Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-28T08:23:02.540Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 August 2009

A. F. G. Dixon
Affiliation:
University of East Anglia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Insect Herbivore-Host Dynamics
Tree-Dwelling Aphids
, pp. 176 - 191
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. & Douglas, A. E. (1997). How symbiotic bacteria influence plant utilization by the polyphagous aphid, Aphis fabae. Oecologia 110, 528–532CrossRefGoogle Scholar
Alverson, D. R. & English, W. R. (1990). Dynamics of pecan aphids, Monelliopsis pecanis and Monellia caryella, on field-isolated single leaves of pecan. Journal of Agricultural Entomology 7, 29–38Google Scholar
Andrewartha, H. G. & Birch, L. C. (1954). The Distribution and Abundance of Animals. Chicago: University of Chicago Press
Andrewartha, H. G. & Birch, L. C. (1984). The Web of Life. Chicago: University of Chicago Press
Archetti, M. (2000). The origin of autumn colours. Journal of Theoretical Biology 205, 625–630CrossRefGoogle ScholarPubMed
Ayal, Y. & Green, R. F. (1993). Optimal egg distribution among host patches for parasitoids subject to attack by hyperparasitoids. American Naturalist 141, 120–138CrossRefGoogle ScholarPubMed
Bacon, J. S. D. & Dickinson, B. (1957). The origin of melezitose: a biochemical relationship between the lime tree (Tilia spp.) and an aphid (Eucallipterus tiliae L.). Biochemical Journal 66, 289–299CrossRefGoogle Scholar
Barlow, N. D. (1977). A simulation study of lime aphid populations. PhD Thesis, University of East Anglia
Barlow, N. D. & Dixon, A. F. G. (1980). Simulation of Lime Aphid Population Dynamics. Wageningen: Pudoc
Begon, M. & Mortimor, M. (1981). Population Ecology: A Unified Study of Animals and Plants. Oxford: Blackwell Scientific Publications
Behrendt, K. (1963). Über die Eidiapause von Aphis fabae Scop. (Homoptera, Aphidiae). Zoologische Jahrbücher Physiologie 70, 309–398Google Scholar
Berryman, A. A. (1981). Population Systems: A General Introduction. New York: Plenum
Berryman, A. A. (2002). Population: a central concept for ecology?Oikos 97, 439–442CrossRefGoogle Scholar
Binggelli, P. (1992). Patterns of invasion of sycamore (Acer pseudoplatanus L.) in relation to species and ecosystem attributes. PhD Thesis, University of Ulster
Bonner, J. T. (1988). The Evolution of Complexity by means of Natural Selection. Princeton: Princeton University Press
Bonnet, C. (1745). Traitéd'Insectologie au observations sur Pucerons. Paris: Chez Durand
Bronowski, J. (1973). The Ascent of Man. London: British Broadcasting Corporation
Brown, M. (1975). Intra-specific mechanisms regulating the numbers of lime aphid. PhD Thesis, University of Glasgow
Buchner, P. (1955). Endosymbiosestudien an Schildlausen 11 Stictococcus diversiset. Zeitschrift für Morphologie und Okologie der Tiere 43, 397–424CrossRefGoogle Scholar
Buchner, P. (1965). Endosymbiosis of Animals with Plant Microorganisms. New York: Interscience Publishers
Bumroongsook, S. & Harris, M. K. (1991). Nature of conditioning effect on pecan by the blackmargined aphid. Southwestern Entomologist 16, 267–275Google Scholar
Bumroongsook, S. & Harris, M. K. (1992). Distribution, conditioning, and interspecific effects of blackmargined aphids and yellow pecan aphids (Homoptera: Aphidiae) on pecan. Journal of Economic Entomology 85, 187–191CrossRefGoogle Scholar
Buse, A. & Good, J. E. G. (1996). Synchronization of larval emergence in winter moth (Operophtera brumata L.) and budburst in pedunculate oak (Quercus robur L.) under simulated climatic change. Ecological Entomology 21, 335–343CrossRefGoogle Scholar
Chambers, R. J. (1979). Simulation modelling of a sycamore aphid population. PhD Thesis, University of East Anglia
Chang, K.-G., Fechner, G. H. & Schroeder, H. A. (1989). Anthocyanins in autumn leaves of quaking aspen in Colorado. Forest Science 35, 229–236Google Scholar
Charnov, E. (1982). The Theory of Sex Allocation. Princeton: Princeton University Press
Charnov, E. & Bull, J. J. (1989a). Non-Fisherian sex ratios with sex change and environmental sex determination. Nature 338, 148–150CrossRefGoogle Scholar
Charnov, E. & Bull, J. J. (1989b). The primary sex ratio under environmental sex determination. Journal of Theoretical Biology 139, 431–436CrossRefGoogle Scholar
Cherrett, J. M. (1988). Ecological concepts: a survey of the members of the British Ecological Society. Biologist 35, 64–66Google Scholar
