Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-22T02:27:14.794Z Has data issue: false hasContentIssue false

9 - Cutaneomuscular, withdrawal and flexor reflex afferent responses

Published online by Cambridge University Press:  08 August 2009

Emmanuel Pierrot-Deseilligny
Affiliation:
Groupe Hospitalier Pitié-Salpétrière, Paris
David Burke
Affiliation:
University of Sydney
Get access

Summary

Like muscle afferents, cutaneous afferents are not homogeneous, but the reflex pathways fed by the different types of cutaneous afferent have been documented less well than those fed by muscle afferents. Cutaneous afferents are responsible for a wide range of sensations, but most are also capable of modulating motor behaviour through spinal, supraspinal and transcortical pathways. There is a tendency for clinicians to group all cutaneous afferents together, and this creates confusion, leads to the usage of different terms for the same function and the same term for different functions, and makes the systems appear more complex than necessary. There is heterogeneity in: (i) the type of receptor (e.g. mechanoreceptor, thermoreceptor, nociceptor), (ii) the peripheral afferents (which range from large myelinated Aβ afferents to slow unmyelinated C afferents), (iii) the spinal pathways fed by the afferents (few or many interneurones), (iv) their central projection (spinal, supraspinal, transcortical), (v) the importance of the cutaneous contribution (predominantly ‘private’ vs. shared pathways), and (vi) their functional role (contributing to the normal usage of the limb or responsible for withdrawal from a noxious agent).

This heterogeneity is reflected in the terminology: ‘flexor’ or ‘withdrawal’ reflexes are considered nociceptive responses (though mechanoreceptors may play a role in their generation), whereas ‘cutaneomuscular’ reflexes refer to responses involved in the control of normal movement. A thesis of this book, addressed in many chapters, is that cutaneous afferents may have a proprioceptive role, perhaps as important for some movements as that played by muscle spindle afferents, whether that influence is mediated by a primarily ‘private’ pathway or by modulating the activity of some other system.

Type
Chapter
Information
The Circuitry of the Human Spinal Cord
Its Role in Motor Control and Movement Disorders
, pp. 384 - 451
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, G., Rubino, V. & Schieppati, M. (1996). Task-dependent effects evoked by foot muscle afferents on leg muscle activity in humans. Electroencephalography and Clinical Neurophysiology, 101, 339–48CrossRefGoogle ScholarPubMed
Alstermark, B. & Lundberg, A. (1992). The C3–C4 propriospinal system: target-reaching and food-taking. In Muscle Afferents and Spinal Control of Movement, ed. Jami, L., Pierrot-Deseilligny, E. & Zytnicki, D., pp. 327–54. London: Pergamon PressGoogle Scholar
Andersen, O. K., Sonnenborg, F. A. & Arendt-Nielsen, L. (1999). Modular organisation of human leg withdrawal reflexes elicited by electrical stimulation of the foot sole. Muscle and Nerve, 22, 1520–303.0.CO;2-V>CrossRefGoogle ScholarPubMed
Aniss, A. M., Gandevia, S. C. & Burke, D. (1992). Reflex responses in active muscles elicited by stimulation of low threshold afferents from the human foot. Journal of Neurophysiology, 67, 1375–84CrossRefGoogle ScholarPubMed
Babinski, J. (1898). Du phénomène des orteils et sa valeur sémiologique. Semaine Médicale, 18, 321–2Google Scholar
Baldissera, F., Hultborn, H. & Illert, M. (1981). Integration in spinal neuronal systems. In Handbook of Physiology, section I, The Nervous System, vol. II, Motor Control, ed. Brooks, V. B., pp. 508–95. Bethesda, MD: American Physiological SocietyGoogle Scholar
Barbeau, H., McCrea, D. A., O'Donovan, M. J., Rossignol, S., Grill, W. M. & Lemay, M. A. (1999). Tapping into spinal circuits to restore motor function. Brain Research Reviews, 30, 27–51CrossRefGoogle ScholarPubMed
Bathien, N. & Bourdarias, H. (1972). Lower limb cutaneous reflexes in hemiplegia. Brain, 95, 447–56CrossRefGoogle ScholarPubMed
