Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T01:02:00.628Z Has data issue: false hasContentIssue false

3 - Phenotype and genotype in polycystic ovary syndrome

Published online by Cambridge University Press:  29 September 2009

Richard S. Legro
Affiliation:
Pennsylvania State University College
Gabor T. Kovacs
Affiliation:
Monash University, Victoria
Robert Norman
Affiliation:
University of Adelaide
Get access

Summary

Introduction

Polycystic ovary syndrome (PCOS) is the most common but least understood endocrinopathy. Although a major genetic contribution is suspected, there have been no clear genes or family of genes identified that cause or contribute to PCOS. This may be due to both the difficulty in phenotyping as well as the limited genotyping studies that have been performed to date. The diagnosis of PCOS has traditionally been based on a history of oligomenorrhea and/or hyperandrogenism, either clinical, i.e., most commonly hirsutism, or biochemical, i.e., elevated circulating total or bioavailable androgens; and/or polycystic ovaries. The criteria that emerged from the 1990 National Institute of Child and Human Development (NIH-NICHD) conference identified PCOS as unexplained hyperandrogenic chronic anovulation, making it in essence a diagnosis of exclusion (Zawadski and Dunaif 1992). The “consensus” definition did not include the polycystic ovary morphology, most commonly today found on ultrasound consisting of multiple 2–8 mm subcapsular preantral follicles and increased ovarian volume (Balen et al. 2003). These ultrasound criteria were recently incorporated in the revised 2003 Rotterdam criteria which require two out of the three above cardinal stigmata for PCOS: oligomenorrhea, hyperandrogenism, and/or polycystic ovaries (The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group 2004).