Collins, M. D. (1981). Coexistence in aphid parasites. PhD Thesis, University of East Anglia
Coope, G. R. (1995). Insect faunas in ice age environments: why so little extinction? In Extinction Rates, ed. J. H. Lawton & R. M. May. Oxford: Oxford University Press, pp. 55–74
Crawley, M. J. (1983). Herbivory. Oxford: Blackwell Scientific Publications
Curtis, J. (1845). Observations on the natural history and economy of various insects affecting corn-crops, including the parasitic enemies of the wheat-midge, the thrips, wheat-louse, wheat-bug and also the little worm called Vibrio. Journal of the Royal Agricultural Society of England 6, 493–518Google Scholar
Daag, J. L. (2002). Strategies of sexual reproduction in aphids. PhD Thesis, University of Göttingen
Dadd, R. H. & Krieger, D. L. (1968). Dietary amino acid requirements of the aphid Myzus persicae. Journal of Insect Physiology 14, 741–764CrossRefGoogle Scholar
Dahlsten, D. L., Zuparko, R. L., Hajek, A. E., Rowney, D. L. & Dreistadt, S. H. (1999). Long-term sampling of Eucallipterus tiliae (Homoptera: Drepanosiphidae) and associated natural enemies in a northern California site. Environmental Entomology 28, 845–850CrossRefGoogle Scholar
Day, K. & Crute, S. (1990). The abundance of spruce aphids under the influence of an oceanic climate. In Population Dynamics of Forest Insects, ed. A. D. Watt, S. R. Leather, M. D. Hunter & N. A. C. Kidd. Andover: Intercept, pp. 25–33
Equileor, M., Grimaldi, A., Tettamanti, G., Valvassori, R., Leonardi, M. G., Giordana, B., Tremblay, E., Digilio, M. C. & Pennachio, F. (2001). Larval anatomy and structure of absorbing epithelia in the aphid parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae). Arthropod Structure and Development 30, 27–37CrossRefGoogle Scholar
Dempster, J. P. (1975). Animal Population Ecology. London: Academic Press
Dewar, R. C. & Watt, A. D. (1992). Predicted changes in the synchrony of larval emergence and budburst under climatic warming. Oecologia 89, 557–559CrossRefGoogle ScholarPubMed
Dighton, J. (1978a). Effects of synthetic lime aphid honeydew on populations of soil organisms. Soil Biology and Biochemistry 10, 369–376CrossRefGoogle Scholar
Dighton, J. (1978b). In vitro experiments simulating the possible fates of aphid honeydew sugars in soil. Soil Biology and Biochemistry 10, 53–57CrossRefGoogle Scholar
Digilio, M. C., Isidora, N., Tremblay, E. & Pennacchio, F. (2000). Host castration by Aphidius ervi venom proteins. Journal of Insect Physiology 46, 1041–1050CrossRefGoogle ScholarPubMed
Dixon, A. F. G. (1958). The escape responses shown by certain aphids in the presence of the coccinellid Adalia decempunctata (L.). Transaction of the Royal Entomological Society London 110, 319–334CrossRefGoogle Scholar
Dixon, A. F. G. (1963). Reproductive activity of the sycamore aphid, Drepanisiphum platanoides (Schr.) (Hemiptera, Aphididae). Journal of Animal Ecology 32, 33–48CrossRefGoogle Scholar
Dixon, A. F. G. (1966). The effect of population density and nutritive status of the host on the summer reproductive activity of the sycamore aphid, Drepanosiphum platanoides (Schr.). Journal of Animal Ecology 35, 105–112CrossRefGoogle Scholar
Dixon, A. F. G. (1969). Population dynamics of the sycamore aphid Drepanosiphum platanoides (Schr.) (Hemiptera: Aphididae): migratory and trivial flight. Journal of Animal Ecology 38, 585–606CrossRefGoogle Scholar
Dixon, A. F. G. (1970a). Factors limiting the effectiveness of the coccinellid beetle, Adalia bipunctata (L.), as a predator of the sycamore aphid, Drepanosiphum platanoides (Schr.). Journal of Animal Ecology 39, 739–751CrossRefGoogle Scholar
Dixon, A. F. G. (1970b). Quality and availability of food for a sycamore aphid population. In Animal Populations in Relation to their Food Resources, ed. A. Watson. Oxford: Blackwell, pp. 271–287
Dixon, A. F. G. (1970c). Stabilization of aphid populations by an aphid induced plant factor. Nature 227, 1368–1369CrossRefGoogle Scholar
Dixon, A. F. G. (1971a). The role of aphids in wood formation. I. The effect of the sycamore aphid, Drepanosiphum platanoides (Schr.) (Aphididae), on the growth of sycamore, Acer pseudoplatanus (L.). Journal of Applied Ecology 8, 165–179CrossRefGoogle Scholar
Dixon, A. F. G. (1971b). The role of aphids in wood formation. II. The effect of the lime aphid, Eucallipterus tiliae L. (Aphididae), on the growth of lime, Tilia x vulgaris Hayne. Journal of Applied Ecology 8, 393–399CrossRefGoogle Scholar