Binder, M. D., Houk, J. C., Nichols, T. R., Rymer, W. Z. & Stuart, D. G. (1982). Properties and segmental actions of mammalian muscle receptors: an update. Federation Proceedings, 41, 2907–18Google ScholarPubMed
Brown, T. G. (1914). On the nature of the fundamental activity of the nervous system: together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. Journal of Physiology (London), 48, 18–46CrossRefGoogle Scholar
Burke, D., Dickson, H. G. & Skuse, N. F. (1991). Task-dependent changes in the responses to low-threshold cutaneous afferent volleys in the human lower limb. Journal of Physiology (London), 432, 445–58CrossRefGoogle ScholarPubMed
Burke, R. E. (1981). Motor units: anatomy, physiology and functional organization. In Handbook of Physiology, Section I, The Nervous System, vol. II, Motor Control, Part 1, ed. Brooks, V. B., pp. 345–422. Bethesda, MD: American Physiological SocietyGoogle Scholar
Burke, R. E. (1999). The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. Experimental Brain Research, 128, 263–77CrossRefGoogle ScholarPubMed
Burke, R. E., Jankowska, E. & Ten Bruggencate, G. (1970). A comparison of peripheral and rubrospinal synaptic input to slow and fast twitch motor units of triceps surae. Journal of Physiology (London), 207, 709–32CrossRefGoogle ScholarPubMed
Bussel, B., Roby-Brami, A., Yakovleff, A. & Bennis, N. (1989). Late flexion reflex in paraplegic patients. Evidence for a spinal stepping generator. Brain Research Bulletin, 22, 53–6CrossRefGoogle ScholarPubMed
Caccia, M. R., McComas, A. J., Upton, A. R. M. & Blogg, T. (1973). Cutaneous reflexes in small muscles of the hand. Journal of Neurology, Neurosurgery and Psychiatry, 36, 960–77CrossRefGoogle ScholarPubMed
Cambier, J., Dehen, H. & Bathien, N. (1974). Upper limb cutaneous polysynaptic reflexes. Journal of the Neurological Sciences, 22, 39–49CrossRefGoogle ScholarPubMed
Carr, L. J., Harrison, L. M., Evans, A. L. & Stephens, J. A. (1993). Patterns of central motor reorganisation in hemiplegic cerebral palsy. Brain, 116, 1223–47CrossRefGoogle Scholar
Cavallari, P. & Lalli, S. (1998). Changes in excitability of the flexor carpi radialis H-reflex following tactile stimulation of the index fingertip. Experimental Brain Research, 120, 345–51CrossRefGoogle ScholarPubMed
Chen, C. C., Chen, J. T., Wu, Z. A., Kao, K. P. & Liao, K. K. (1998). Cutaneous reflexes in patients with lacunar infarction. Journal of Neurological Sciences, 159, 28–37CrossRefGoogle Scholar
Chen, R. & Ashby, P. (1993). Reflex responses in upper limb muscles to cutaneous stimuli. Canadian Journal of the Neurological Sciences, 20, 271–8CrossRefGoogle ScholarPubMed
Choa, B. H. G. & Stephens, J. A. (1981). Cutaneous reflex responses and central nervous lesions in man. Electroencephalography and Clinical Neurophysiology, 52, S2Google Scholar
Christensen, L. O., Morita, H., Petersen, N. & Nielsen, J. (1999). Evidence suggesting that a transcortical reflex pathway contributes to cutaneous reflexes in the tibialis anterior during walking in man. Experimental Brain Research, 124, 59–68CrossRefGoogle ScholarPubMed
Christensen, L. O., Petersen, N., Andersen, J. B., Sinkjaer, T. & Nielsen, J. (2000). Evidence for transcortical reflex pathways in the lower limb of man. Progress in Neurobiology, 62, 251–72CrossRefGoogle Scholar
Collier, J. (1899). An investigation upon the plantar reflex, with reference to the significance of its variations under pathological conditions, including an enquiry into the aetiology of acquired pes cavus. Brain, 22, 71–99CrossRefGoogle Scholar
Creed, R. S., Denny-Brown, D., Eccles, J. C., Liddell, E. G. T. & Sherrington, C. S. (1932). Reflex Activity of the Spinal Cord. London: Oxford University PressGoogle Scholar
Datta, A. K. & Stephens, J. A. (1981). The effects of digital nerve stimulation on the firing of motor units in human first dorsal interosseous muscle. Journal of Physiology (London), 318, 501–10CrossRefGoogle ScholarPubMed
Delwaide, P. J. & Crenna, P. (1983). Exteroceptive influences on lower limb motoneurons in man: spinal and supraspinal contributions. Advances in Neurology, 39, 797–807Google ScholarPubMed
Delwaide, P. J. & Crenna, P. (1984). Cutaneous nerve stimulation and motoneuronal excitability. II. Evidence for non-segmental influences. Journal of Neurology, Neurosurgery and Psychiatry, 47, 190–6CrossRefGoogle ScholarPubMed
