Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T16:41:36.322Z Has data issue: false hasContentIssue false

13 - Neural hybrid model of semantic object memory (version 1.1)

from Part VI - Conceptual Models of Semantics

Published online by Cambridge University Press:  14 September 2009

John Hart Jr.
Affiliation:
University of Texas at Dallas
Michael A Kraut
Affiliation:
The Johns Hopkins University School of Medicine
John Hart
Affiliation:
University of Texas, Dallas
Michael A. Kraut
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Delineating the neural bases of semantic memory, even for single entities (objects, features of objects, categories, actions, etc.) has been fraught with numerous difficulties, including variable definitions of semantic terms and several different models of the functional organization of semantic memory (see previous chapters). The development of new investigative techniques has been a major asset in detecting regions associated with semantic memory, but has not led to a consensus on semantic organization, since the results from these studies have frequently been discordant. For example, the results of activation studies (positron emission tomography, functional magnetic resonance imaging event-related potential – PET, fMRI, ERP, etc.), which demonstrate regions likely “involved” in performing a task, have yet to be fully integrated with the results of lesion-based studies that show regions “essential” for performing a task.

Historically, attempts at delineating the anatomic substrates of semantic memory have been guided by one of two general models or classes of models: parallel distributed representation (McClelland & Rumelhart, 1985 and Hinton, 1981) and center processing (Geschwind, 1965). It is clear, however, that neither of these models in their pure form explains adequately the growing body of data from anatomic and functional studies. In other words, the brain comprises neither a homogeneous network of equivalent neuronal elements that encode every aspect of a memory, nor circumscribed processing centers that encode all memory elements.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assaf, M., Calhoun, V., Kuzu, C., Kraut, M., Rivkin, P., Hart, J., and Pearlson, G. (2006). Neural correlates of the object recall process in semantic memory. Psychiatry Research: Neuroimaging, Oct 30; 147 (2–3): 115–26.CrossRefGoogle ScholarPubMed
Barsalou, L. W., Kyle Simmons, W., Barbey, A. K., and Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Science, 7: 84–91.CrossRefGoogle ScholarPubMed
Beauchamp, M. S., Lee, K. E., Argall, B. D., and Martin, A. (2004). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron, 41: 809–23.CrossRefGoogle ScholarPubMed
Berndt, R. S. (1988). Category-specific deficits in aphasia. Aphasiology, 2: 237–40.CrossRefGoogle Scholar
Binder, J. R., Swanson, S. J., Hammeke, T., Morris, G., Mueller, W., Fischer, M., Benbadis, S., Frost, J., Rao, S., and Haughton, V. (1996). Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology, 46: 978–84.CrossRefGoogle ScholarPubMed
Cappa, S. F., Frugoni, M., Pasquali, P., Perani, D., and Zorat, F. (1998). Category-specific naming impairment for artefacts: a new case. Neurocase, 4/5: 391–8.CrossRefGoogle Scholar
Caramazza, A. and Shelton, J. R. (1998). Domain-specific knowledge systems in the brain the animate–inanimate distinction. Journal of Cognitive Neuroscience, 10: 1–34.CrossRefGoogle ScholarPubMed
Crosson, B., Sadek, J. R., Bobholz, J. A., Gokcay, D., Mohr, C., Leonard, C., Maron, L., Auerbach, E., Browd, S., Freeman, A., and Briggs, R. (1999). Activity in the paracingulate and cingulate sulci during word generation: An fMRI study of functional anatomy. Cerebral Cortex, 9: 307–16.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1990). Category-related recognition defects as a clue to the neural substrates of knowledge. Trends in Neuroscience, 13: 95–8.CrossRefGoogle Scholar
Damasio, A. R. and Tranel, D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences USA, 90: 4957–60.CrossRefGoogle ScholarPubMed
Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D., and Damasio, A. R. (1996). A neural basis for lexical retrieval. Nature, 380: 499–505.CrossRefGoogle ScholarPubMed
della Rocchetta, A. I. and Cipolotti, L. (2004). Preserved knowledge of maps of countries: Implications for the organization of semantic memory. Neurocase, 10: 249–64.CrossRefGoogle ScholarPubMed
Demb, J. B., Desmond, J. E., Wagner, A. D., Vaidya, C. J., Glover, G. H., and Gabrieli, J. D. (1995). Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. Journal of Neuroscience, 15: 5870–8.CrossRefGoogle ScholarPubMed
Demonet, J. F., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J., Wise, R., Rascol, A., and Frackowiak, R. (1992). The anatomy of phonological and semantic processing in normal subjects. Brain, 115: 1753–68.CrossRefGoogle ScholarPubMed
Downing, P. E., Chan, A. W., Peelen, M. V., Dodds, C. M., and Kanwisher, N. (2006). Domain specificity in visual cortex. Cerebral Cortex, 16: 1453–61.CrossRefGoogle ScholarPubMed
Farah, M. J., McMullen, P., and Meyer, M. (1991). Can recognition of living things be selectively impaired?Neuropsychologia, 29: 185–93.CrossRefGoogle ScholarPubMed
Farah, M. J., Meyer, M. M., and McMullen, P. A. (1996). The living/nonliving dissociation is not an artifact: giving an a priori implausible hypothesis a strong test. Cognitive Neuropsychology, 13: 137–54.CrossRefGoogle Scholar
Farah, M. J. and Wallace, M. A. (1992). Semantically-bounded anomia: implications for the neural implementation of naming. Neuropsychologia, 30: 609–22.CrossRefGoogle ScholarPubMed
Ferreira, C. T., Giusiano, B., and Poncet, M. (1997). Category-specific anomia: implication of different neural networks in naming. Neuroreport, 8: 1595–602.CrossRefGoogle ScholarPubMed
Fiez, J. A. (1997). Phonology, semantics, and the role of the left inferior prefrontal cortex. Human Brain Mapping, 5: 79–83.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Funnell, E. and Sheridan, J. (1992). Categories of knowledge? Unfamiliar aspects of living and nonliving things. Cognitive Neuropsychology, 9: 135–53.CrossRefGoogle Scholar
Gainotti, G., Silveri, M., Daniele, A., and Giustolisi, L. (1995). Neuroanatomical correlates of category-specific semantic disorders: a critical survey. Memory, 3/4: 247–64.CrossRefGoogle Scholar
Garrard, P., Patterson, K., Watson, P. C., and Hodges, J. R. (1998). Category-specific semantic loss in dementia of Alzheimer's type: functional–anatomical correlations form cross-sectional analyses. Brain, 121: 633–46.CrossRefGoogle Scholar
Gerlach, C., Law, I., and Paulson, O. B. (2004). Structural similarity and category-specificity: a refined account. Neuropsychologia, 42: 1543–53.CrossRefGoogle ScholarPubMed
Geschwind, N. (1965). Disconnexion syndromes in animals and man. Brain, 88: 237–97, 585–644.CrossRefGoogle ScholarPubMed
Gil-da-Costa, R., Braun, A., Lopes, M., Hauser, M. D., Carson, R. E., Herscovitch, P., and Martin, A. (2004). Toward an evolutionary perspective on conceptual representation: species-specific calls activate visual and affective processing systems in the macaque. Proceedings of the National Academy of Sciences USA, 101: 17516–21.CrossRefGoogle ScholarPubMed
Goodglass, H., Klein, B., Carey, P., and Jones, K. (1966). Specific semantic word categories in aphasia. Cortex, 2: 74–89.CrossRefGoogle Scholar
Goodglass, H., Wingfield, A., Hyde, M., and Theurkauf, J. C. (1986). Category specific dissociations in naming and recognition by aphasic patients. Cortex, 22: 87–102.CrossRefGoogle ScholarPubMed
Grafton, S. T., Fadiga, L., Arbib, M. A., and Rizzolatti, G. (1997). Premotor cortex activation during observation and naming of familiar tools. NeuroImage, 6: 231–6.CrossRefGoogle ScholarPubMed
Grossman, M., Robinson, K., Biassou, N., White-Devine, T., and D'Esposito, M. (1998). Semantic memory in Alzheimer's disease: representativeness, ontologic category, and material. Neuropsychology, 12: 34–42.CrossRefGoogle ScholarPubMed
Grossman, M., Smith, E. E., Koenig, P., Glosser, G., DeVita, C., Moore, P., and McMillan, C. (2002). The neural basis for categorization in semantic memory. NeuroImage, 17: 1549–61.CrossRefGoogle ScholarPubMed
Gutierrez, C., Cola, M. G., Seltzer, B., and Cusick, C. (2000). Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys. Journal of Comparative Neurology, 419: 61–86.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Hart, J. and Gordon, B. (1990). Delineation of single-word semantic comprehension deficits in aphasia, with anatomical correlation. Annals of Neurology, 27: 226–31.CrossRefGoogle ScholarPubMed
Hart, J. and Gordon, B. (1992). Neural subsystems for object knowledge. Nature, 359: 60–4.CrossRefGoogle ScholarPubMed
Hart, J., Lesser, R. P., and Gordon, B. (1992). Selective interference with the representation of size the human by direct cortical stimulation. Journal of Cognitive Neuroscience, 4: 337–44.CrossRefGoogle Scholar
Hart, J., Crone, N. E., Lesser, R. P., Sieracki, J., Miglioretti, D. L., Hall, C., Sherman, D., and Gordon, B. (1998). Temporal dynamics of verbal object comprehension. Proceedings of the National Academy of Sciences USA, 95: 6498–503.CrossRefGoogle ScholarPubMed
Hart, J., Moo, L., Segal, J. B., Adkins, E., and Kraut, M. (2002). Neural substrates of semantics. In Hillis, A. (ed.), Handbook of Language Disorders. Philadelphia: Psychology Press, pp. 207–27.Google Scholar
Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., Herscovitch, P., Schapiro, M. B., and Rapoport, S. I. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences USA, 88: 1621–5.CrossRefGoogle ScholarPubMed
Haxby, J., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293: 2405–7.CrossRefGoogle ScholarPubMed
Hillis, A. and Caramazza, A. (1991). Category-specific naming and comprehension impairment: a double dissociation. Brain, 114: 2081–94.CrossRefGoogle ScholarPubMed
Hinton, G. E. (1981). Implementing semantic networks in parallel hardware. In Hinton, G. E. and Anderson, J. A. (eds.), Parallel Models of Associative Memory. Hillsdale, NJ: Erlbaum, pp. 161–87.Google Scholar
Humphreys, G. W. and Riddoch, M. J. (1987). On telling your fruits from your vegetables: a consideration of category-specific deficits after brain damage. Trends in Neuroscience, 10: 145–8.CrossRefGoogle Scholar
Ilinsky, I. A., Jouandet, M. L., and Goldman-Rakic, P. S. (1985). Organization of the nigrothalamocortical system in the rhesus monkey. Journal of Comparative Neurology, 236: 315–30.CrossRefGoogle ScholarPubMed
Inase, M., Tokuno, H., Nambu, A., Akazawa, T., and Takada, M. (1996). Origin of thalamocortical projections to the presupplementary motor area (pre-SMA) in the macaque. Neuroscience Research, 25: 217–27.CrossRefGoogle ScholarPubMed
Johnson, K. O. and Hsiao, S. S. (1992). Neural mechanisms of tactile form and texture perception. Annual Review of Neuroscience, 15: 227–50.CrossRefGoogle Scholar
Joliot, M., Ribary, U., and Llinas, R. (1994). Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proceedings of the National Academy of Sciences USA, 91: 11748–51.CrossRefGoogle ScholarPubMed
Kapur, S., Rose, R., Liddle, P. F., Zipursky, R. B., Brown, G. M., Stuss, , D., Houle, S., and Tulving, E. (1994). The role of the left prefrontal cortex in verbal processing: semantic processing or willed action?Neuroreport, 5: 2193–6.CrossRefGoogle ScholarPubMed
Kemmerer, D. and Tranel, D. (2000). Verb retrieval in brain-damaged subjects: 1. Analysis of stimulus, lexical, and conceptual factors. Brain and Language, 73: 347–92.CrossRefGoogle ScholarPubMed
Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 24: 61–100.CrossRefGoogle ScholarPubMed
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research: Brain Research Reviews, 29: 169–95.CrossRefGoogle ScholarPubMed
Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., and Winkler, T. (1999). “Paradoxical” alpha synchronization in a memory task. Brain Research: Cognitive Brain Research, 7: 493–501.Google Scholar
Klimesch, W., Schimke, H., and Pfurtscheller, G. (1993). Alpha frequency, cognitive load and memory performance. Brain Topograpy, 5: 241–51.CrossRefGoogle ScholarPubMed
Kraut, M., Hart, J., Soher, B. J., and Gordon, B. (1997). Object shape processing in the visual system evaluated using functional MRI. Neurology, 48: 1416–20.CrossRefGoogle ScholarPubMed
Kraut, M. A., Kremen, S., Segal, J. B., Calhoun, V., Moo, L., and Hart, J. (2002a). Object activation from features in the semantic system. Journal of Cognitive Neuroscience, 14: 24–36.CrossRefGoogle Scholar
Kraut, M. A., Kremen, S., Moo, L. R., Segal, J., Calhoun, V., and Hart, J. (2002b). Object activation in semantic memory from visual multimodal feature input. Journal of Cognitive Neuroscience, 14: 37–47.CrossRefGoogle Scholar
Kraut, M., Moo, L., Segal, J., and Hart, J. (2002c). Neural activation during an explicit categorization task: category- or feature-specific effects?Brain Research: Cognitive Brain Research, 13: 213–20.Google Scholar
Kraut, M., Calhoun, V., Pitcock, J. A., Cusick, C., and Hart, J. (2003). Neural hybrid model of semantic object memory: Implications from event-related timing using fMRI. Journal of the International Neuropsychological Society, 9: 1031–40.CrossRefGoogle ScholarPubMed
Kraut, M., Pitcock, J., Calhoun, V., Li, J., and Hart, J. (in press). Neuroanatomic organization of sound memory in humans. Journal of Cognitive Neuroscience.Google Scholar
Kronbichler, M., Hutzler, F., Wimmer, H., Mair, A., Staffen, W., and Ladurner, G. (2004). The visual word form area and the frequency with which words are encountered: evidence from a parametric fMRI study. NeuroImage, 21: 946–53.CrossRefGoogle ScholarPubMed
Lyons, F., Hanley, J. R., and Kay, J. (2002). Anomia for common names and geographical names with preserved retrieval of names of people: a semantic memory disorder. Cortex, 38: 23–35.CrossRefGoogle ScholarPubMed
Martin, A., Wiggs, C. L., Ungerleider, L. G., and Haxby, J. V. (1996). Neural correlates of category-specific knowledge. Nature, 379: 649–52.CrossRefGoogle ScholarPubMed
Martin, A. and Chao, L. L. (2001). Semantic memory and the brain: structure and processes. Current Opinion in Neurobiology, 11: 194–201.CrossRefGoogle ScholarPubMed
Mauri, A., Daum, I., Sartori, G., Riesch, G., and Birbaumer, N. (1994). Category-specific semantic impairment in Alzheimer's disease and temporal lobe dysfunction: a comparative study. Journal of Clinical and Experimental Neuropsychology, 16: 689–701.CrossRefGoogle ScholarPubMed
McCarthy, R. A. and Warrington, E. K. (1988). Evidence for modality-specific meaning systems in the brain. Nature, 334: 428–30.CrossRefGoogle Scholar
McClelland, J. L. and Rumelhart, D. E. (1985). Distributed memory and the representation of general and specific information. Journal of Experimental Psychology: General, 114: 159–88.CrossRefGoogle ScholarPubMed
Miceli, G., Fouch, E., Capasso, R., Shelton, J., Tomaiuolo, F., and Caramazza, A. (2001). The dissociation of color from form and function knowledge. Nature Neuroscience, 4: 662–7.CrossRefGoogle ScholarPubMed
Mummery, C. J., Patterson, K., Hodges, J. R., and Price, C. J. (1998). Functional neuroanatomy of the semantic system: divisible by what?Journal of Cognitive Neuroscience, 10: 766–77.CrossRefGoogle Scholar
Nadeau, S. E. and Crosson, B. (1997). Subcortical aphasia. Brain and Language, 58: 355–402.CrossRefGoogle ScholarPubMed
Nielsen, J. M. (1946). Agnosia, apraxia, aphasia: their value in cerebral localization, 2nd edn. New York: Paul B. Hoeber.Google Scholar
Ojemann, J., Ojemann, G., and Lettich, E. (2002). Cortical stimulation mapping of language cortex by using a verb generation task: effects of learning and comparison to mapping based on object naming. Journal of Neurosurgery, 97: 33–8.CrossRefGoogle ScholarPubMed
Perani, D., Cappa, S., Bettinardi, V., Bressi, S., Gorno-Tempini, M., Matarrese, M., and Fazio, F. (1995). Different neural systems for the recognition of animals and man-made tools. Neuroreport, 6: 1637–9.CrossRefGoogle ScholarPubMed
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., and Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331: 585–9.CrossRefGoogle ScholarPubMed
Petersen, S. E., Fox, P. T., Snyder, A. Z., and Raichle, M. E. (1990). Specific extrastriate and frontal cortical areas are activated by visual words and word-like stimuli. Science, 249: 1041–4.CrossRefGoogle Scholar
Posner, M. I., Petersen, S. E., Fox, P. T., and Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science, 240: 1627–31.CrossRefGoogle ScholarPubMed
Preuss, T. M. and Goldman-Rakic, P. S. (1987). Crossed corticothalamic and thalamocortical connections of macaque prefrontal cortex. Journal of Comparative Neurology, 257: 269–81.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Lutzenberger, W., and Preissl, H. (1999). Nouns and verbs in the intact brain: evidence from event-related potentials and high-frequency cortical responses. Cerebral Cortex, 9: 497–506.CrossRefGoogle ScholarPubMed
Rademacher, J., Morosan, P., Schormann, T., Schleicher, A., Werner, C., Freund, H. J., and Zilles, K. (2001). Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage, 13: 669–83.CrossRefGoogle ScholarPubMed
Rapcsak, S. Z., Comer, J. F., and Rubens, A. B. (1993). Anomia for facial expressions: neuropsychological mechanisms and anatomical correlates. Brain and Language, 45: 233–52.CrossRefGoogle ScholarPubMed
Rapcsak, S. Z., Kaszniak, A. W., and Rubens, A. B. (1989). Anomia for facial expressions: evidence for a category specific visual–verbal disconnection syndrome. Neuropsychologia, 27: 1031–41.CrossRefGoogle ScholarPubMed
Ricci, P. T., Zelkowicz, B. J., Nebes, R. D., Meltzer, C. C., Mintun, M. A., and Becker, J. T. (1999). Functional neuroanatomy of semantic memory: recognition of semantic associations. NeuroImage, 9: 88–96.CrossRefGoogle ScholarPubMed
Robinson, K. M., Grossman, M., White-Devine, T., and D'Esposito, M. (1996). Category-specific difficulty naming with verbs in Alzheimer's disease. Neurology, 47: 178–82.CrossRefGoogle ScholarPubMed
Sacchett, C. and Humphreys, G. W. (1992). Calling a squirrel a squirrel but a canoe a wigwam: a category-specific deficit for artefactual objects and body parts. Cognitive Neuropsychology, 9: 73–86.CrossRefGoogle Scholar
Sartori, G. and Job, R. (1988). The oyster with four legs: a neuropsychological study on the interaction of visual and semantic information. Cognitive Neuropsychology, 5: 105–32.CrossRefGoogle Scholar
Sartori, G. and Lombardi, L. (2004). Semantic relevance and semantic disorders. Journal of Cognitive Neuroscience, 16: 439–52.CrossRefGoogle ScholarPubMed
Sartori, G., Job, R., Miozzo, M., Zago, S., and Marchiori, G. (1993). Category-specific form–knowledge deficit in a patient with herpes simplex virus encephalitis. Journal of Clinical and Experimental Neuropsychology, 15: 280–99.CrossRefGoogle Scholar
Schier, M. A. (2000). Changes in EEG alpha power during simulated driving: a demonstration. International Journal of Psychophysiology, 37: 155–62.CrossRefGoogle ScholarPubMed
Semenza, C. and Zettin, M. (1988). Generating proper names: a case of selective inability. Cognitive Neuropsychology, 5: 711–21.CrossRefGoogle Scholar
Semenza, C. and Zettin, M. (1989). Evidence from aphasia for the role of proper names as pure referring expressions. Nature, 342: 678–9.CrossRefGoogle ScholarPubMed
Silveri, M. C. and Gainotti, G. (1988). Interaction between vision and language in category-specific semantic impairment. Cognitive Neuropsychology, 5: 677–709.CrossRefGoogle Scholar
Silveri, M. C., Daniele, A., Giustolisi, L., and Gainotti, G. (1991). Dissociation between knowledge of living and nonliving things in dementia of the Alzheimer type. Neurology, 41: 545–6.CrossRefGoogle ScholarPubMed
Sim, E. J. and Kiefer, M. (2005). Category-related brain activity to natural categories is associated with the retrieval of visual features: evidence from repetition effects during visual and functional judgments. Brain Research Cognitive Brain Research, 24: 260–73.CrossRefGoogle ScholarPubMed
Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55: 349–74.CrossRefGoogle Scholar
Singer, W. and Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18: 555–86.CrossRefGoogle ScholarPubMed
Slotnick, S., Moo, L., Kraut, M., Lesser, R., and Hart, J. (2002). Thalamic modulation of cortical rhythms during semantic memory recall in humans. Proceedings of the National Academy of Sciences USA, 99: 6440–3.CrossRefGoogle Scholar
Spiridon, M. and Kanwisher, N. (2002). How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron, 35: 1157–65.CrossRefGoogle ScholarPubMed
Spitzer, M., Kwong, K. K., Kennedy, W., Rosen, B. R., and Bellivean, J. W. (1995). Category-specific brain activation in fMRI during picture naming. Neuroreport, 6: 2109–12.CrossRefGoogle ScholarPubMed
Steriade, M. (2000). Corticothalamic resonance, states of vigilance and mentation. Neuroscience, 101: 243–76.CrossRefGoogle ScholarPubMed
Tarr, M. J. and Gauthier, I. (2000). FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nature Neuroscience, 3: 764–9.CrossRefGoogle ScholarPubMed
Temple, C. (1986). Anomia for animals in a child. Brain, 109: 1225–42.CrossRefGoogle Scholar
Thompson-Schill, S., D'Esposito, M., Aguirre, G., and Farah, M. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences USA, 94: 14792–7.CrossRefGoogle Scholar
Thompson-Schill, S., Swick, D., Farah, M., D'Esposito, M., Kan, I., and Knight, R. (1998). Verb generation in patients with focal frontal lesions: A neuropsychological test of neuroimaging findings. Proceedings of the National Academy of Sciences USA, 95: 15855–60.CrossRefGoogle ScholarPubMed
Tippett, L. J., Glosser, G., and Farah, M. J. (1996). A category-specific naming impairment after temporal lobectomy. Neuropsychologia, 34: 139–46.CrossRefGoogle ScholarPubMed
Tyler, L. K., Moss, H. E., Durrant-Peatfield, M. R., and Levy, J. P. (2000). Conceptual structure and the structure of concepts: a distributed account of category-specific deficits. Brain and Language, 75: 195–231.CrossRefGoogle ScholarPubMed
Underwood, G. and Whitfield, A. (1985). Right hemisphere interactions in picture–word processing. Brain and Cognition, 4: 273–86.CrossRefGoogle ScholarPubMed
Ungerleider, L. G. and Haxby, J. V. (1994). “What” and “where” in the human brain. Current Opinion in Neurobiology, 4: 157–65.CrossRefGoogle ScholarPubMed
Vitali, P., Abutalebi, J., Tettamanti, M., Rowe, J., Scifo, P., Fazio, F., Cappa, S. F., and Perani, D. (2005). Generating animal and tool names: an fMRI study of effective connectivity. Brain and Language, 93: 32–45.CrossRefGoogle ScholarPubMed
Warrington, E. K. and McCarthy, R. A. (1983). Category specific access dysphasia. Brain, 106: 859–78.CrossRefGoogle ScholarPubMed
Warrington, E. K. and McCarthy, R. A. (1987). Categories of knowledge: further fractionation and an attempted integration. Brain, 110: 1273–96.CrossRefGoogle Scholar
Warrington, E. K. and Shallice, T. (1984). Category specific semantic impairments. Brain, 107: 829–54.CrossRefGoogle ScholarPubMed
Yeterian, E. H. and Pandya, D. N. (1988). Corticothalamic connections of paralimbic regions in the rhesus monkey. Journal of Comparative Neurology, 269: 130–46.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×