Dixon, A. F. G. (1971c). The life-cycle and host preferences of the bird cherry-oat aphid, Rhopalosiphum padi L., and their bearing on the theories of host alternation in aphids. Annals of Applied Biology 68, 135–143CrossRefGoogle Scholar
Dixon, A. F. G. (1971d). The ‘interval timer’ and photoperiod in the determination of parthenogenetic and sexual morphs in the aphid, Drepanosiphum platanoides. Journal of Insect Physiology 17, 251–260CrossRefGoogle Scholar
Dixon, A. F. G. (1971e). The role of intra-specific mechanisms and predation in regulating the numbers of the lime aphid, Eucallipterus tiliae L. Oecologia 8, 179–193CrossRefGoogle Scholar
Dixon, A. F. G. (1972a). The ‘interval timer’, photoperiod and temperature in the seasonal development of parthenogenetic and sexual morphs in the lime aphid, Eucallipterus tiliae L. Oecologia 9, 301–310CrossRefGoogle Scholar
Dixon, A. F. G. (1972b). Control and significance of the seasonal development of colour forms in the sycamore aphid, Drepanosiphum platanoides (Schr.). Journal of Animal Ecology 41, 689–697CrossRefGoogle Scholar
Dixon, A. F. G. (1974). Changes in the length of the appendages and the number of rhinaria in young clones of the sycamore aphid, Drepanosiphum platanoides. Entomologia Experimentalis et Applicata 17, 1–8CrossRefGoogle Scholar
Dixon, A. F. G. (1975a). Effect of population density and food quality on autumnal reproductive activity in the sycamore aphid, Drepanosiphum platanoides (Schr.). Journal of Animal Ecology 44, 297–304CrossRefGoogle Scholar
Dixon, A. F. G. (1975b). Seasonal changes in fat content, form, state of gonads and length of adult life in the sycamore aphid, Drepanosiphum platanoides (Schr.). Transactions of the Royal Entomological Society of London 127, 87–99CrossRefGoogle Scholar
Dixon, A. F. G. (1976a). Timing of egg hatch and viability of the sycamore aphid, Drepanosiphum platanoides (Schr.), at bud burst of sycamore, Acer pseudoplatanus L. Journal of Animal Ecology 45, 593–603CrossRefGoogle Scholar
Dixon, A. F. G. (1976b). Factors determining the distribution of sycamore aphids on leaves in summer. Ecological Entomology 1, 275–278CrossRefGoogle Scholar
Dixon, A. F. G. (1977). Aphid ecology: life cycles, polymorphism and population regulation. Annual Review of Ecology and Systematics 8, 329–353CrossRefGoogle Scholar
Dixon, A. F. G. (1979). Sycamore aphid numbers: the role of weather, host and aphid. In Population Dynamics, ed. R. M. Anderson, B. D. Turner & L. R. Taylor. Oxford: Blackwells, pp. 105–121
Dixon, A. F. G. (1985). Structure of aphid populations. Annual Review of Entomology 30, 155–174CrossRefGoogle Scholar
Dixon, A. F. G. (1987a). Cereal aphids as an applied problem. Agricultural Zoology Reviews 2, 1–57Google Scholar
Dixon, A. F. G. (1987b). Adaptive significance of cyclical parthenogenesis in aphids. In Aphids, their Biology, Natural Enemies and Control, ed. P. Harrewijn & A. Minks. Amsterdam: Elsevier, pp. 289–297
Dixon, A. F. G. (1987c). Parthenogenetic reproduction and the rate of increase in aphids. In Aphids, their Biology, Natural Enemies and Control, ed. P. Harrewijn & A. Minks. Amsterdam: Elsevier, pp. 269–287
Dixon, A. F. G. (1990a). Evolutionary aspects of parthenogenetic reproduction in aphids. Acta Phytopathology and Entomology Hungarica 25, 41–56Google Scholar
Dixon, A. F. G. (1990b). Population dynamics and abundance of deciduous tree-dwelling aphids. In Population Dynamics of Forest Insects, ed. M. Hunter, N. Kidd, S. R. Leather & A. D. Watt. Andover: Intercept, pp. 11–23
Dixon, A. F. G. (1998). Aphid Ecology, 2nd edn. London: Chapman & Hall
Dixon, A. F. G. (2000). Insect Predator–Prey Dynamics: Ladybird Beetles and Biological Control. Cambridge: Cambridge University Press
Dixon, A. F. G. (2003). Climate change and phenological asynchrony. Ecological Entomology 28, 380–381CrossRefGoogle Scholar
Dixon, A. F. G., Croghan, P. C. & Gowing, R. P. (1990). The mechanism by which aphids adhere to smooth surfaces. Journal of Experimental Biology 152, 243–253Google Scholar
Dixon, A. F. G. & Dharma, T. R. (1980). ‘Spreading the risk’ in developmental mortality: size, fecundity and reproductive rate in the black bean aphid. Entomologia Experimentalis et Applicata 28, 301–312CrossRefGoogle Scholar
Dixon, A. F. G. & Kindlmann, P. (1990). Role of plant abundance in determining the abundance of herbivorous insects. Oecologia 83, 281–283CrossRefGoogle ScholarPubMed