Delwaide, P. J. & Olivier, E. (1990). Conditioning transcranial cortical stimulation (TCCS) by exteroceptive stimulation in parkinsonian patients. Advances in Neurology, 53, 175–81Google ScholarPubMed
Delwaide, P. J., Schwab, R. S. & Young, R. R. (1974). Polysynaptic spinal reflexes in Parkinson's disease. Neurology, 24, 820–7CrossRefGoogle ScholarPubMed
Delwaide, P. J., Crenna, P. & Fleron, M. H. (1981). Cutaneous nerve stimulation and motoneuronal excitability. I. Soleus and tibialis anterior excitability after ipsilateral and contralateral sural nerve stimulation. Journal of Neurology, Neurosurgery and Psychiatry, 44, 699–707CrossRefGoogle ScholarPubMed
Deuschl, G., Schenck, E. & Lücking, C. H. (1985). Long latency responses in human thenar muscles mediated by fast conducting muscle and cutaneous afferents. Neuroscience Letters, 55, 361–6CrossRefGoogle ScholarPubMed
Deuschl, G., Ludolph, A., Schenk, E. & Lücking, C. H. (1989). The relations between long-latency reflexes in hand muscles, somatosensory evoked potentials and transcranial stimulation of motor tracts. Electroencephalography and Clinical Neurophysiology, 74, 425–30CrossRefGoogle ScholarPubMed
Deuschl, G., Michels, R., Berardelli, A., Schenck, E., Inghilleri, M. & Lücking, C. H. (1991). Effects of electric and magnetic transcranial stimulation on long latency reflexes. Experimental Brain Research, 83, 403–10CrossRefGoogle ScholarPubMed
Dewald, J. P. A., Beer, R. F., Given, J. D., McGuire, J. R. & Rymer, W. Z. (1999). Reorganization of flexion reflexes in the upper extremity of hemiparetic subjects. Muscle and Nerve, 22, 1209–213.0.CO;2-B>CrossRefGoogle ScholarPubMed
Dimitrijević, M. R. (1973). Withdrawal reflexes. In New Developments in Electromyography and Clinical Neurophysiology, vol. 3, ed. Desmedt, J. E., pp. 744–50. Basel: KargerGoogle Scholar
Dimitrijević, M. R. & Nathan, P. W. (1968). Studies of spasticity in man. 3. Analysis of reflex activity evoked by noxious cutaneous stimulation. Brain, 91, 349–68CrossRefGoogle ScholarPubMed
Dimitrijevic, M. R. & Nathan, P. W. (1971). Studies of spasticity in man. 5. Dishabituation of the flexion reflex in spinal man. Brain, 94, 77–90CrossRefGoogle ScholarPubMed
Duysens, J., Trippel, M., Horstmann, G. A. & Dietz, V. (1990). Gating and reversal of reflexes in ankle muscles during human walking. Experimental Brain Research, 82, 403–10CrossRefGoogle ScholarPubMed
Eccles, J. C., Kostyuk, P. G. & Schmidt, R. F. (1962). Central pathways responsible for depolarization of primary afferent fibres. Journal of Physiology (London), 161, 351–8CrossRefGoogle ScholarPubMed
Eccles, R. M. & Lundberg, A. (1959). Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Archives Italiennes de Biologie, 97, 199–221Google Scholar
Egger, M. D. & Wall, P. D. (1971). The plantar cushion reflex circuit: an oligosynaptic cutaneous reflex. Journal of Physiology (London), 216, 483–501CrossRefGoogle Scholar
Eklund, G., Hagbarth, K.-E. & Torebjörk, E. (1978). Exteroceptive vibration-induced finger flexion in man. Journal of Neurology, Neurosurgery and Psychiatry, 41, 438–43CrossRefGoogle ScholarPubMed
Ellrich, J., Steffens, H. & Schomburg, E. D. (2000). Neither a general flexor nor a withdrawal pattern of nociceptive reflexes evoked from the human foot. Neuroscience Research, 37, 79–82CrossRefGoogle ScholarPubMed
Engberg, I. (1964). Reflexes to toe muscles in the cat's hindlimb. In Progress in Brain Research, vol. 12, Physiology of Spinal Neurons, ed. Eccles, J. C. & Schadé, J. P., pp. 274–9. Amsterdam: ElsevierGoogle Scholar
Evans, A. L., Harrison, L. M. & Stephens, J. A. (1989). Task-dependent changes in cutaneous reflexes recorded from various muscles controlling finger movement in man. Journal of Physiology (London), 418, 1–12CrossRefGoogle ScholarPubMed
Fisher, M. A., Shahani, B. T. & Young, R. R. (1979). Electrophysiologic analysis of the motor system after stroke: the flexor reflex. Archives of Physical Medicine and Rehabilitation, 60, 7–11Google ScholarPubMed