None of these expert-generated definitions include insulin resistance, a common but not inevitable finding in PCOS. This diagnostic dilemma has hampered clinical and genetic studies of PCOS. The larger the number of distinct phenotypes within the affected category, the more complex the genetic analysis and the greater the likelihood that investigators using different diagnostic criteria will arrive at different conclusions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azziz, R., Dewailly, D., and Owerbach, D. (1994) Clinical review 56: nonclassic adrenal hyperplasia: current concepts. J. Clin. Endocrinol. Metab. 78:810–815.Google ScholarPubMed
Azziz, R., Woods, K. S., Reyna, R., et al. (2004) The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 89:2745–2749.CrossRefGoogle Scholar
Balen, A. H., Laven, J. S., Tan, S. L., and Dewailly, D. (2003) Ultrasound assessment of the polycystic ovary: international consensus definitions. Hum. Reprod. Update 9:505–514.CrossRefGoogle ScholarPubMed
Cardon, L. R. and Bell, J. I. (2001) Association study designs for complex diseases. Nat. Rev. Genet. 2:91–99.CrossRefGoogle ScholarPubMed
Carey, A. H., Chan, K. L., Short, F., et al. (1993) Evidence for a single gene effect causing polycystic ovaries and male pattern baldness. Clin. Endocrinol. (Oxf.) 38:653–658.CrossRefGoogle ScholarPubMed
Carmina, E., Koyama, T., Chang, L., Stanczyk, F. Z., and Lobo, R. A. (1992) Does ethnicity influence the prevalence of adrenal hyperandrogenism and insulin resistance in polycystic ovary syndrome?Am. J. Obstet. Gynecol. 167:1807–1812.CrossRefGoogle ScholarPubMed
Cooper, H. E., Spellacy, W. N., Prem, K. A., and Cohen, W. D. (1968) Heriditary factors in the Stein–Leventhal syndrome. Am. J. Obstet. Gynecol. 100:371–387.CrossRefGoogle Scholar
Cousin, P., Calemard-Michel, L., Lejeune, H., et al. (2004) Influence of SHBG gene pentanucleotide TAAAA repeat and D327N polymorphism on serum sex hormone-binding globulin concentration in hirsute women. J. Clin. Endocrinol. Metab. 89:917–924.CrossRefGoogle ScholarPubMed
Diamanti-Kandarakis, E., Kouli, C. R., Bergiele, A. T., et al. (1999) A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J. Clin. Endocrinol. Metab. 84:4006–4011.CrossRefGoogle ScholarPubMed
Diamanti-Kandarakis, E., Bartzis, M. I., Bergiele, A. T., Tsianateli, T. C., and Kouli, C. R. (2000) Microsatellite polymorphism (TTTTA)(n) at 528 base pairs of gene CYP11α influences hyperandrogenemia in patients with polycystic ovary syndrome. Fertil. Steril. 73:735–741.CrossRefGoogle ScholarPubMed
Dunaif, A., Sorbara, L., Delson, R., and Green, G. (1993) Ethnicity and polycystic ovary syndrome are associated with independent and additive decreases in insulin action in Caribbean–Hispanic women. Diabetes 42:1462–1468.CrossRefGoogle ScholarPubMed
Ehrmann, D. A., Schwarz, P. E., Hara, M., et al. (2003) Relationship of calpain-10 genotype to phenotypic features of polycystic ovary syndromeJ. Clin. Endocrinol. Metab. 87:1669–1673.CrossRefGoogle Scholar
El Mkadem S. A., Lautier C., Macari F., et al. (2001) Role of allelic variants gly972arg of irs-1 and gly1057asp of irs-2 in moderate to severe insulin resistance of women with polycystic ovary syndrome. Diabetes 50:2164–2168.CrossRef
Escobar-Morreale, H. F., Roldan, B., Barrio, R., et al. (2000) High prevalence of the polycystic ovary syndrome and hirsutism in women with type 1 diabetes mellitus. J. Clin. Endocrinol. Metab. 85:4182–4187.Google ScholarPubMed
Ferriman, D. and Purdie, A. W. (1979) The inheritance of polycystic ovarian disease and a possible relationship to premature balding. Clin. Endocrinol. (Oxf.) 11:291–300.CrossRefGoogle Scholar
Gaasenbeek, M., Powell, B. L., Sovio, U., et al. (2004) Large-scale analysis of the relationship between CYP11A promoter variation, polycystic ovarian syndrome, and serum testosterone. J. Clin. Endocrinol. Metab. 89:2408–2413.CrossRefGoogle ScholarPubMed
Garg, A. (2004) Acquired and inherited lipodystrophies. N. Engl. J. Med. 350:1220–1234.CrossRefGoogle ScholarPubMed
Gharani, N., Waterworth, D. M., Williamson, R., and Franks, S. (1996) 5′ Polymorphism of the CYP17 gene is not associated with serum testosterone levels in women with polycystic ovaries. J. Clin. Endocrinol. Metab. 81:4174.Google Scholar
Gharani, N., Waterworth, D. M., Batty, S., et al. (1997) Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism. Hum. Mol. Genet. 6:397–402.CrossRefGoogle ScholarPubMed
Gilling-Smith, C., Willis, D. S., Beard, R. W., and Franks, S. (1994) Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J. Clin. Endocrinol. Metab. 79:1158–1165.Google ScholarPubMed
Govind, A., Obhrai, M. S., and Clayton, R. N. (1999) Polycystic ovaries are inherited as an autosomal dominant trait: analysis of 29 polycystic ovary syndrome and 10 control families. J. Clin. Endocrinol. Metab. 84:38–43.CrossRefGoogle ScholarPubMed
Hague, W. M., Adams, J., Reeders, S. T., Peto, T. E., and Jacobs, H. S. (1988) Familial polycystic ovaries: a genetic disease?Clin. Endocrinol. (Oxf.) 29:593–605.CrossRefGoogle ScholarPubMed
Hegele, R. A. (2005) Lessons from human mutations in PPARgamma. Int. J. Obes. Relat. Metab. Disord. 29(Suppl. 1):S31–S35.CrossRefGoogle ScholarPubMed
Jahanfar, S., Eden, J. A., Warren, P., Seppala, M., and Nguyen, T. V. (1995) A twin study of polycystic ovary syndrome. Fertil. Steril. 63:478–486.CrossRefGoogle ScholarPubMed
Jahanfar, S., Maleki, H., Mosavi, A. R., and Jahanfar, M. (2004) Leptin and its association with polycystic ovary syndrome: a twin study. Gynecol. Endocrinol. 18:327–334.CrossRefGoogle ScholarPubMed
Kahsar-Miller, M. D., Nixon, C., Boots, L. R., Go, R. C., and Azziz, R. (2001) Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS. Fertil. Steril. 75:53–58.CrossRefGoogle ScholarPubMed
Kauffman, R. P., Baker, V. M., Dimarino, P., Gimpel, T., and Castracane, V. D. (2002) Polycystic ovarian syndrome and insulin resistance in white and Mexican American women: a comparison of two distinct populations. Am. J. Obstet. Gynecol. 187:1362–1369.CrossRefGoogle ScholarPubMed
Kaushal, R., Parchure, N., Bano, G., Kaski, J. C., and Nussey, S. S. (2004) Insulin resistance and endothelial dysfunction in the brothers of Indian subcontinent Asian women with polycystic ovaries. Clin. Endocrinol. (Oxf.) 60:322–328.CrossRefGoogle ScholarPubMed
Lander, E. S. and Schork, N. J. (1994) Genetic dissection of complex traits. Science 265:2037–2048: erratum, Science266:353.CrossRefGoogle ScholarPubMed
Legro, R. S. and Strauss, J. F. (2002) Molecular progress in infertility: polycystic ovary syndrome. Fertil. Steril. 78:569.CrossRefGoogle ScholarPubMed
Legro, R. S., Driscoll, D., Strauss, J. F. Jr., Fox, J., and Dunaif, A. (1998) Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc. Natl Acad. Sci. U. S.A. 95: 14956–14960.CrossRefGoogle ScholarPubMed
Legro, R. S., Bentley-Lewis, R., Driscoll, D., Wang, S. C., and Dunaif, A. (2002a) Insulin resistance in the sisters of women with polycystic ovary syndrome: association with hyperandrogenemia rather than menstrual irregularity. J. Clin. Endocrinol. Metab. 87:2128–2133.CrossRefGoogle Scholar
Legro, R. S., Kunselman, A. R., Demers, L., et al. (2002b) Elevated dehydroepiandrosterone sulfate levels as the reproductive phenotype in the brothers of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 87:2134–2138.CrossRefGoogle Scholar
Liede, A., Pal, T., Mitchell, M., and Narod, S. A. (2000) Delineation of a new syndrome: clustering of pyloric stenosis, endometriosis, and breast cancer in two families. J. Med. Genet. 37:794–796.CrossRefGoogle ScholarPubMed
Lunde, O., Magnus, P., Sandvik, L., and Hoglo, S. (1989) Familial clustering in the polycystic ovarian syndrome. Gynecol. Obstet. Invest. 28:23–30.CrossRefGoogle ScholarPubMed
McKeigue, P. and Wild, S. (1997) Association of insulin gene VNTR polymorphism with polycystic ovary syndrome. Lancet 349:1771–1772.CrossRefGoogle ScholarPubMed
Moran, C., Azziz, R., Carmina, E., et al. (2000) 21-Hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: a multicenter study. Am. J. Obstet. Gynecol. 183:1468–1474.CrossRefGoogle ScholarPubMed