Dixon, A. F. G. & Kindlmann, P. (1998a). Generation time ratio and the effectiveness of ladybirds as classical biological control agents. Proceedings 6th Australasian Applied Entomological Research Conference 1, 314–320Google Scholar
Dixon, A. F. G. & Kindlmann, P. (1998b). Population dynamics of aphids. In Insect Populations in Theory and in Practice, ed. J. P. Dempster & I. F. G. McLean. Dordrecht: Kluwer Academic Publishers, pp. 207–230
Dixon, A. F. G., Kindlmann, P., Leps, J. & Holman, J. (1987). Why are there so few species of aphids, especially in the tropics?American Naturalist 129, 580–592CrossRefGoogle Scholar
Dixon, A. F. G. & Kundu, R. (1997). Trade-off between reproduction and length of adult life in males and mating females of aphids. European Journal of Entomology 94, 105–109Google Scholar
Dixon, A. F. G. & Logan, M. (1972). Population density and spacing in the sycamore aphid, Drepanosiphum platanoides (Schr.), and its relevance to the regulation of population growth. Journal of Animal Ecology 41, 751–759CrossRefGoogle Scholar
Dixon, A. F. G. & Logan, M. (1973). Leaf size and availability of space to the sycamore aphid, Drepanosiphum platanoides. Oikos 24, 58–63CrossRefGoogle Scholar
Dixon, A. F. G. & McKay, S. (1970). Aggregation in the sycamore aphid Drepanosiphum platanoides (Schr.) (Hemiptera: Aphididae) and its relevance to the regulation of population growth. Journal of Animal Ecology 39, 439–454CrossRefGoogle Scholar
Dixon, A. F. G. & Mercer, D. R. (1983). Fight behaviour in the sycamore aphid: factors affecting take-off. Entomologia Experimentalis et Applicata 33, 43–49CrossRefGoogle Scholar
Dixon, A. F. G. & Russel, R. J. (1972). The effectiveness of Antocoris nemorum and A. confusus (Hemiptera: Anthocoridae) as predators of the sycamore aphid, Drepanosiphum platanoides. II. Searching behaviour and the incidence of predation in the field. Entomologia Experimentalis et Applicata 15, 35–50CrossRefGoogle Scholar
Dixon, A. F. G. & Stewart, W. A. (1975). Function of the siphunculi in aphids with particular reference to the sycamore aphid, Drepanosiphum platanoides. Journal of Zoology (London) 175, 279–289CrossRefGoogle Scholar
Dixon, A. F. G., Wellings, P. W., Carter, C. & Nichols, J. F. A. (1993). The role of food quality and competition in shaping the seasonal cycle in the reproductive activity of the sycamore aphid. Oecologia 95, 89–92CrossRefGoogle ScholarPubMed
Doebeli, M. & Ruxton, G. D. (1997). Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution 51, 1730–1741CrossRefGoogle ScholarPubMed
Douglas, A. E. (1989). Mycetocyte symbiosis in insects. Biological Reviews 69, 409–434CrossRefGoogle Scholar
Douglas, A. E. (1995). The ecology of symbiotic micro-organisms. Advances in Ecological Research 26, 69–103CrossRefGoogle Scholar
Douglas, A. E. (2000). Reproductive diapause and the bacterial symbiosis in the sycamore aphid Drepanosiphum platanoidis. Ecological Entomology 25, 256–261CrossRefGoogle Scholar
Douglas, A. E. & Dixon, A. F. G. (1987). The mycetocyte symbiosis of aphids variation with age and morph in virginoparae of Megoura viciae and Acyrthosiphon pisum. Journal of Insect Physiology 33, 109–113CrossRefGoogle Scholar
Eastop, V. F. (1991). Host plant range and virus transmission by aphids. Fitopatologia Brasiliansis 16, 241–245Google Scholar
Elton, C. S. (1927). Animal Ecology. London: Sidgwick & Jackson
Elton, C. S. (1966). The Pattern of Animal Communities. London: Methuen & Co. Ltd
Errington, P. L. (1934). Vulnerability of a bobwhite population to predation. Ecology 15, 110–127CrossRefGoogle Scholar
Errington, P. L. (1946). Predation and vertebrate populations. Quarterly Review of Biology 21, 145–177Google Scholar
Errington, P. L. & Hamerstrom, F. N. (1936). The northern bobwhite's winter territory. Research Bulletin Iowa Agricultural Experimental Station 201Google Scholar
Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press
Fox, R. C. & Griffith, K. H. (1977). Pine seedling growth loss caused by cinarian aphids in South Carolina. Journal of Georgia Entomological Society 12, 13–29Google Scholar
Fukatsu, T. (2001). Secondary intracellular symbiotic bacteria in aphids of the genus Yamatocallis (Homoptera: Aphididae: Drepanosiphinae). Applied and Environmental Microbiology 67, 5315–5320CrossRefGoogle Scholar
Fukatsu, T. & Ishikawa, H. (1992). Soldier and male of an eusocial aphid Colophina arma lack endosymbiont: implications for physiological and evolutionary interaction between host and symbiont. Journal of Insect Physiology 38, 1033–1042CrossRefGoogle Scholar