Floeter, M. K., Gerloff, C., Kouri, J. & Hallett, M. (1998). Cutaneous withdrawal reflexes of the upper extremity. Muscle and Nerve, 21, 591–83.0.CO;2-3>CrossRefGoogle ScholarPubMed
Forssberg, H., Grillner, S. & Rossignol, S. (1975). Phase dependent reflex reversal during walking in chronic spinal cats. Brain Research, 85, 103–7CrossRefGoogle ScholarPubMed
Forssberg, H., Grillner, S. & Rossignol, S. (1977). Phasic control of reflexes from the dorsum of the paw during spinal locomotion. Brain Research, 132, 121–39CrossRefGoogle ScholarPubMed
Fuhr, P., Zeffiro, T. & Hallett, M. (1992). Cutaneous reflexes in Parkinson's disease. Muscle and Nerve, 15, 733–9CrossRefGoogle ScholarPubMed
Garnett, R. & Stephens, J. A. (1981). Changes in the recruitment threshold of motor units produced by cutaneous stimulation in man. Journal of Physiology (London), 311, 463–73CrossRefGoogle ScholarPubMed
Gassel, M. M. & Ott, K. (1970). Local sign and late effects on motoneuron excitability of cutaneous stimulation in man. Brain, 93, 95–106CrossRefGoogle ScholarPubMed
Gibbs, J., Harrison, L. M. & Stephens, J. A. (1995). Cutaneomuscular reflexes recorded from the lower limb in man during different tasks. Journal of Physiology (London), 487, 237–42CrossRefGoogle ScholarPubMed
Grimby, L. (1963). Normal plantar response: integration of flexor and extensor reflex components. Journal of Neurology, Neurosurgery and Psychiatry, 26, 39–50CrossRefGoogle ScholarPubMed
Hagbarth, K.-E. (1952). Excitatory and inhibitory skin areas for flexor and extensor motoneurones. Acta Physiologica Scandinavica, 26, 1–58Google Scholar
Hagbarth, K.-E. (1960). Spinal withdrawal reflexes in the human lower limbs. Journal of Neurology, Neurosurgery and Psychiatry, 23, 222–7CrossRefGoogle ScholarPubMed
Hagbarth, K.-E. & Finer, B. L. (1963). The plasticity of human withdrawal reflexes to noxious skin stimuli in lower limbs. In Brain Mechanisms. Progress in Brain Research, vol. 1, ed. Moruzzi, G., Fessard, A. & Jasper, H. H., pp. 25–81. Amsterdam: ElsevierGoogle Scholar
Hallett, M., Berardelli, A., Delwaide, P.et al. (1994). Central electromyogram and tests of motor control. Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology, 90, 404–32CrossRefGoogle ScholarPubMed
Hammar, I., Slawinska, U. & Jankowska, E. (2002). A comparison of postactivation depression of synaptic actions evoked by different afferents and at different locations in the feline spinal cord. Experimental Brain Research, 145, 126–9CrossRefGoogle ScholarPubMed
Harrison, L. M., Norton, J. A. & Stephens, J. A. (2000). Habituation of cutaneomuscular reflexes recorded from the first dorsal interosseus and triceps muscle. Journal of the Neurological Sciences, 177, 32–40CrossRefGoogle Scholar
Hauglustaine, S., Prokop, T., Zwieten, K. J. & Duysens, J. (2001). Phase-dependent modulation of cutaneous reflexes of tibialis anterior muscle during hopping. Brain Research, 897, 180–3CrossRefGoogle ScholarPubMed
Hiersemenzel, L. P., Curt, A. & Dietz, V. (2000). From spinal shock to spasticity. Neuronal adaptations to a spinal cord injury. Neurology, 54, 1574–82CrossRefGoogle ScholarPubMed
Holmqvist, B. & Lundberg, A. (1961). Differential supraspinal control of synaptic actions evoked by volleys in the flexion reflex afferents in alpha motoneurones. Acta Physiologica Scandinavica, 54, suppl. 186, 1–51Google Scholar
Hongo, T., Jankowska, E. & Lundberg, A. (1966). Convergence of excitatory and inhibitory action on interneurones in the lumbosacral cord. Experimental Brain Research, 1, 338–58CrossRefGoogle ScholarPubMed
Hongo, T., Jankowska, E. & Lundberg, A. (1969). The rubrospinal tract. Facilitation of interneuronal transmission of reflex paths to motoneurones. Experimental Brain Research, 7, 365–91CrossRefGoogle ScholarPubMed
Hongo, T., Kitazawa, S., Ohki, Y. & Xi, M. C. (1989). Functional identification of last-order interneurones of skin reflex pathways in the cat forelimb segments. Brain Research, 505, 167–70CrossRefGoogle ScholarPubMed
Hornby, T. G., Rymer, W. Z., Benz, E. N. & Schmit, B. D. (2003). Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?Journal of Neurophysiology, 89, 416–26CrossRefGoogle ScholarPubMed
