Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-22T14:41:32.458Z Has data issue: false hasContentIssue false

46 - Approach to the patient with ataxia

from Part VIII - Cerebellar degenerations

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Thomas Klockgether
Affiliation:
Department of Neurology, University of Bonn, Germany
Get access

Summary

Definition and classification of ataxia

The term ataxia is derived from ancient Greek and literally means absence of order. In modern clinical neurology, ataxia is used to denote disturbances of coordinated muscle activity. Ataxia is caused by disorders of the cerebellum and its afferent or efferent connections. Spinal afferent pathways are often involved in ataxia disorders. Diseases of the peripheral nervous system, such as chronic idiopathic demyelinating polyneuropathy, may also cause ataxia. However, ataxia is rarely the prominent symptom in these disorders.

The afferent and efferent connections of the cerebellar cortex are topographically organized resulting in functional specialization of different parts of the cerebellum. Dysfunction of the lower vermis (vestibulocerebellum) leads to truncal ataxia. Spinocerebellar lesions (upper vermis and anterior parts of hemispheres) are characterized by unsteadiness of gait and stance which are more evident after eye closure (positive Rombergism). The most prominent symptom of neocerebellar damage (cerebellar hemispheres) is ataxia of intended limb movements. Ataxic limb movements are irregular and jerky and tend to overshoot the target (past-pointing). They are often accompanied by rhythmic side-to-side movements as the target is approached (action or intention tremor). Dysarthria characterized by slow and segmented speech with variable intonation and disturbances of ocular movements (broken-up smooth pursuit, saccadic hypermetria, gaze-evoked nystagmus) almost invariably accompany ataxia of gait and limb movements (Diener & Dichgans, 1992; Thach et al., 1992).