Furuta, K. (1986). Host preference and population dynamics in an autumnal population of the maple aphid, Periphyllus californiensis Shinji (Homoptera, Aphididae). Journal of Applied Entomology 102, 93–100CrossRefGoogle Scholar
Furuta, K. (1988). Annual alternating population size of the thuja aphid, Cinara tujafilina (Del Guercio), and the impact of syrphids and disease. Journal of Applied Entomology 105, 344–354CrossRefGoogle Scholar
Furuta, K. (1990a). Early budding of Acer palmatum caused by shade; intraspecific heterogeneity of the host for the maple aphid. Bulletin Tokyo University Forests 82, 137–145Google Scholar
Furuta, K. (1990b). Seeding behaviour of Acer amoenum and the effect of the infestation of aphids. Bulletin Tokyo University Forests 82, 147–156Google Scholar
Furuta, K. (1994). Influence of the maple aphid, Periphyllus californiensis, on the length of long shoots and leaves of young Acer amoenum. Journal Japanese Forestry Society 76, 263–269Google Scholar
Furuta, K. (2003). Effects of phenology and natural enemies on long term population dynamics of the maple aphid (Periphyllus californiensis) on Acer palmatum trees. Journal of Tree Health 7, 7–14Google Scholar
Furuta, K. & Sakamoto, N. (1984). Seasonal fluctuation of the population density of the maple aphid (Periphyllis californiensis Shinji; Hom., Aphididae). Bulletin Tokyo University Forests 73, 97–113Google Scholar
Furuta, K., Takai, M. & Funatsu, T. (1983). Effects of an infestation of Cinara bogdanowi ezanoana Inouye (Hemiptera, Lachnidae) on the growth of Picea glehnii Mast. Journal of Japanese Forestry Society 65, 166–171Google Scholar
Gandon, S. & Michalakis, Y. (1999). Evolutionary stable dispersal rate in a metapopulation with extinctions and kin competition. Journal of Theoretical Biology 199, 275–290CrossRefGoogle Scholar
Gange, A. C. (1985). The ecology of the alder aphid (Pterocallis alni (De Geer)) and its role in integrated pest management. PhD Thesis, University of London
Garthside, S. (1928). Quantitative studies on the insect fauna of Jack Pine environment. PhD Thesis, University of Minnesota
Gaston, K. J. (1994). Rarity. London: Chapman & Hall
Gaston, K. J. & Lawton, J. H. (1988a). Patterns in the distributions of insect populations. Nature 331, 709–712CrossRefGoogle Scholar
Gaston, K. J. & Lawton, J. H. (1988b). Patterns in body size, population dynamics and regional distribution of bracken herbivores. American Naturalist 132, 662–680CrossRefGoogle Scholar
Gaston, K. J. & Lawton, J. H. (1990). Effect of scale and habitat on the relationship between regional distribution and abundance. Oikos 58, 329–335CrossRefGoogle Scholar
Gilpin, M. E. (1975). Group Selection in Predator–Prey Communities. Prenceton: Princeton University Press
Glen, D. M. (1971). The role of the black-kneed capsid Blepharidopterus angulatus (Fall.) in regulating the numbers of the lime aphid Eucallipterus tiliae (L.). PhD Thesis, University of Glasgow
Godfray, H. C. J. (1994). Parasitoids; Behavioral and Evolutionary Ecology. Princeton: Princeton University Press
Grafen, A. (1990). Biological signals as handicaps. Journal of Theoretical Biology 144, 517–546CrossRefGoogle ScholarPubMed
Grier, C. C. & Vogt, D. J. (1990). Effects of aphid honeydew on soil nitrogen availability and net primary production in an Alnus rubra plantation in Western Washington. Oikos 57, 114–118CrossRefGoogle Scholar
Gundersen, P., Emmett, B. A., Kjonaas, O. J., Koopmans, C. J. & Tietema, A. (1998). Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. Forest Ecology and Management 101, 37–55CrossRefGoogle Scholar
Hairston, N. G., Smith, F. E. & Slobodkin, L. B. (1960). Community structure, population control, and competition. American Naturalist 94, 421–425CrossRefGoogle Scholar
Hajek, A. E. & Dahlsten, D. L. (1988). Distribution and dynamics of aphid (Homoptera: Drepanosiphidae) populations on Betula pendula in Northern California. Higardia 56, 1–33CrossRefGoogle Scholar
Hamilton, P. A. (1969). The role of hymenopterous parasites in the control of the sycamore aphid. PhD Thesis, University of Glasgow
Hamilton, P. A. (1973). The biology of Aphelinus flavus [Hym. Aphelinidae], a parasite of the sycamore aphid Drepanosiphum platanoides [Hemipt. Aphididae]. Entomophaga 18, 449–462CrossRefGoogle Scholar