Hugon, M. (1967). Réflexes polysynaptiques cutanés et commandes volontaires. Thèse de Sciences, 232 pp. Paris
Hugon, M. (1973). Exteroceptive reflexes to stimulation of the sural nerve in normal man. In New Developments in Electromyography and Clinical Neurophysiology, vol. 3, ed. Desmedt, J. E., pp. 713–29. Basel: KargerGoogle Scholar
Hulliger, M., Nordh, E., Thelin, A. E. & Vallbo, Å. B. (1979). The responses of afferent fibres from the glabrous skin of the hand during voluntary finger movements in man. Journal of Physiology (London), 291, 233–49CrossRefGoogle ScholarPubMed
Hunt, C. C. (1951). The reflex activation of mammalian small nerve fibres. Journal of Physiology (London), 115, 456–69CrossRefGoogle Scholar
Hunt, C. C. & Perl, E. R. (1960). Spinal reflex mechanisms concerned with skeletal muscle. Physiological Reviews, 40, 538–79CrossRefGoogle ScholarPubMed
Issler, H. & Stephens, J. A. (1983). The maturation of cutaneous reflexes studied in the upper limb in man. Journal of Physiology (London), 335, 643–54CrossRefGoogle ScholarPubMed
Jankowska, E., Jukes, M. G. M., Lund, S. & Lundberg, A. (1967a). The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiologica Scandinavica, 70, 369–88CrossRefGoogle Scholar
Jankowska, E., Jukes, M. G. M., Lund, S. & Lundberg, A. (1967b). The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiologica Scandinavica, 70, 389–402CrossRefGoogle Scholar
Jastrowitz, M. (1875). Beitrag zur Pathologie der Hemiplegien. Berliner Klinischen Wochenschrift, 12, 428–30Google Scholar
Jenner, H. & Stephens, J. A. (1982). Cutaneous reflex responses and their central nervous pathways studied in man. Journal of Physiology (London), 333, 405–19CrossRefGoogle ScholarPubMed
Johansson, R. S. & Vallbo, Å. B. (1983). Tactile sensory coding in the glabrous skin of the human hand. Trends in Neurosciences, 6, 27–32CrossRefGoogle Scholar
Kanda, K. & Desmedt, J. E. (1983). Cutaneous facilitation of large motor units and motor control in human fingers in precision grip. Advances in Neurology, 39, 253–61Google ScholarPubMed
Kearney, R. E. & Chan, C. W. (1979). Reflex response of human arm muscles to cutaneous stimulation of the foot. Brain Research, 170, 214–17CrossRefGoogle Scholar
Knikou, M. & Conway, B. A. (2001). Modulation of soleus H-reflex following ipsilateral mechanical loading of the sole of the foot in normal and complete spinal cord injured humans. Neuroscience Letters, 303, 107–10CrossRefGoogle Scholar
Kofler, M. (2003). Functional organization of exteroceptive inhibition following nociceptive electrical fingertip stimulation in humans. Clinical Neurophysiology, 114, 973–80CrossRefGoogle ScholarPubMed
Kugelberg, E. (1962). Polysynaptic reflexes of clinical importance. Electroencephalography and Clinical Neurophysiology, suppl. 22, 111Google Scholar
Kugelberg, E. & Hagbarth, K.-E. (1958). Spinal mechanism of the abdominal and erector spinae skin reflexes. Brain, 81, 290–304CrossRefGoogle ScholarPubMed
Kugelberg, E., Eklund, K. & Grimby, L. (1960). An electromyographic study of the nociceptive reflexes of the lower limb. Mechanism of the plantar responses. Brain, 83, 394–417CrossRefGoogle ScholarPubMed
Lance, J. W. (2002). The Babinski sign. Journal of Neurology, Neurosurgery and Psychiatry, 73, 360–62CrossRefGoogle ScholarPubMed
Landau, W. M. & Clare, M. H. (1959). The plantar reflex in man, with special reference to some conditions where the extensor response is unexpectedly absent. Brain, 82, 321–55CrossRefGoogle ScholarPubMed
Lundberg, A. (1959). Integrative significance of patterns of connections made by muscle afferents in the spinal cord. In Symposium of the XⅪth International Physiological Congress, pp. 1–5. Buenos Aires
Lundberg, A. (1973). The significance of segmental spinal mechanisms in motor control. In Symposium 4th International Biophysics Congress, Moscow 1972, pp. 9–23. Puschino, Moscow
Lundberg, A. (1979). Multisensory control of reflex pathways. In Reflex Control of Posture and Movement, Progress in Brain Research, vol. 50, ed. Granit, R. & Pompeiano, O., pp. 11–28. Amsterdam: ElsevierGoogle Scholar
Lundberg, A. (1982). Inhibitory control from the brain stem of transmission from primary afferents to motoneurons, primary afferent terminals and ascending pathways. In Brain Stem Control of Spinal Mechanisms, ed. Sjölund, B. & Björklund, A., pp. 179–224. Amsterdam: ElsevierGoogle Scholar
Lundberg, A., Malmgren, K. & Schomburg, E. D. (1987). Reflex pathways from group II muscle afferents. 3. Secondary spindle afferents and the flexion reflex afferent: a new hypothesis. Experimental Brain Research, 65, 294–306CrossRefGoogle Scholar
McNulty, P. A. & Macefield, V. G. (2002). Reflexes in the hand: strong synaptic coupling between single tactile afferents and spinal motoneurones. In Advances in Experimental Medicine and Biology, vol. 508, Sensorimotor Control of Movement and Posture, ed. Gandevia, S. C., Proske, U. & Stuart, D. G., pp. 39–45, New York: Kluwer Academic Plenum PublishersGoogle Scholar
Macefield, G., Gandevia, S. C. & Burke, D. (1989). Conduction velocities of muscle and cutaneous afferents in the upper and lower limbs of human subjects. Brain, 112, 1519–32CrossRefGoogle ScholarPubMed
Manconi, F. M., Syed, N. A. & Floeter, M. K. (1998). Mechanisms underlying spinal motor neuron excitability during the cutaneous silent period in humans. Muscle and Nerve, 21, 1256–643.0.CO;2-A>CrossRefGoogle ScholarPubMed
Matthews, P. B. C. (1972). Mammalian Muscle Spindles and their Central Action. 630 pp. London: ArnoldGoogle Scholar
Mayston, M. J., Harrison, L. M., Quinton, R., Stephens, J. A., Krams, M. & Bouloux, P. M. J. (1997). Mirror movements in X- linked Kallmann's syndrome. 1. A neurophysiological study. Brain, 120, 1199–216CrossRefGoogle Scholar
Meier-Ewert, K., Schmidt, C., Nordmann, G., Hümme, U. & Dahm, J. (1973). Averaged muscle responses to repetitive sensory stimuli. In New Developments in Electromyography and Clinical Neurophysiology, vol. 3, ed. Desmedt, J. E., pp. 767–72. Basel: KargerGoogle Scholar
Meinck, H. M., Piesiur-Strehlow, B. & Koehler, W. (1981). Some principles of flexor reflex generation in human leg muscles. Electroencephalography and Clinical Neurophysiology, 52, 140–50CrossRefGoogle ScholarPubMed
Meinck, H. M., Benecke, R. & Conrad, B. (1983a). Spasticity and the flexor reflex. In Clinical Neurophysiology of Spasticity, ed. Delwaide, P. J. & Young, R. R., pp. 39–54. Amsterdam: ElsevierGoogle Scholar
Meinck, H. M., Benecke, R., Küster, S. & Conrad, B. (1983b). Cutaneomuscular (flexor) reflex organization in normal man and in patients with motor disorders. In Motor Control Mechanisms in Health and Disease, ed. Desmedt, J. E., pp. 787–96. New York: Raven PressGoogle Scholar
Meinck, H. M., Küster, S., Benecke, R. & Conrad, B. (1985). The flexor reflex – influence of stimulus parameters on the reflex response. Electroencephalography and Clinical Neurophysiology, 61, 287–98CrossRefGoogle ScholarPubMed
Nielsen, J. & Kagamihara, Y. (1993). Differential projection of the sural nerve on early and late recruited human tibialis anterior motor units: change of recruitment gain. Acta Physiologica Scandinavica, 147, 385–401CrossRefGoogle ScholarPubMed
Nielsen, J. B. & Sinkjaer, T. (2002). Afferent feedback in the control of human gait. Journal of Electromyography and Kinesiology, 12, 213–17CrossRefGoogle ScholarPubMed
Nielsen, J., Petersen, N. & Fedirchuk, B. (1997). Evidence suggesting a transcortical pathway from cutaneous foot afferents to tibialis anterior motoneurones in man. Journal of Physiology (London), 501, 473–84CrossRefGoogle ScholarPubMed
Pedersen, E. (1954). Studies on the central pathway of the flexion reflex in man and animal and changes in the reflex threshold and the circulation after spinal transection. Acta Psychiatrica Scandinavica, suppl. 88, 1–81Google Scholar
Pierrot-Deseilligny, E., Bussel, B. & Morin, C. (1973a). Supraspinal control of the changes induced in H reflex by cutaneous stimulation, as studied in normal and spastic man. In New Developments in Electromyography and Clinical Neurophysiology, vol. 3, ed. Desmedt, J. E., pp. 550–5. Basel: KargerGoogle Scholar
Pierrot-Deseilligny, E., Bussel, B., Sideri, G., Cathala, H. P. & Castaigne, P. (1973b). Effect of voluntary contraction on H-reflex changes induced by cutaneous stimulation in normal man. Electroencephalography and Clinical Neurophysiology, 34, 185–92CrossRefGoogle Scholar
Pijnappels, M., Wezel, B. M., Colombo, G., Dietz, V. & Duysens, J. (1998). Cortical facilitation of cutaneous reflexes in leg muscles during human gait. Brain Research, 787, 149–53CrossRefGoogle ScholarPubMed
Plaghki, L., Bragard, D., Bars, D., Willer, J. C. & Godfraind, J. M. (1998). Facilitation of a nociceptive flexion reflex in man by non noxious radiant heat produced by a laser. Journal of Neurophysiology, 79, 2557–67CrossRefGoogle Scholar
Roby-Brami, A. & Bussel, B. (1989). Long-latency spinal reflex in man after flexor reflex afferent stimulation. Brain, 110, 705–25Google Scholar
Roby-Brami, A. & Bussel, B. (1990). Effects of flexor reflex afferent stimulation on the soleus H reflex in patients with a complete spinal cord lesion: evidence for presynaptic inhibition of Ia transmission. Experimental Brain Research, 81, 593–601CrossRefGoogle ScholarPubMed
Roby-Brami, A. & Bussel, B. (1992). Inhibitory effects on flexor reflexes in patients with a complete spinal cord section. Experimental Brain Research, 81, 201–8Google Scholar
Roby-Brami, A., Bussel, B., Willer, J. C. & Bars, D. (1987). An electrophysiological investigation into the pain-relieving effects of heterotopic nociceptive stimuli: probable involvement of a supraspinal loop. Brain, 110, 1497–508CrossRefGoogle ScholarPubMed
Roby-Brami, A., Ghenassia, J. R. & Bussel, B. (1989). Electrophysiological study of the Babinski sign in paraplegic patients. Journal of Neurophysiology, 59, 1390–7Google Scholar
Rosenbach, O. (1876). Ein Beitrag zur Symptomatologie cerebraler Hemiplegien. Archives von Psychiatrist Nervenkranken, 6, 845–51CrossRefGoogle Scholar
Rossi, A. & Decchi, B. (1994). Flexibility of lower limb reflex responses to painful cutaneous stimulation in standing humans: evidence of load-dependent modulation. Journal of Physiology (London), 481, 521–32CrossRefGoogle ScholarPubMed
Rowlandson, P. J. & Stephens, J. A. (1985a). Maturation of cutaneous reflex responses recorded in the lower limb in man. Developmental Medicine and Child Neurology, 27, 425–33CrossRefGoogle Scholar
Rowlandson, P. J. & Stephens, J. A. (1985b). Cutaneous reflex responses recorded in children with various neurological disorders. Developmental Medicine and Child Neurology, 27, 434–47CrossRefGoogle Scholar
Sasaki, M., Kitazawa, S., Ohki, Y. & Hongo, T. (1996). Convergence of skin reflex and corticospinal effects in segmental and propriospinal pathways to forelimb motoneurones in the cat. Experimental Brain Research, 107, 422–34CrossRefGoogle ScholarPubMed
Schmit, B. D., McKenna-Cole, A. & Rymer, W. Z. (2000). Flexor reflexes in chronic spinal cord injury triggered by imposed ankle rotation. Muscle and Nerve, 23, 793–8033.0.CO;2-T>CrossRefGoogle ScholarPubMed
Schmit, B. D., Hornby, T. G., Tysseling-Mattiace, V. M. & Benz, E. N. (2003). Absence of local sign in withdrawal in chronic human spinal cord injury. Journal of Neurophysiology, 90, 3232–41CrossRefGoogle ScholarPubMed
Schomburg, E. D. (1990). Spinal sensorimotor systems and their supraspinal control. Neuroscience Research, 7, 265–340CrossRefGoogle ScholarPubMed
Schouenborg, J. (2002). Modular organisation and spinal somatosensory imprinting. Brain Research Reviews, 40, 80–91CrossRefGoogle ScholarPubMed
Seki, K., Perlmutter, S. & Fetz, E. E. (2003). Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nature Neuroscience, 6, 1309–16CrossRefGoogle ScholarPubMed
Seyffarth, H. & Denny-Brown, D. (1948). The grasp-reflex and the instinctive grasp reaction. Brain, 71, 109–83CrossRefGoogle ScholarPubMed
Shahani, B. T. & Young, R. R. (1971). Human flexor reflexes. Journal of Neurology, Neurosurgery and Psychiatry, 34, 616–27CrossRefGoogle ScholarPubMed
Shahani, B. T. & Young, R. R. (1973). Human flexor spasms. In New Developments in Electromyography and Clinical Neurophysiology, vol. 3, ed. Desmedt, J. E., pp. 734–43. Basel: KargerGoogle Scholar
Shahani, B. T., Burrows, P. & Whitty, C. W. (1970). The grasp reflex and perseveration. Brain, 73, 181–92CrossRefGoogle Scholar
Sherrington, C. S. (1906). The Integrative Action of the Nervous System. New Haven: Yale University PressGoogle Scholar
Sherrington, C. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. Journal of Physiology (London), 40, 28–121CrossRefGoogle ScholarPubMed
Shimamura, M., Mori, S. & Yamauchi, T. (1967). Effects of spinobulbo-spinal reflex volleys on extensor motoneurons of hind limb in cats. Journal of Neurophysiology, 30, 319–32CrossRefGoogle Scholar
Sonnenborg, F. A., Andersen, O. K. & Arendt-Nielsen, L. (2000). Modular organization of excitatory and inhibitory reflex receptive fields elicited by electrical stimulation of the foot sole. Clinical Neurophysiology, 111, 2160–9CrossRefGoogle ScholarPubMed
Spaich, E. G., Arendt-Nielsen, L. & Andersen, O. K. (2004). Modulation of lower limb withdrawal reflexes during gait: a topographical study. Journal of Neurophysiology, 91, 258–66CrossRefGoogle ScholarPubMed
Stephens, J. A., Garnett, R. & Buller, N. P. (1978). Reversal of recruitment order of single motor units produced by cutaneous stimulation during voluntary muscle contraction in man. Nature, 272, 262–4CrossRefGoogle ScholarPubMed
Tax, A. A. M., Wezel, B. M. H. & Dietz, V. (1995). Bipedal reflex coordination to tactile stimulation during human running. Journal of Neurophysiology, 73, 1947–64CrossRefGoogle ScholarPubMed
Turner, L. C., Harrison, L. M. & Stephens, J. A. (2002). Finger movement is associated with attenuated cutaneous reflexes recorded from human first dorsal interosseus muscle. Journal of Physiology (London), 542, 559–66CrossRefGoogle Scholar
Gijn, J. (1996). The Babinski sign: the first hundred years. Journal of Neurology, 243, 675–83CrossRefGoogle ScholarPubMed
Wezel, B. M. H., Ottenhoff, F. A. & Duysens, J. (1997). Dynamic control of location-specific information in tactile cutaneous reflexes from the foot during human walking. Journal of Neuroscience, 17, 3804–14CrossRefGoogle Scholar
Wezel, B. M. H., Engelen, B. M. G., Gabreëls, F. J. M., Gabreëls-Festen, A. A. W. M. & Duysens, J. (2000). Aβ fibers mediate cutaneous reflexes during human walking. Journal of Neurophysiology, 83, 2980–6CrossRefGoogle ScholarPubMed
Viala, G., Orsal, D. & Buser, P. (1978). Cutaneous fiber groups involved in the inhibition of fictive locomotion in the rabbit. Experimental Brain Research, 33, 257–67CrossRefGoogle ScholarPubMed
Walshe, F. M. R. (1914). The physiological significance of the reflex phenomenon in spastic paralysis of lower limbs. Brain, 37, 269–336CrossRefGoogle Scholar
Willer, J. C. (1977). Comparative study of perceived pain and nociceptive flexion reflex in man. Pain, 3, 69–80CrossRefGoogle ScholarPubMed
Willer, J. C. (1983). Nociceptive flexion reflexes as a tool for pain research in man. In Advances in Neurology, vol. 39, Motor Control Mechanisms in Health and Disease, ed. Desmedt, J. E., pp. 809–28. New York: Raven PressGoogle Scholar
Willer, J. C. & Bussel, B. (1980). Evidence for a direct spinal mechanism in morphine-induced inhibition of nociceptive reflexes in humans. Brain Research, 187, 212–15CrossRefGoogle ScholarPubMed
Willer, J. C., Boureau, F. & Albe-Fessard, D. (1978). Role of large diameter cutaneous afferents in transmission of nociceptive messages: electrophysiological study in man. Brain Research, 152, 358–64CrossRefGoogle ScholarPubMed
Willer, J. C., Roby, A. & Bars, D. (1984). Psychophysical and electrophysiological approaches to the pain-relieving effects of heterotopic nociceptive stimuli. Brain, 107, 1095–112CrossRefGoogle ScholarPubMed
Yang, J. F. & Stein, R. B. (1990). Phase-dependent reflex reversal in human leg muscles during walking. Journal of Neurophysiology, 63, 1109–17CrossRefGoogle ScholarPubMed
Young, R. R. (1973). The clinical significance of exteroceptive reflexes. In New Developments in Electromyography and Clinical Neurophysiology, vol. 3, ed. Desmedt, J. E., pp. 697–712. Basel: KargerGoogle Scholar
Zehr, E. P. & Stein, R. B. (1999). What function do reflexes have during human locomotion?Progress in Neurobiology, 58, 185–205CrossRefGoogle ScholarPubMed
Zehr, E. P., Fujita, K. & Stein, R. B. (1998). Reflexes from the superficial peroneal nerve during walking in stroke subjects. Journal of Neurophysiology, 79, 848–58CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×