Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T03:59:41.721Z Has data issue: false hasContentIssue false

55 - Spinal muscular atrophies

from Part IX - Motor neuron diseases

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Klaus Zerres
Affiliation:
Institute for Human Genetics, University of Technology, Aachen, Germany
Sabine Rudnik-Schöneborn
Affiliation:
Institute for Human Genetics, University of Technology, Aachen, Germany
Get access

Summary

Definition

The term spinal muscular atrophy (SMA) comprises a clinically and genetically heterogeneous group of diseases characterized by degeneration and loss of the anterior horn cells in the spinal cord, and – depending on type and severity – sometimes also in the brainstem nuclei, resulting in muscle weakness and atrophy. The sensory neurons are always clinically spared, and there are no signs of upper motor neuron (pyramidal tract) involvement (Emery, 1971).

The subdivision of the SMAs into separate genetic and clinical entities (Table 55.1) is still controversial unless biochemical or molecular genetic criteria are available to define distinct pathomechanisms. The criteria used are age of onset, severity (progression, age of death), distribution of weakness, the inclusion of additional features, and different modes of inheritance.

Epidemiology

Autosomal recessive proximal SMA is one of the most common inherited diseases leading to death in early infancy. According to a rough estimate, less than 2% of cases with an onset before 10 years of age show a parent-to-child transmission (Emery, 1971). While vertical transmission of childhood-onset proximal SMA is an exception, autosomal dominant transmission can be found in about two-thirds of the adult-onset proximal SMA families (Pearn, 1978a). Assuming an incidence of about 1:10000 for all types of autosomal recessive SMA, it has been estimated that adult SMA accounts for 8% of all SMA cases, with a prevalence of 0.32 per 100 000 of the population (Pearn, 1978b). Distal SMA accounts for about 10% of all SMAs (Pearn & Hudgson, 1979).