Hamilton, P. A. (1974). The biology of Monoctonus pseudoplatani, Trixys cirsii and Dyscritulus planiceps, with notes on their effectiveness as parasites of the sycamore aphid, Drepanosiphum platanoides. Annales de la SociétéEntomologique de France 10, 821–840Google Scholar
Hamilton, W. D. (1967). Extraordinary sex ratios. Science 156, 477–488CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1987) Kinship, recognition and disease: constraints of social evolution. In Animal Societies: Theories and Facts, ed. Y. Ito, J. L. Brown & J. Kikkawa. Tokyo: Japan Scientific Societies Press, pp. 81–102
Hamilton, W. D. & Brown, S. P. (2001). Autumn tree colours as a handicap signal. Proceedings Royal Society London B 268, 1489–1493CrossRefGoogle ScholarPubMed
Hamilton, W. D. & May, R. M. (1977). Dispersal in stable habitats. Nature 269, 578–581CrossRefGoogle Scholar
Harada, H. & Ishikawa, H. (1993). Gut microbe of aphid closely related to its intracellular symbiont. Bio Systems 31, 185–191CrossRefGoogle ScholarPubMed
Harper, J. L. (1977). Population Biology of Plants. London: Academic Press
Harrington, R., Woiwod, I. & Sparks, T. (1999). Climate change and trophic interactions. Trends in Ecology and Evolution 14, 146–150CrossRefGoogle ScholarPubMed
Haukioja, E. & Hakala, T. (1975). Herbivore cycles and periodic outbreaks. Formulation of a general hypothesis. Report Kevo Subarctic Research Station 12, 1–9Google Scholar
Heie, O. E. (1967). Studies on fossil aphids (Homopter: Aphidoidea). Spolia Zoologica Musei Hauniensis 26, 1–274Google Scholar
Hengeveld, R. & Hacek, J. (1982). The distribution of abundance. 1. Measurements. Journal of Biogeography 9, 303–306CrossRefGoogle Scholar
Hoch, W. A., Zeldin, E. L. & McCowan, B. (2001). Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiology 21, 1–8CrossRefGoogle ScholarPubMed
Hodgson, J. G. (1986). Commonness and rarity in plants, with special reference to the Sheffield flora. Part III. Taxonomic and evolutionary aspects. Biological Conservation 36, 275–296CrossRefGoogle Scholar
Holler, C., Borgemeister, C., Haardt, H. & Powell, W. (1993). The relationship between primary parasitoids and hyperparasitoids of cereal aphids: an analysis of field data. Journal of Animal Ecology 62, 12–21CrossRefGoogle Scholar
Holloway, G. J. (2003). Insect conservation – where are we going?Antenna 27, 320–323Google Scholar
Holt, R. D. (1997). On the evolutionary stability of sink populations. Evolutionary Ecology 11, 723–731CrossRefGoogle Scholar
Holt, R. D. & Lawton, J. H. (1994). The ecological consequences of shared natural enemies. Annual Review of Ecology and Systematics 25, 495–520CrossRefGoogle Scholar
Holt, R. D. & McPeek, M. A. (1996). Chaotic population dynamics favours the evolution of dispersal. American Naturalist 148, 709–718CrossRefGoogle Scholar
Hopkins, G. W. (1996). Rarity in tree aphids. PhD thesis, University of East Anglia
Hopkins, G. W. & Dixon, A. F. G. (1997). Enemy-free space and the feeding niche of an aphid. Ecological Entomology 22, 271–274CrossRefGoogle Scholar
Hopkins, G. W., Thacker, J. I., Dixon, A. F. G., Waring, P. & Telfer, M. G. (2002). Identifying rarity in insects: the importance of host plant range. Biological Conservation 105, 293–307CrossRefGoogle Scholar
Huffaker, C. B. (1957). Fundamentals of biological control of weeds. Hilgardia 27, 101–157CrossRefGoogle Scholar
Huffaker, C. B., Berryman, A. & Turchin, P. (1999). Dynamics and regulation of insect populations. In Ecological Entomology, ed. C. B. Huffaker & A. P. Gutierrez. London: Academic Press, pp. 269–312
Hussey, N. W. (1952). A contribution to the bionomics of the green spruce aphid (Neomyzaphis abietina Walker). Scottish Forestry 6, 121–130Google Scholar
Huxley, T. H. (1858). On the agamic reproduction and morphology of Aphis: Part 1. Transactions of the Linnean Society 22, 193–219CrossRefGoogle Scholar
Ito, Y. (1994). A new epoch in joint studies of social evolution: molecular and behavioural ecology of aphid soldiers. Trends in Ecology and Evolution 9, 363–365CrossRefGoogle ScholarPubMed
Jackson, J. (1970). Vertical migration of the sycamore aphid Drepanosiphum platanoides (Schr.). PhD Thesis, University of Glasgow
Janzen, D. H. (1977). What are dandelions and aphids?American Naturalist 111, 586–589CrossRefGoogle Scholar
Jefferies, J. J. & Lawton, J. H. (1984). Enemy-free space and the structure of ecological communities. Biological Journal of the Linnean Society 23, 269–286CrossRefGoogle Scholar
Johansson, A. S. (1958). Relation of nutrition to endocrine-reproductive functions in the milkweed bug Oncopeltus fasciatus (Dallas) (Heteroptera: Lygaeidae). Nytt Magasin for Zoologi 7, 1–132Google Scholar