Knowledge of the topographical organization of the cerebellum is helpful for the localisation of focal cerebellar disease.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 699 - 708
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abele, M., Weller, M., Mescheriakov, S., Bürk, K., Dichgans, J. & Klockgether, T. (1999). Cerebellar ataxia with glutamic acid decarboxylase autoantibodies. Neurology, 52, 857–9CrossRefGoogle ScholarPubMed
Abele, M., Bürk, K., Schols, L.et al. (2002). The aetiology of sporadic adult-onset ataxia. Brain, 125, 961–8CrossRefGoogle ScholarPubMed
Berkovic, S. F., Cochius, J., Andermann, E. & Andermann, F. (1993). Progressive myoclonus epilepsies: clinical and genetic aspects. Epilepsia, 34 Suppl 3, S19–S30CrossRefGoogle ScholarPubMed
Berlit, P. & Rakicky, J. (1992). The Miller Fisher syndrome. Review of the literature. J. Clin. Neuroophthalmol., 12, 57–63Google ScholarPubMed
Bomont, P., Watanabe, M., GershoniBarush, R.et al. (2000). Homozygosity mapping of spinocerebellar ataxia with cerebellar atrophy and peripheral neuropathy to 9q33–34, and with hearing impairment and optic atrophy to 6p21–23. Eur. J. Hum. Genet., 8, 986–90CrossRefGoogle ScholarPubMed
Botez, M. I., Attig, E. & Vezina, J. L. (1998). Cerebellar atrophy in epileptic patients. Can. J. Neurol. Sci., 15, 299–303CrossRefGoogle Scholar
Bürk, K., Abele, M., Fetter, M.et al. (1996). Autosomal dominant cerebellar ataxia type I – clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain, 119, 1497–505CrossRefGoogle ScholarPubMed
Bürk, K., Fetter, M., Abele, M.et al. (1999). Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J. Neurol., 246, 789–97Google ScholarPubMed
Campuzano, V., Montermini, L., Moltò, M. D.et al. (1996). Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science, 271, 1423–7CrossRefGoogle ScholarPubMed
Connolly,, A. M., Dodson, W. E., Prensky, A. L. & Rust, R. S. (1994). Course and outcome of acute cerebellar ataxia. Ann. Neurol., 35, 673–9CrossRefGoogle Scholar
Dalmau, J., Gultekin, H. S. & Posner, J. B. (1999). Paraneoplastic neurologic syndromes: pathogenesis and physiopathology. Brain Pathol., 9, 275–84CrossRefGoogle ScholarPubMed
Date, H., Onodera, O., Tanaka, H.et al. (2001). Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat. Genet., 29, 184–8CrossRefGoogle Scholar
Diener, H. C. & Dichgans, J. (1992). Pathophysiology of cerebellar ataxia. Mov. Disord., 7, 95–109CrossRefGoogle ScholarPubMed
Dürr, A., Cossee, M., Agid, Y.et al. (1996). Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med., 335, 1169–75CrossRefGoogle ScholarPubMed
Filla, A., Michele, G., Campanella, G.et al. (1996a). Autosomal dominant cerebellar ataxia type I. Clinical and molecular study in 36 Italian families including a comparison between SCA1 and SCA2 phenotypes. J. Neurol. Sci., 142, 140–7CrossRefGoogle Scholar
Filla, A., Michele, G., Cavalcanti, F.et al. (1996b). The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am. J. Hum. Genet., 59, 554–60Google Scholar
Geoffrey, G., Barbeau, A., Breton, G.et al. (1976). Clinical description and roentgenologic evaluation of patients with Friedreich's ataxia. Can. J. Neurol. Sci., 3, 279–86CrossRefGoogle Scholar
Giunti, P., Stevanin, G., Worth, P. F., David, G., Brice, A. & Wood, N. W. (1999). Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Am. J. Hum. Genet., 64, 1594–603CrossRefGoogle ScholarPubMed
Hadjivassiliou, M., Grunewald, R. A. & Davies-Jones, G. A. B. (2002). Gluten sensitivity as a neurological illness. J. Neurol. Neurosurg. Psychiatr., 72, 560–3CrossRefGoogle ScholarPubMed
Hammar, C. H. & Regli, F. (1975). [Cerebellar ataxia due to hypothyroidism in adults (case report)]. Dtsch. Med. Wochenschr., 100, 1504–6CrossRefGoogle Scholar
Harding, A. E. (1981a). Early onset cerebellar ataxia with retained tendon reflexes: a clinical and genetic study of a disorder distinct from Friedreich's ataxia. J. Neurol. Neurosurg. Psychiatr., 44, 503–8CrossRefGoogle Scholar
Harding, A. E. (1981b). Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain, 104, 589–620CrossRefGoogle Scholar
Harding, A. E. (1981c). “Idiopathic” late onset cerebellar ataxia. A clinical and genetic study of 36 cases. J. Neurol. Sci., 51, 259–71CrossRefGoogle Scholar
Harding, A. E. (1983). Classification of the hereditary ataxias and paraplegias. Lancet, 1, 1151–5CrossRefGoogle ScholarPubMed
Harding, A. E., Muller, D. P., Thomas, P. K. & Willison, H. J. (1982). Spinocerebellar degeneration secondary to chronic intestinal malabsorption: a vitamin E deficiency syndrome. Ann. Neurol., 12, 419–24CrossRefGoogle ScholarPubMed
Hassin-Baer, S., Korczyn, A. D. & Giladi, N. (2000). An open trial of amantadine and buspirone for cerebellar ataxia: a disappointment. J. Neural Transm., 107, 1187–9CrossRefGoogle ScholarPubMed
Holmes, G. (1907). An attempt to classify cerebellar disease, with a note on Marie's hereditary cerebellar ataxia. Brain, 30, 545–67CrossRefGoogle Scholar
Honnorat, J., Saiz, A., Giometto, B.et al. (2001). Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies – Study of 14 patients. Arch. Neurol., 58, 225–30CrossRefGoogle ScholarPubMed
Hsiao, K., Baker, H. F., Crow, T. J.et al. (1989). Linkage of a prion protein missense variant to Gerstmann–Sträussler syndrome. Nature, 338, 342–5CrossRefGoogle ScholarPubMed
Kawaguchi, Y., Okamoto, T., Taniwaki, M.et al. (1994). CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet., 8, 221–8CrossRefGoogle Scholar
Klockgether, T. & Dichgans, J. (1996). Inherited and noninherited ataxias. In Neurological Disorders: Course and Treatment, ed. T. Brandt, L. R. Caplan, J. Dichgans, H. C. Diener & C. Kennard, pp. 705–13. San Diego: Academic Press
Klockgether, T., Petersen, D., Grodd, W. & Dichgans, J. (1991). Early onset cerebellar ataxia with retained tendon reflexes. Clinical, electrophysiological and MRI observations in comparison with Friedreich's ataxia. Brain, 114, 1559–73CrossRefGoogle ScholarPubMed
Klockgether, T., Doller, G., Wüllner, U., Petersen, D. & Dichgans, J. (1993). Cerebellar encephalitis in adults. J. Neurol., 240, 17–20CrossRefGoogle ScholarPubMed
Klockgether, T., Chamberlain, S., Wüllner, U.et al. (1993). Late-onset Friedreich's ataxia. Molecular genetics, clinical neurophysiology, and magnetic resonance imaging. Arch. Neurol., 50, 803–6CrossRefGoogle ScholarPubMed
Koide, R., Ikeuchi, T., Onodera, O.et al. (1994). Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat. Genet., 6, 9–13CrossRefGoogle Scholar
Kurihara, M., Kumagai, K., Yagishita, S.et al. (1993). Adrenoleuko-myeloneuropathy presenting as cerebellar ataxia in a young child: a probable variant of adrenoleukodystrophy. Brain Dev., 15, 377–80CrossRefGoogle Scholar
Kusaka, H. & Imai, T. (1992). Ataxic variant of adrenoleukodystrophy: MRI and CT findings. J. Neurol., 239, 307–10CrossRefGoogle ScholarPubMed
Lonnqvist, T., Paetau, A., Nikali, K., Boguslawski, K. & Pihko, H. (1998). Infantile onset spinocerebellar ataxia with sensory neuropathy (IOSCA): neuropathological features. J. Neurol. Sci., 161, 57–65CrossRefGoogle ScholarPubMed
Lou, J. S., Goldfarb, L., McShane, L., Gatev, P., Hallett, M. (1995). Use of buspirone for treatment of cerebellar ataxia – an open-label study. Arch. Neurol., 52, 982–8CrossRefGoogle ScholarPubMed
Marseille Consensus Group (1990). Classification of progressive myoclonus epilepsies and related disorders. Marseille Consensus Group. Ann. Neurol., 28, 113–16CrossRef
Matsumura, R., Futamura, N., Fujimoto, Y.et al. (1997). Spinocerebellar ataxia type 6 – molecular and clinical features of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology, 49, 1238–43CrossRefGoogle ScholarPubMed
Mercier, J., Prevost, C., Engert, J. C., Bouchard, J. P., Mathieu, J. & Richter, A. (2001). Rapid detection of the sacsin mutations causing autosomal recessive spastic ataxia of Charlevoix-Saguenay. Genetic Testing, 5, 255–9CrossRefGoogle ScholarPubMed
Moreira, M. C., Barbot, C., Tachi, N.et al. (2001). The gene mutated in ataxia–ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat. Genet., 29, 189–93CrossRefGoogle ScholarPubMed
Moseley, M. L., Benzow, K. A., Schut, L. J.et al. (1998). Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology, 51, 1666–71CrossRefGoogle ScholarPubMed
Nemeth, A. H., Bochukova, E., Dunne, E.et al. (2000). Autosomal recessive cerebellar ataxia with oculomotor apraxia (Ataxia-telangiectasia-like syndrome) is linked to chromosome 9q34. Am. J. Hum. Genet., 67, 1320–6Google ScholarPubMed
Pujana, M. A., Corral, J., Gratacos, M.et al. (1999). Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases. The Ataxia Study Group. Hum. Genet., 104, 516–22CrossRefGoogle ScholarPubMed
Pulst, S. M., Nechiporuk, A., Nechiporuk, T.et al. (1996). Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat. Genet., 14, 269–76CrossRefGoogle ScholarPubMed
Quinn, N. (1989). Multiple system atrophy – the nature of the beast. J. Neurol. Neurosurg. Psychiatr., Suppl, 78–89CrossRefGoogle ScholarPubMed
Riess, O., Schöls, L., Bottger, H.et al. (1997). SCA6 is caused by moderate CAG expansion in the alpha1A-voltage-dependent calcium channel gene. Hum. Mol. Genet., 6, 1289–93CrossRefGoogle ScholarPubMed
Saviozzi, S., Saluto, A., Taylor, A. M. R.et al. (2002). A late onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030G/7481insA. J. Med. Genet., 39, 57–61CrossRefGoogle ScholarPubMed
Schöls, L., Amoiridis, G., Büttner, T., Przuntek, H., Epplen, J. T. & Riess, O. (1997). Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes?Ann. Neurol., 42, 924–32CrossRefGoogle ScholarPubMed
Schöls, L., Krüger, R., Amoiridis, G., Przuntek, H., Epplen, J. T. & Riess, O. (1998). Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J. Neurol. Neurosurg. Psychiatr., 64, 67–73CrossRefGoogle ScholarPubMed
Schöls, L., Szymanski, S., Peters, S.et al. (2000). Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum. Genet., 107, 132–7CrossRefGoogle ScholarPubMed
Schulz, J. B., Klockgether, T., Petersen, D.et al. (1994). Multiple system atrophy: natural history, MRI morphology, and dopamine receptor imaging with 123IBZM-SPECT. J. Neurol. Neurosurg. Psychiatr., 57, 1047–56CrossRefGoogle ScholarPubMed
Selim, M. & Drachman, D. A. (2001). Ataxia associated with Hashimoto's disease: progressive non-familial adult onset cerebellar degeneration with autoimmune thyroiditis. J. Neurol. Neurosurg. Psychiatr., 71, 81–7CrossRefGoogle ScholarPubMed
Takada, K., Onoda, K., Takahashi, K., Nakamura, H. & Taketomi, T. (1987). An adult case of adrenoleukodystrophy with features of olivo-ponto-cerebellar atrophy: I. Clinical and pathological studies. Jpn. J. Exp. Med., 57, 53–8Google ScholarPubMed
Thach, W. T., Goodkin, H. P. & Keating, J. G. (1992). The cerebellum and the adaptive coordination of movement. Annu. Rev. Neurosci., 15, 403–42CrossRefGoogle Scholar
Timmann, D. & Diener, H. C. (2000). Alcoholic cerebellar degeneration (including ataxias that are due to other toxic causes). In Handbook of Ataxia Disorders, ed. T. Klockgether, pp. 571–605. New York: Marcel Dekker
Trouillas, P., Serratrice, G., Laplane, D.et al. (1995). Levorotatory form of 5-hydroxytryptophan in Friedreich's ataxia: results of a double-blind drug-placebo cooperative study. Arch. Neurol., 52, 456–60CrossRefGoogle ScholarPubMed
Trouillas, P., Xie, J., Adeleine, P.et al. (1997). Buspirone, a 5-hydroxytryptamine1A agonist, is active in cerebellar ataxia – results of a double-blind drug placebo study in patients with cerebellar cortical atrophy. Arch. Neurol., 54, 749–52CrossRefGoogle ScholarPubMed
Victor, M., Adams, R. D. & Collins, G. H. (1971). The Wernicke–Korsakoff syndrome. A clinical and pathological study of 245 patients, 82 with post-mortem examinations. Contemp. Neurol. Ser., 7, 1–206Google ScholarPubMed
Wenning, G. K., Ben Shlomo, Y., Magalhaes, M., Daniel, S. E. & Quinn, N. P. (1994). Clinical features and natural history of multiple system atrophy. An analysis of 100 cases. Brain, 117, 835–45CrossRefGoogle ScholarPubMed
Wüllner, U., Klockgether, T., Petersen, D., Naegele, T. & Dichgans, J. (1993). Magnetic resonance imaging in hereditary and idiopathic ataxia. Neurology, 43, 318–25CrossRefGoogle ScholarPubMed
Zhuchenko, O., Bailey, J., Bonnen, P.et al. (1997). Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat. Genet., 15, 62–9CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×