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 817 - 826
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C., Suchowersky, O. & Lowry, R. B. (1998). Congenital autosomal dominant distal spinal muscular atrophy. Neuromusc. Disord., 8, 405–8CrossRefGoogle ScholarPubMed
Anhuf, D., Eggermann, T., Rudnik-Schöneborn, S. et al. (2003). Determination of SMN1 and SMN2 copy number using TaqMan™ technology. Hum. Mutat.CrossRef
Borkowska, J., Rudnik-Schoneborn, S., Hausmanowa-Petrusewicz, et al. (2002). Early infantile form of spinal muscular atrophy (Werdnig-Hoffmann disease) with prolonged survival. Folia Neuropathol., 40, 19–26Google ScholarPubMed
Brzustowicz, L. M., Lehner, T., Castilla, L. H.et al. (1990). Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature, 344, 540–1CrossRefGoogle ScholarPubMed
Chang, J. G., Hsieh-Li, H. M., Jong, Y. J. et al. (2001). Treatment of spinal muscular atrophy by sodium butyrate. Proc. Natl Acad. Sci., USA, 98, 9808–13CrossRefGoogle ScholarPubMed
Cifuentes-Diaz, C., Frugier, T., Tiziano, F. D.et al. (2001). Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy. J. Cell Biol., 5, 1107–14CrossRefGoogle Scholar
Cox, G. A., Mahaffey, C. L. & Frankel, W. N. (1998). Identification of the mouse neuromuscular degeneration gene and mapping of a second site suppressor allele. Neuron, 21, 1327–37CrossRefGoogle ScholarPubMed
Coovert, D. D., Le, T. T., McAndrew, P. E.et al. (1997). The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet., 6, 1205–14CrossRefGoogle ScholarPubMed
Jonghe, P., Timmerman, V. & Broeckhoven, C. (1998). 2nd workshop of the European CMT Consortium. Neuromusc. Disord., 8, 426CrossRefGoogle Scholar
Emery, A. E. H. (1971). The nosology of the spinal muscular atrophies. J. Med. Genet., 8, 481–95CrossRefGoogle ScholarPubMed
Emery, A. E. H., Davie, A. M., Holloway, S.et al. (1976). International collaborative study of the spinal muscular atrophies. Part II: Analysis of genetic data. J. Neurol. Sci.) 30, 375–84CrossRefGoogle Scholar
Feldkö tter, M., Schwarzer, V. & Wirth, R. (2002). Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet.) 70, 358–68CrossRefGoogle Scholar
Frugier, T., Tiziano, F. D., Cifuentes-Diaz, C.et al. (2000). Nuclear targeting of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy. Hum. Mol. Genet., 9, 849–58CrossRefGoogle Scholar
Gambardella, A., Mazzei, R., Toscano, A.et al. (1998). Spinal muscular atrophy due to an isolated deletion of exon 8 of the telomeric survival motor neuron gene. Ann. Neurol., 44, 836–9CrossRefGoogle Scholar
Gilliam, T. C., Brzustowicz, L. M., Castilla, L. H.et al. (1990). Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature, 345, 823–5CrossRefGoogle ScholarPubMed
Hahnen, E., Forkert, R., Marke, C.et al. (1995). Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy: evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum. Mol. Genet., 4, 1927–33CrossRefGoogle ScholarPubMed
Hofmann, Y., Lorson, C. L., Stamm, S.et al. (2000). Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc. Natl Acad. Sci., USA, 15, 9618–23CrossRefGoogle Scholar
Hsieh- Li, H., Chang, J. G., Jong, Y. J.et al. (2000). A mouse model for spinal muscular atrophy. Nat. Genet., 24, 66–70CrossRefGoogle ScholarPubMed
Irobi, J., DeJonghe, P. & Timmerman, V. (2004). Molecular genetics of distal hereditary motor neuropathies. Hum. Mol. Genet., 13, R195–R202CrossRefGoogle ScholarPubMed
Jablonka, S., Schrank, B., Kralewski, M.et al. (2000). Reduced survival motor neuron (smn) dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. Hum. Mol. Genet., 9, 341–6CrossRefGoogle ScholarPubMed
Korinthenberg, R., Sauer, M., Ketelsen, U. P.et al. (1997). Congenital axonal neuropathy caused by deletions in the spinal muscular atrophy region. Ann. Neurol., 42, 364–8CrossRefGoogle ScholarPubMed
Lefebvre, S., Bürglen, L., Reboullet, S.et al. (1995). Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 80, 155–65CrossRefGoogle ScholarPubMed
Lorson, C. L., Hahnen, E., Androphy, E. J.et al. (1999). A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl Acad. Sci., USA, 96, 6307–11CrossRefGoogle ScholarPubMed
McLeod, J. G. & Prineas, J. W. (1971). Distal type of chronic spinal muscular atrophy. Brain, 94, 703–14CrossRefGoogle ScholarPubMed
Melki, J., Abdelhak, S., Sheth, P.et al. (1990a). Gene for chronic spinal muscular atrophies maps to chromosome 5q. Nature, 344, 767–8CrossRefGoogle Scholar
Melki, J., Sheth, P., Abdelhak, S.et al. (1990b). Mapping of acute (type 1) spinal muscular atrophy to chromosome 5q12–q14. Lancet, 336, 271–3CrossRefGoogle Scholar
Mercuri, E., Bertini, E., Messina, S.et al. (2004). Pilot trial of phenylbutyrate in spinal muscular atrophy. Neuromusc. Disor.. 14, 130–5CrossRefGoogle ScholarPubMed
Monani, U. R., Sendtner, M., Coovert, D. D.et al. (2000a). The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn -/- mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet., 9, 333–9CrossRefGoogle Scholar
Monani, U. R., Coovert, D. D., Burghes, A. H. M. (2000b). Animal models of spinal muscular atrophy. Hum. Mol. Genet., 9, 2451–7CrossRefGoogle Scholar
Nicole, S., Cifuentes-Diaz, C., Frugier, T.et al. (2002). Spinal muscular atrophy: recent advances and future prospects. Muscle Nerve, 26, 4–13CrossRefGoogle ScholarPubMed
Parsons, D. W., McAndrew, P. E., Iannaconne, S. T.et al. (1998). Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modifications of the spinal muscular atrophy phenotype by cenSMN copy number. Am. J. Hum. Genet., 63, 1712–23CrossRefGoogle Scholar
Pearn, J. (1978a). Autosomal dominant spinal muscular atrophy. J. Neurol. Sci., 38, 263–75CrossRefGoogle Scholar
Pearn, J. (1978b). Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J. Med. Genet., 15, 409–13CrossRefGoogle Scholar
Pearn, J. & Hudgson, P. (1979). Distal spinal muscular atrophy: a clinical and genetic study of eight kindreds. J. Neurol. Sci., 43, 183–91CrossRefGoogle Scholar
Pioro, E. P. & Mitsumoto, H. (1996). Animal models of ALS. Clin. Neurosci., 3, 375–85Google Scholar
Rietschel, M., Rudnik-Schöneborn, S. & Zerres, K. (1992). Clinical variability of autosomal dominant spinal muscular atrophy. J. Neurol. Sci., 107, 65–73CrossRefGoogle ScholarPubMed
Rochette, C. F., Gilbert, N. & Simard, L. R. (2001). SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum. Genet., 108, 255–66CrossRefGoogle ScholarPubMed
Rudnik-Schöneborn, S., Morgan, G., Röhrig, D.et al. (1994). Autosomal recessive proximal spinal muscular atrophy in 101 sibs out of 48 families: clinical picture, influence of gender and genetic implications. Am. J. Med. Genet., 51, 70–6CrossRefGoogle ScholarPubMed
Rudnik-Schöneborn, S., Forkert, R., Hahnen, E.et al. (1996). Clinical spectrum and diagnostic criteria of infantile spinal muscular atrophy: further delineation on the basis of SMN gene deletion findings. Neuropediatrics, 27, 8–15CrossRefGoogle ScholarPubMed
Rudnik-Schöneborn, S., Lützenrath, S., Borkowska, J.et al. (1998). Analysis of creatine kinase activity in 504 patients with proximal spinal muscular atrophy types I–II from the point of view of progression and severity. Eur. Neurol., 39, 154–62CrossRefGoogle Scholar
Rudnik-Schöneborn, S., Goebel, H. H., Schlote, W. et al. (2003). Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy. Neurology, (in press)
Russman, B. S., Iannacone, S. T., Buncher, C. R.et al. (1992). Spinal muscular atrophy: new thoughts on the pathogenesis and classification schema. J. Child Neurol., 7, 347–53CrossRefGoogle ScholarPubMed
Russman, B. S., Buncher, C. R., White, M.et al. (1996). Function changes in spinal muscular atrophy II and III. The DCN/SMA Group. Neurology, 47, 973–6CrossRefGoogle ScholarPubMed
Schmalbruch, H. & Haase, G. (2001). Spinal muscular atrophy: present state. Brain Pathol., 11, 231–74CrossRefGoogle ScholarPubMed
Sendtner, M. (2001). Molecular mechanisms in spinal muscular atrophy: models and perspectives. Curr. Opin. Neurol., 14, 629–34CrossRefGoogle Scholar
Veldink, J. H., Berg, L. H., Cobben, J. M.et al. (2001). Homozygous deletion of the survival motor neuron 2 gene is a prognostic factor in sporadic ALS. Neurology, 56, 749–52CrossRefGoogle ScholarPubMed
Viollet, L., Barois, A., Rebeiz, J. G.et al. (2002). Mapping of autosomal recessive chronic distal spinal muscular atrophy to chromosome 11q13. Ann. Neurol., 51, 585–92CrossRefGoogle ScholarPubMed
Wirth, B., Herz, M., Wetter, A.et al. (1999). Quantitative analysis of SMN copies: identification of subtle SMNt mutations in SMA patients, genotype-phenotype correlation and implications for genetic counseling. Am. J. Hum. Genet., 64, 1340–56CrossRefGoogle Scholar
Zerres, K. & Davies, K. (1999). 59th ENMC International workshop: Spinal muscular atrophy. Recent progress and revised diagnostic criteria. Neuromusc. Disord., 9, 272–8CrossRefGoogle ScholarPubMed
Zerres, K. & Rudnik-Schöneborn, S. (1995). Natural history in proximal spinal muscular atrophy (SMA): clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch. Neurol., 52, 518CrossRefGoogle ScholarPubMed
Zerres, K. & Rudnik-Schöneborn, S. (2005). Spinal muscular atrophies. In Emery and Rimoin's Principles and Practice of Medical Genetics, 5th edn. ed. D. L. Rimoin, J. M. Connor, R. E. Pyritz & B. R. Korf (in press)CrossRef
Zerres, K., Rudnik-Schöneborn, S., Forkert, R.et al. (1995a). Genetic basis of adult-onset spinal muscular atrophy. Lancet, 346, 741–2CrossRefGoogle Scholar
Zerres, K., Rudnik-Schöneborn, S., Dubowitz, V.et al. (1995b). Guidelines for symptomatic therapy in spinal muscular atrophy SMA. Acta Cardiomiol., 7, 61–6Google Scholar
Zerres, K., Rudnik-Schöneborn, S., Forrest, E.et al. (1997). A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J. Neurol. Sci., 146, 67–72CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×