Juronis, V. (2001). Eucallipterus tiliae L. – a parasite of street plantings in Lithuanian cities. Aphids and other Homopterus Insects 8, 131–134Google Scholar
Kaakeh, W., Pfeiffer, D. G. & Marini, R. P. (1992a). Combined effects of spirea aphid (Homoptera: Aphididae) and nitrogen fertilization on shoot growth, dry matter accumulation, and carbohydrate concentration in young apple trees. Journal of Economic Entomology 85, 496–506CrossRefGoogle Scholar
Kaakeh, W., Pfeiffer, D. G. & Marini, R. P. (1992b). Combined effect of spirea aphid (Homoptera: Aphididae) and nitrogen fertilization on net photosynthesis, total chlorophyll content, and greenness of apple leaves. Journal of Economic Entomology 85, 939–946CrossRefGoogle Scholar
Kennedy, C. E. J. (1986). Attachment may be a basis for specialization in oak aphids. Ecological Entomology 11, 291–300CrossRefGoogle Scholar
Kennedy, J. S. & Crawley, L. (1967). Spaced-out gregariousness in sycamore aphids Drepanosiphum platanoides (Schrank) (Hemiptera, Callaphididae). Journal of Animal Ecology 36, 147–170CrossRefGoogle Scholar
Kidd, N. A. C. (1975). The behavioural interaction of the lime aphid (Eucallipterus tiliae (L.)) and their role in regulating population numbers. PhD Thesis, University of Glasgow
Kidd, N. A. C. (1990a). Population dynamics of the large pine aphid, Cinara pinea (Mordv.). I. Simulation of laboratory populations. Researches on population Ecology 32, 189–208CrossRefGoogle Scholar
Kidd, N. A. C. (1990b). Population dynamics of the large pine aphid, Cinara pinea (Mordv.). II. Simulation of field populations. Researches on Population Ecology 32, 209–226CrossRefGoogle Scholar
Kidd, N. A. C. (1990c). A synoptic model to explain long-term population changes in the large pine aphid. In Population Dynamics of Forest Insects, ed. A. D. Watt, S. R. Leather, M. D. Hunter & N. A. C. Kidd, Andover: Intercept, pp. 317–327
Kieffer, J.-J. (1896). Observations sur les Diplosis, et diagnoses de cinq espèces nouvelles [Dipt.]. Bulletin de la SociétéEntomologique de France 65, 382–384CrossRefGoogle Scholar
Kindlmann, P. & Dixon, A. F. G. (1989). Developmental constraints in the evolution of reproductive strategies: telescoping of generations in parthenogenetic aphids. Functional Ecology 3, 531–537CrossRefGoogle Scholar
Kindlmann, P. & Dixon, A. F. G. (1993). Optimal foraging in ladybird beetles (Coleoptera: Coccinellidae) and its consequences for their use in biological control. European Journal of Entomology 90, 443–450Google Scholar
Kindlmann, P., Dixon, A. F. G. & Brough, C. N. (1992). Intra– and interspecific relationships of reproductive investment to body weight in aphids. Oikos 64, 548–552CrossRefGoogle Scholar
Knabe, S. (1999). The ecology of the subspecies of the pea aphid. PhD Thesis, University of East Anglia
Komazaki, S. (1986). The inheritance of egg hatching time of the spirea aphid, Aphis citricola van der Goot (Homoptera, Aphididae) on two winter hosts. Kontyû 54, 48–53Google Scholar
Komatsu, T. & Akimoto, S. (1995). Genetic differentiation as a result of adaptation to the phenologies of individual host trees in the galling aphid Kaltenbachiella japonica. Ecological Entomology 20, 33–42CrossRefGoogle Scholar
Krebs, J. R. & Davies, N. B. (1987). An Introduction to Behavioural Ecology. Oxford: Blackwells
Lawton, J. H. (1986). The effect of parasitoids on phytophagous insect communities. In Insect Parasitoids, ed. J. K. Waage & D. Greathead, London: Academic Press, pp. 265–287
Lawton, J. H. (1989). What is the relationship between population density and body size in animals?Oikos 55, 429–434CrossRefGoogle Scholar
Leather, S. R. (1996). Colonisation and distribution patterns of sycamore aphid on sycamore trees in south-east Britain. Bulletin British Ecological Society 27, 214–218Google Scholar
Leather, S. R. (2000). Herbivory, phenology, morphology and the expression of sex in trees: who is in the driver's seat?Oikos 90, 194–196CrossRefGoogle Scholar
Leckstein, P. M. & Llewellyn, M. (1973). Effect of dietary amino acids on the size and alary polymorphism of Aphis fabae. Journal of Insect Physiology 19, 973–980CrossRefGoogle Scholar
Lees, A. D. (1960). The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton. II. The operation of the ‘interval timer’ in young clones. Journal of Insect Physiology 4, 154–175CrossRefGoogle Scholar
Lees, A. D. (1966). The control of polymorphism in aphids. Advances in Insect Physiology 3, 207–277CrossRefGoogle Scholar
Lees, A. D. & Hardie, J. (1988). The organs of adhesion in the aphid Megoura viciae. Journal of Experimental Biology 136, 201–208Google Scholar
Leopold, A. (1943). Deer irruptions. Wisconsin Conservation Bulletin 8, 4–11Google Scholar
Levin, R. (1968). Evolution in Changing Environments. Princeton: Princeton University Press
Liao, H. T. & Harris, M. K. (1985). Population growth of the black-margined aphid on pecan in the field. Agricultural Ecosystems and Environment 12, 253–261CrossRefGoogle Scholar
Llewellyn, M. J. (1970). The ecological energetics of the lime aphid (Eucallipterus tiliae L.) and its effect on tree growth. PhD Thesis, University of Glasgow
Llewellyn, M. J. (1972). The effect of the lime aphid, Eucallipterus tiliae L. (Aphididae) on the growth of lime Tilia x vulgaris Hayne. I. Energy requirements of the aphid populations. Journal of Applied Ecology 9, 261–282CrossRefGoogle Scholar
Llewellyn, M. J. (1975). The effects of the lime aphid (Eucallipterus tiliae L.) (Aphididae) on the growth of lime Tilia x vulgaris Hayne. II. The primary production of saplings and mature trees, the energy drain imposed by the aphid populations and revised standard deviations of aphid population energy budgets. Journal of Applied Ecology 12, 15–23CrossRefGoogle Scholar
Lorriman, F. (1980). The ecology and biology of the oak aphid Tuberculatus (Tuberculoides) annulatus Hartig. PhD Thesis, University of London
Lotka, A. J. (1924). Elements of Physical Biology. Baltimore: Williams & Wilkins
Loxdale, H. D., Hardie, J., Halbert, S., Foottit, R., Kidd, N. A. C. & Carter, C. I. (1993). The relative importance of short- and long-range movement in flying aphids. Biological Reviews 68, 291–311CrossRefGoogle Scholar
MacArthur, R. & Wilson, E. O. (1967). Theory of Island Biogeography. Princeton: Princeton University Press
Mackauer, M. & Völkl, W. (1993). Regulation of aphid populations by aphidiid wasps: does parasitoid foraging behaviour or hyperparasitism limit impact?Oecologia 94, 339–350CrossRefGoogle ScholarPubMed
Macfayden, A. (1964). Energy flow in ecosystems and its exploitation by grazing. In Grazing in Terrestrial and Marine Environments, ed. D. J. Crisp. Oxford: Blackwells, pp. 3–20
Maquelin, C. (1974). Observations sur la biologie et l'ecologie d'un puceron utile a l'apiculture: Buchneria pectinatae (Nördl.)(Homoptera, Lachnidae). PhD Thesis, L'Ecole Polytechnique Federale De Zurich
Martins, E. P. (1996). Conducting phylogenetic comparative studies when the phylogeny is not known. Evolution 50, 12–22CrossRefGoogle Scholar
Maynard-Smith, J. (1976). Group selection. Quarterly Review of Biology 51, 277–283Google Scholar
McKinney, M. L. (1999). High rates of extinction and threat in poorly studied taxa. Conservation Biology 13, 1273–1281CrossRefGoogle Scholar
McNaughton, F. C. (1970). The energy required by sycamore aphids and their effect on the growth of sycamore. PhD Thesis, University of Glasgow
McPeek, M. A. & Holt, R. D. (1992). The evolution of dispersal in spatially and termporally varying environments. American Naturalist 140, 1010–1027CrossRefGoogle Scholar
Mercer, D. R. (1979). Flight behaviour of the sycamore aphid Drepanosiphum platanoidis Schr. PhD Thesis, University of East Anglia
Milne, A. (1957a). Theories of natural control of insect populations. Cold Spring Harbour Symposium Quantitative Biology 22, 253–271CrossRefGoogle Scholar
Milne, A. (1957b). The natural control of insect populations. Canadian Entomologist 89, 193–213CrossRefGoogle Scholar
Mittler, T. E. (1957). Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homopter, Aphididae). I. The uptake of phloem sap. Journal of Experimental Biology 34, 334–341Google Scholar
Mittler, T. E. (1958). Studies on the nutrition of Tuberolachnus salignis (Gmelin) (Homoptera, Aphididae). III. The nitrogen economy. Journal of Experimental Biology 35, 626–638Google Scholar
Mittler, T. E. & Wipperfurth, T. (1988). Hatching and diapause development of the eggs from crosses between Biotypes C and E of the aphid Schizaphis graminum (Homoptera: Aphididae). Entomologia Generalis 13, 247–249CrossRefGoogle Scholar
Moran, N. A. & Baumann, P. (1994). Phylogenetics of cytoplasmically inherited microorganism of arthropods. Trends in Ecology and Evolution 9, 15–20CrossRefGoogle Scholar
Mordvilko, A. K. (1908). Beitrage zur Biologie der Pfanzenläuse, Aphididae Passerini. