. C., Isaac, N. A., et al. (2003a) Glycosylation restores survival of chilled blood platelets. Science, 301, 1531–4.CrossRefGoogle Scholar
Högman, C. F., Fritz, H. and Sandberg, L. (1993) Post-transfusion Serratia marcescens septicemia. Transfusion, 33, 189–91.CrossRefGoogle Scholar
Högman, C. F., Gong, J. and Eriksson, L. (1991) White cells protect donor blood against bacterial contamination. Transfusion, 31, 620–6.CrossRefGoogle ScholarPubMed
Högman, C. F. and Gong, J. (1994) Studies of one invasive and two non-invasive methods for detection of bacterial contamination of platelet concentrates. Vox Sang, 67, 351–5.CrossRefGoogle Scholar
Holden, F., Foley, M. and Devin, G. (2000) Coagulase-negative staphylococcal contamination of whole blood and its components: the effect of WBC reduction. Transfusion, 40, 1508–13.CrossRefGoogle Scholar
Hoppe, P. A. (1992) Interim measures for detection of bacterially contaminated red cell components. Transfusion, 32, 199–201.CrossRefGoogle ScholarPubMed
http://www.cerus.com
http://www.veraxbiomedical.com
http://www.vitechnologies.com
Huston, B. M., Brecher, M. E. and Bandarenko, N. (1998) Lack of efficacy for conventional gamma irradiation of platelet concentrates to abrogate bacterial growth. Am J Clin Pathol, 109, 734–47.CrossRefGoogle ScholarPubMed
Ito, K., Inoue, S., Yamamoto, K., et al. (1993) 8-hydroxyguanosine formation at the 5′ site of 5′-GG-3′ sequences in double-stranded DNA by UV radiation with riboflavin. J Bio Chem, 268, 13221–7.Google Scholar
Jacobs, M. R., Bajaksouzian, S., Windau, A., et al. (2005) Evaluation of the Scansystem method for detection of bacterially contaminated platelets. Transfusion, 45, 265–9.CrossRefGoogle ScholarPubMed
Janetzko, K., Lin, L., Eichler, H., et al. (2004) Implementation of the INTERCEPT blood system for platelets into routine blood bank manufacturing procedures: evaluation of apheresis platelets. Vox Sang, 86, 239–45.CrossRefGoogle ScholarPubMed
Jarfari, M., Forsberg, J., Gilcher, R. O., et al. (2002) Salmonella sepsis caused by a platelet transfusion from a donor with a pet snake. N Engl J Med, 347, 1075.CrossRefGoogle Scholar
Jones, B. L., Saw, M. H., Hanson, M. F., et al. (1993) Yersinia enterocolitica septicaemia from transfusion of red cell concentrate stored for 16 days. J Clin Pathol, 46, 477–8.CrossRefGoogle ScholarPubMed
Joshi, P. C. (1985) Comparison for the DNA-damaging property of photosensitised riboflavin via singlet oxygen (1O2) and superoxide radical O2 mechanisms. Toxicol Lett, 26, 211–7.CrossRefGoogle ScholarPubMed
Kagan, D. and Levin, A. E. (2001) Rapid assay for bacterial contamination of platelets. Transfusion, 41 (Suppl.), 34S.Google Scholar
Kahwash, E. B., Leonard, J. and Redmon, M. (2004) BACTEC detection of bacteria in platelet pools (abstract). Transfusion, 44, 47A.Google Scholar
Kendrick, C. J., Baker, B., Morris, A. J., et al. (2001) Identification of Yersinia-infected blood donors by anti Yop IgA immunoassay. Transfusion, 41, 1365–72.CrossRefGoogle ScholarPubMed
Kim, D. M., Brecher, M. E. and Bland, L. A. (1992) Visual identification of bacterially contaminated red cells. Transfusion, 32, 221–5.CrossRefGoogle ScholarPubMed
Knutson, F., Alfonso, R. and Dupuis, K. (2000) Photochemical inactivation of bacteria and HIV in buffy-coat-derived platelet concentrates under conditions that preserve in vitro platelet function. Vox Sang, 78, 209–16.CrossRefGoogle ScholarPubMed
Kojima, K., Togashi, T., Hasegawa, K., et al. (1998) Subcutaneous fatty tissue can stray into a blood bag. Vox Sang, 74(Suppl. 1), Abstract 1205.Google Scholar
Korte, D., Marcelis, J. H. and Soeterboek, A. M. (2001) Determination of the degree of bacterial contamination of whole-blood collections using an automated microbe-detection system. Transfusion, 41, 815–8.CrossRefGoogle ScholarPubMed
Korte, D., Marcelis, J. H., Verhoeven, A. J., et al. (2002) Diversion of first blood volume results in a reduction of bacterial contamination for whole-blood collections. Vox Sang, 83, 13–6.CrossRefGoogle Scholar
Kosmin, M. (1980) Bacteremia during leukapheresis (letter). Transfusion, 20, 115.CrossRefGoogle Scholar
Kothe, F. C. and Platenkamp, G. J. (1994) The use of the sterile connection device in transfusion medicine. Transfus Med Rev, VIII, 117–22.CrossRefGoogle Scholar
Kuehnert, M. J., Roth, V. R., Haley, N. R., et al. (2001) Transfusion-transmitted bacterial infection in the United States, 1998 through 2000. Transfusion, 41, 1493–9.CrossRefGoogle ScholarPubMed
Lane, S. R., Nicholls, P. J. & Sewell, R. D. E. (2004) The measurement and health impact of Endotoxin contamination in organic dusts from multiple sources: focus on the cotton industry. Inhalation Toxicology. 16, 217–29.CrossRefGoogle ScholarPubMed
Lane, S. R., Sewell, R. D. E. (2006) Endotoxins and glucans: Environmental trouble makers. Biologist, 53, 129–34.Google Scholar
Laport, R., Bakker, M., Schayk, A., et al. (1999) Detection of bacterial contamination of platelet concentrates (abstract). VI Regional European Congress of the International Society of Blood Transfusion, 66.Google Scholar
Lee, C. K., Ho, P. L., Chan, N. K., et al. (2002) Impact of donor arm skin disinfection on the bacterial contamination rate of platelet concentrates. Vox Sang, 83, 204–8.CrossRefGoogle ScholarPubMed
Leiby, D. A., Kerr, K. L., Campos, J. M., et al. (1997) A retrospective analysis of microbial contaminants in outdated random-donor platelets from multiple sites. Transfusion, 37, 259–63.CrossRefGoogle ScholarPubMed
Levin, J. and Bang, F. B. (1964a) A description of cellular coagulation in the Limulus. Bull John Hopkins Hospital, 115, 337–45.Google Scholar
Levin, J. and Bang, F. B. (1964b) The role of endotoxin in the extracellular coagulation of Limulus blood. Bull Johns Hopkins Hosp, 115, 265–74.Google Scholar
Levin, J. and Bang, F. B. (1968) Clottable protein in Limulus: its localization and kinetics of its coagulation by endotoxin. Thromb Diath Haemorrh, 19, 186–97.Google ScholarPubMed
Li, J., Korte, D. and Woolum, M. D. (2004) Pathogen reduction of buffy coat platelet concentrates using riboflavin and light: comparisons with pathogen-reduction technology-treated apheresis platelet products. Vox Sang, 87, 82–90.CrossRefGoogle ScholarPubMed
Lin, L. (1997) Photochemical inactivation of viruses and bacteria in platelet concentrates by use of a novel psoralen and long-wavelength ultraviolet light. Transfusion, 37, 423–35.CrossRefGoogle ScholarPubMed
Liu, H. W., Yuen, K. Y., Cheng, T. S., et al. (1999) Reduction of platelet transfusion-associated sepsis by short-term bacterial culture. Vox Sang, 77(1), 1–5.CrossRefGoogle ScholarPubMed
Macauley, A., Chandrasekar, A., Geddis, G., et al. (2003) Operational feasibility of routine bacterial monitoring of platelets. Transfus Med, 13, 189–95.CrossRefGoogle ScholarPubMed
McCarthy, L. R. and Senne, J. E. (1980) Evaluation of acridine orange stain for detection of micro-organisms in blood cultures. J Clin Microbiol, 11, 281–5.Google Scholar
McDonald, C. P., Barbara, J. A. and Hewitt, P. E. (1996) Yersinia enterocolitica transmission from a red cell unit 34 days old. Transfus Med, 6, 61–3.CrossRefGoogle ScholarPubMed
McDonald, C. P., Colvin, J., Mahajan, P., et al. (2002a) National monitoring of the bacterial contamination rate of blood products using the BacT/ALERT system (abstract). Clin Microbiol Infec, 8 (Suppl. 1), 152.Google Scholar
McDonald, C. P., Colvin, J., Robbins, S., et al. (2005b) The use of a solid phase fluorescent cytometric technique for the detection of bacteria in platelet concentrates. Transfus Med, 15, 175–83.CrossRefGoogle Scholar
McDonald, C. P., Colvin, J. and Smith, R. (2004a) A novel method for the detection of bacteria in platelet concentrates utilising oxygen consumption as a marker for bacterial growth. Transfus Med, 14, 391–8.CrossRefGoogle Scholar
McDonald, C. P., Hartley, S., Orchard, K., et al. (1998) Fatal Clostridium perfringens sepsis from a pooled platelet transfusion. Transfus Med, 8, 19–22.CrossRefGoogle ScholarPubMed
McDonald, C. P., Lowe, P., Robbins, S., et al. (2001a) Evaluation of donor arm disinfection techniques. Vox Sang, 80, 135–41.CrossRefGoogle Scholar
McDonald, C. P., Pearce, S., Wilkins, K., et al. (2005a) Pall eBDS an enhanced bacterial detection system for screening platelet concentrates. Transfus Med, 15, 259–68.CrossRefGoogle Scholar
McDonald, C. P., Robbins, S. and Shahram, M. (2004b) Monitoring donor arm disinfection: essential for blood safety? (abstract). Vox Sang, 87, S6.Google Scholar
McDonald, C. P., Rogers, A., Cox, M., et al. (2002b) Evaluation of the 3D BacT/ALERT automated culture system for the detection of microbial contamination of platelet concentrates. Transfus Med, 12, 303–9.CrossRefGoogle Scholar
McDonald, C. P., Roy, A., Lowe, P., et al. (2000) The first experience in the United Kingdom of the bacteriological screening of platelets to increase shelf life to seven days. (abstract). Vox Sang, 78 (Suppl. 1), 375.Google Scholar
McDonald, C. P., Roy, A., Lowe, P., et al. (2001b) Evaluation of the BacT/Alert automated blood culture system for detecting bacteria and measuring their growth kinetics in leucodepleted and non-leucodepleted platelet concentrates. Vox Sang, 81, 154–60.CrossRefGoogle Scholar
McDonald, C. P., Roy, A., Mahajan, P., et al. (2004c) Relative values of the interventions of diversion and improved donor-arm disinfection to reduce the bacterial risk from blood transfusion. Vox Sang, 86, 178–82.CrossRefGoogle Scholar
McDonald, C. P., Roy, A., Mahajan, P., et al. (2002c) Evaluation of the Chloroprep disinfection system (abstract). Vox Sang, 83 (Suppl. 2), 5.Google Scholar
McDonald, C. P., Smith, R. and Colvin, J. (2005c) Evaluation of a novel dielectrophoresis system for the rapid detection of bacteria in platelet concentrates (abstract). Transfusion, 41 (Suppl.), 34S.Google Scholar
Mimms, L. (2002) Bacterial contamination of blood products – measures toward risk reduction, 2002. 6th Scientific Symposium German Red Cross, Dresden.
Mitchell, K. M. T. and Brecher, M. E. (1999) Approaches to the detection of bacterial contamination in cellular blood products. Transfus Med Rev, 13, 132–44.CrossRefGoogle ScholarPubMed
Mohammadi, T., Pietersz, R. N. I., Vandenbroucke-Grauls, C. M. J. E., et al. (2005) Detection of bacteria in platelet concentrates: comparison of broad-range real-time 16 S rDNA polymerase chain reaction and automated culturing. Transfusion, 45, 731–6.CrossRefGoogle Scholar
Mohammadi, T., Reesink, H. W., Vandenbroucke-Grauls, M. J. E., et al. (2003) Optimization of real-time PCR assay for rapid and sensitive detection of eubacterial 16S ribosomal DNA in platelet concentrates. J Clin Microbiol, 41, 4796–8.CrossRefGoogle ScholarPubMed
Mohr, H., Spengler, H.-P., Lambrecht, B., et al. (2003) Flow cytometric sterility testing of platelet concentrates. VIII European Congress of the International Society of Blood Transfusion, p85.Google Scholar
Morel, P. (1999b) Bacterial contamination of platelets workshop, Bethseda. fda gov/cber/minutes/bact092499 pdf 1999. 13–10–2005
Morel, P., Deschaseaux, M., Bertrand, X., et al. (2002) Detection of bacterial contamination in platelet concentrates using Scansystem: first results (abstract). Transfusion, 42 (Suppl.).Google Scholar
Morel, P. C. (1999a) The French Experience in the Prevention of Transfusion Incidents Due to Bacterial Contamination. Bacterial Contamination of Platelets Workshop, FDA, Washington.Google Scholar
Munksgaard, L., Albjerg, L., Lillevang, S. T., et al. (2004) Detection of bacterial contamination of platelet components: six years' experience with the BacT/ALERT system. Transfusion, 44, 1166–73.CrossRefGoogle ScholarPubMed
Ness, P., Braine, H. and King, K. (2001) Single-donor platelets reduce the risk of septic platelet transfusion reactions. Transfusion, 41, 857–61.CrossRefGoogle ScholarPubMed
Nguyen, K.-A., Yamamoto, T. and Sandhu, H. (2004) Performance evaluation of the Pall eBDS bacterial detection method and direct comparison with BacT/Alert, pH and swirling. Transfusion, 44 (Suppl.), 25A.Google Scholar
Novak, M. (1939) Preservation of stored blood with sulfanilamide. JAMA, 113, 2227–9.Google Scholar
O'Connor, T. R., Boiteux, S. and Laval, J. (1988) Ring-opened 7-methylguanine residues in DNA are a block to in vitro DNA synthesis. Nucl Acid Res, 16, 5879–94.CrossRefGoogle ScholarPubMed
Olsen, J. H., Hertz, H. and Kjaer, S. K. (1996) Childhood leukemia following phototherapy for neonatal hyperbilirubinemia (Denmark). Cancer Causes Control, 7, 411–4.CrossRefGoogle Scholar
Olthuis, H., Puylaert, C., Verhagen, C., et al. (1995) Method for removal of contamination bacteria during venepuncture. Presented at the Fifth International Society of Blood Transfusion Regional Congress, Venice, Italy 2–5 July 1995 (abstract).
Ortolano, G. A., Freundlich, L. F. and Holme, S. (2003) Detection of bacteria in WBC-reduced PLT concentrates using percent oxygen as a marker for bacteria growth. Transfusion, 43, 1276–84.CrossRefGoogle ScholarPubMed
Pall Corporation (2003) Bacteria detection system for leukocyte-reduced platelet transfusion products-sample set. Pall BDS package insert. East Hills, NY.
Pearce, S., Hayward, M., Rowe, G., et al. (2004) Routine bacterial monitoring of platelets (abstract). Vox Sang, 87(Suppl. 3), 27.Google Scholar
Pepersack, F., Prigogyne, T. and Butzler, J. P. (1979) Campylobacter jejuni post-transfusion septicemia (letter). Lancet, 2, 911.CrossRefGoogle Scholar
Perez, P., Salmi, L. R., Follea, G., et al. (2001) Determinants of transfusion-associated bacterial contamination: results of the French BACTHEM Case-Control Study. Transfusion, 41, 862–72.CrossRefGoogle ScholarPubMed
Pickard, C., Herschel, L. and Seery, P. (1998) Visual identification of bacterially contaminated red blood cells (abstract). Transfusion, 38 (Suppl.), 12S.Google Scholar
Picker, S. M., Speer, R. and Gathof, B. S. (2004) Evaluation of processing characteristics of photochemically treated pooled platelets: target requirements for the INTERCEPT blood system comply with routine use after process optimization. Transfus Med, 14, 217–23.CrossRefGoogle ScholarPubMed
Pietersz, R. N., Korte, D. and Reesink, H. W. (1989) Storage of whole blood for up to 24 hours at ambient temperature prior to component preparation. Vox Sang, 56, 145–50.CrossRefGoogle ScholarPubMed
Piper, J. T., Murphy, S. E. and Schuyler, R. (2001) Evaluation of acute toxicity and genotoxicity risks associated with the riboflavin photoproduct lumichrome (abstract). Transfusion, 41 (Suppl.), 90S.Google Scholar
Pleasant, H., Marini, J. and Stehling, L. (1994) Evaluation of three skin preps for use prior to phlebotomy (abstract). Transfusion, 34 (Suppl.), 14S.Google Scholar
Prentice, M. (1992) Transfusing Yersinia enterocolitica. BMJ, 305, 663–4.CrossRefGoogle ScholarPubMed
Puca, K. E., Boyer, T. C., Grygny, C.-J., et al. (2004) A blood center experience using pH paper for detection of bacterial contamination of whole blood-derived platelets. Transfusion, 44 (Suppl.), 51A.Google Scholar
Puckett, A., Davison, G., Entwistle, C. C., et al. (1992) Post-transfusion septicaemia 1980–1989: importance of donor arm cleansing. J Clin Pathol, 45, 155–7.CrossRefGoogle ScholarPubMed
Punsalang, A., Heal, J. M. and Murphy, P. J. (1989) Growth of Gram-positive and Gram-negative bacteria in platelet concentrates. Transfusion, 29, 596–9.CrossRefGoogle ScholarPubMed
Reik, H. and Rubin, S. J. (1981) Evaluation for the buffy-coat smear for rapid detection of bacteremia. JAMA 245, 357–9.CrossRefGoogle ScholarPubMed
Rhame, F. S. and McCullough, J. (1979a) Follow-up on nosocomial Pseudomonas cepacia infection. MMWR, 28, 409.Google Scholar
Rhame, F. S., McCullough, J. J. and Cameron, S. (1979b) Pseudomonas cepacia infections caused by thawing cryoprecipitate in a contaminated water bath (abstract). Transfusion, 19, 653–4.Google Scholar
Rhame, F. S., Root, R. K., MacLowry, J. D., et al. (1973) Salmonella septicemia from platelet transfusions. Study of an outbreak traced to a hematogenous carrier of Salmonella cholerae-suis. Ann Intern Med, 78, 633–41.CrossRefGoogle ScholarPubMed
Ribault, S., Faucon, A. and Faure, I. (2004a) Bacterial detection in red blood cell concentrates using Scansystem (abstract). Transfusion, 44, 50A.Google Scholar
Ribault, S., Grave, L. and Faucon, A. (2004b) Detection of bacterial growth in contaminated red blood cell concentrates using Scansystem (abstract). Transfusion, 44, 50A.Google Scholar
Ribault, S., Harper, K., Grave, L., et al. (2004c) Rapid screening method for the detection of bacteria in platelet concentrates. J Clin Microbiol, 42(5), 1903–8.CrossRefGoogle Scholar
Rock, G., Neurath, D., Toye, B.et al. (2004) The use of a bacteria detection system to evaluate bacterial contamination in PLT concentrates. Transfusion, 44, 337–42.CrossRefGoogle ScholarPubMed
Sanz, C., Pereira, A. and Vila, J. (1997) Growth of bacteria in platelet concentrates obtained from whole blood stored for 16 hours at 22 °C before component preparation. Transfusion, 37, 251–4.CrossRefGoogle ScholarPubMed
Savoor, A. R., Mababangloob, R., Kinsey, J., et al. (2002) The intercept blood system for platelets inactivities anaerobic bacteria (abstract). Transfusion, 42 (Suppl), 925.Google Scholar
Schelstraete, B., Bijens, B. and Wuyts, G. (2000) Prevalence of bacteria in leuco-depleted pooled platelet concentrates and apheresis platelets: current status in the Flemish blood service (abstract). Vox Sang, 78 (Suppl. 1), 372.Google Scholar
Schiffer, C. A., Anderson, K. C. and Bennett, C. L. (2001) Platelet transfusion for patients with cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol, 19, 1519–38.CrossRefGoogle ScholarPubMed
Schneider, T., Tunez, V. and Fontaine, O. (2002) Benefits of the pre-donation sampling pouch in order to reduce bacterial contamination of pooled platelet concentrates (abstract). Vox Sang, 83(Suppl. 2), 162.Google Scholar
Schneider, T., Tunez, V., Vens, T., et al. (2003) A comparative study of the Scansystem and the BacT/ALERT (abstract). Transfusion, 43, 9S.Google Scholar
Sen, K. (2000) Rapid identification of Yersinia enterocolitica in blood by the 5' nuclease PCR assay. J Clin Microbiol, 38, 1953–8.Google ScholarPubMed
Sen, K. and Asher, D. M. (2001) Multiplex PCR for detection of Enterobacteriaceae in blood. Transfusion, 41, 1356–64.CrossRefGoogle ScholarPubMed
Simon, T. L., Nelson, E. J., Carmen, R., et al. (1983) Extension of platelet concentrate storage. Transfusion, 23, 207–12.CrossRefGoogle ScholarPubMed
Snyder, E. L. and Rinder, H. M. (2003) Platelet storage – time to come in from the cold?N Eng J Med, 348(20), 2032–3.CrossRefGoogle ScholarPubMed
Soeterboek, A. M., Wells, F. H. W. and Marcelis, J. H. (1997) Sterility testing of blood products in 1994/1995 by three cooperating blood banks in the Netherlands. Vox Sang, 72, 61–2.CrossRefGoogle ScholarPubMed
Stainsby, D., Cohen, H., Jones, H., et al. (2003) Serious Hazards of Transfusion (SHOT). SHOT Annual Report, 1–88.Google Scholar
Stassinopoulos, A., Mababangloob, R. S., Dupuis, K. W., et al. (2000) Bacterial inactivation in leukoreduced PRBC treated with Helinx (abstract). Transfusion, 40 (Suppl.), 38S.Google Scholar
Strumia, M. M. and McGraw, J. J. (1941) Frozen and dried plasma for civil and military use. JAMA, 116, 2378–82.CrossRefGoogle Scholar
Theakston, E. P., Morris, A. J., and Streat, S. J. (1997) Transfusion transmitted Yersinia enterocolitica infection in New Zealand. Aust NZ J Med, 27, 62–7.CrossRefGoogle ScholarPubMed
Tipple, M. A., Bland, L. A., Murphy, J. J., et al. (2004) Sepsis associated with transfusion of red cells contaminated with Yersinia enterocolitica. Transfusion, 30, 207–13.CrossRefGoogle Scholar
Meer, P. F., Dekker, W. J. A., Pietersz, R. N. I., et al. (2002) Bacterial screening of platelet concentrates in routine (abstract). Vox Sang, 83 (Suppl. 2), 16.Google Scholar
Vasconcelos, E. (2001) Leucodepletion, bacterial contamination and virus inactivation: a Portuguese blood centre experience. Transfus Apher Sci, 25, 215–6.CrossRefGoogle Scholar
Vostal, J. G., and Mondoro, T. H. (1997) Liquid storage of platelets: a revitalized possible alternative for limiting bacterial contamination of platelet products. Transfus Med Rev, 11, 286–95.CrossRefGoogle ScholarPubMed
Vuk, T., Balija, M. and Jukic, I. (2003) Bacterial contamination of blood products 1998–2001 (abstract). VIII European Congress of International Society of Blood Transfusion, p. 272.Google Scholar
Wagner, S. (1997) Transfusion related bacterial sepsis. Curr Opin Hematol, 4, 464–9.CrossRefGoogle ScholarPubMed
Wagner, S. J. and Robinette, D. (1996) Evaluation of swirling, pH and glucose tests for the detection of bacterial contamination in platelet concentrates. Transfusion 36, 989–93.CrossRefGoogle ScholarPubMed
Wagner, S. J., Moroff, G., Katz, A. J., et al. (1995a) Comparison of bacterial growth in single and pooled platelet concentrates after deliberate inoculation and storage. Transfusion 35, 298–302.CrossRefGoogle Scholar
Wagner, S. J., Robinette, D. and Nazario, M. (1995b) Bacteria levels in components prepared from deliberately inoculated whole blood held for 8 or 24 hours at 20 to 24 °C. Transfusion, 35, 911–6.CrossRefGoogle Scholar
Wendel, S., Fontao-Wendel, R., Germano, S., et al. (2000) Screening of bacterial contamination in a routine scale for blood component production in a Brazilian blood bank (abstract). Vox Sang, 78 (Suppl.), p. 376.Google Scholar
Wenz, B., Ciavarella, D. and Freundlich, L. (1993) Effect of prestorage white cell reduction on bacterial growth in platelet concentrates. Transfusion, 33, 520–3.CrossRefGoogle ScholarPubMed
Werch, J. B., Mhawech, P., Stager, C. E., et al. (2002) Detecting bacteria in platelet concentrates by use of reagent strips. Transfusion, 42, 1027–31.CrossRefGoogle ScholarPubMed
Wong, P. Y., Colville, V. and White, V. L. (2004) Appraisal of a proprietary preparation for pre-donation donor arm disinfection (abstract). Transfusion, 44, 50A.Google Scholar
Yomtovian, R. (1993) A prospective microbiologic surveillance program to detect and prevent the transfusion of bacterially contaminated platelets. Transfusion, 33, 902–9.CrossRefGoogle ScholarPubMed
Yu, J. C., Chong, C., Cortus, M. A., et al. (2004) Bacteria growth in leukoreduced AS-3 red cell concentrates (RCC)a and detection with PALL eBDS. Transfusion, 44 (Suppl.), 45A.Google Scholar
Zavizion, B., Serebryanik, D. and Purmal, A. (2001) Collection system equivalency using the INACTINE process for pathogen inactivation: bacterial inactivation assessment (abstract). Transfusion, 41 (Suppl.), 89S.Google Scholar
Zavizion, B., Serebryanik, D., Serebryanik, I., et al. (2003) Prevention of Yersinia enterocolitica, Pseudomonas fluorescens and Pseudomonas putida outgrowth in deliberately inoculated blood by a novel pathogen-reduction process. Transfusion, 43, 135–42.CrossRefGoogle ScholarPubMed
Zuckerman, A. J. (2003) Intercept blood system: crosslinks under the spotlight. Pathol. Pract, November, 2–3.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×