Nelson, V. L., Legro, R. S., Strauss, J. F. III, and McAllister, J. M. (1999) Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol. Endocrinol. 13:946–957.CrossRefGoogle ScholarPubMed
Norman, R. J., Mahabeer, S., and Masters, S. (1995) Ethnic differences in insulin and glucose response to glucose between white and Indian women with polycystic ovary syndrome. Fertil. Steril. 63:58–62.CrossRefGoogle ScholarPubMed
Norman, R. J., Masters, S., and Hague, W. (1996) Hyperinsulinemia is common in family members of women with polycystic ovary syndrome. Fertil. Steril. 66:942–947.CrossRefGoogle ScholarPubMed
Powell, B. L., Haddad, L., Bennett, A., et al. (2005) Analysis of multiple data sets reveals no association between the insulin gene variable number tandem repeat element and polycystic ovary syndrome or related traits. J. Clin. Endocrinol. Metab. 90:2988–2993.CrossRefGoogle ScholarPubMed
San Millan, J. L., Sancho, J., Calvo, R. M., and Escobar-Morreale, H. F. (2001) Role of the pentanucleotide (TTTTA)(n) polymorphism in the promoter of the CYP11a gene in the pathogenesis of hirsutism. Fertil. Steril. 75:797–802.CrossRefGoogle ScholarPubMed
Sir-Petermann, T., Angel, B., Maliqueo, M., et al. (2002) Prevalence of type 2 diabetes mellitus and insulin resistance in parents of women with polycystic ovary syndrome. Diabetologia 45:959–964.CrossRefGoogle ScholarPubMed
Sorbara, L. R., Tang, Z., Cama, A., et al. (1994) Absence of insulin receptor gene mutations in three insulin-resistant women with the polycystic ovary syndrome. Metabolism 43:1568–1574.CrossRefGoogle ScholarPubMed
Spielman, R. S. and Ewens, W. J. (1996) The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet. 59:983–989.Google ScholarPubMed
Talbot, J. A., Bicknell, E. J., Rajkhowa, M., et al. (1996) Molecular scanning of the insulin receptor gene in women with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 81:1979–1983.Google ScholarPubMed
The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to Polycystic Ovary Syndrome (PCOS). Hum. Reprod. 19:41–47.
Tucci, S., Futterweit, W., Concepción, E. S., et al. (2001) Evidence for association of polycystic ovary syndrome in Caucasian women with a marker at the insulin receptor gene locus. J. Clin. Endocrinol. Metab. 86:446–449.CrossRefGoogle ScholarPubMed
Urbanek, M., Legro, R. S., Driscoll, D. A., et al. (1999) Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc. Natl Acad. Sci. U. S.A. 96:8573–8578.CrossRefGoogle ScholarPubMed
Urbanek, M., Wu, X., Vickery, K. R., et al. (2000) Allelic variants of the follistatin gene in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 85:4455–4461.Google ScholarPubMed
Vigouroux, C. and Capeau, J. (2005) A-type lamin-linked lipodystrophies. Novartis Found. Symp. 264:166–177; discussion 177–182, 227–230.Google ScholarPubMed
Waterworth, D. M., Bennett, S. T., Gharani, N., et al. (1997) Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome. Lancet 349:986–990.CrossRefGoogle ScholarPubMed
Wijeyaratne, C. N., Balen, A. H., Barth, J. H., and Belchetz, P. E. (2002) Clinical manifestations and insulin resistance (IR) in polycystic ovary syndrome (PCOS) among South Asians and Caucasians: is there a difference?Clin. Endocrinol. (Oxf.) 57:343–350.CrossRefGoogle ScholarPubMed
Wilroy, R. S. Jr., Givens, J. R., Wiser, W. L., et al. (1975) Hyperthecosis: an inheritable form of polycystic ovarian disease. Birth Defects: Orig. Art. Ser. 11:81–85.Google ScholarPubMed
Yildiz, B. O., Yarali, H., Oguz, H., and Bayraktar, M. (2003) Glucose intolerance, insulin resistance, and hyperandrogenemia in first-degree relatives of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88:2031–2036.CrossRefGoogle ScholarPubMed
Zawadski J. K. and Dunaif A. (1992) Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In Dunaif, A. (ed.) The Polycystic Ovary Syndrome, pp. 377–384. Cambridge, MA: Blackwell Scientific.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×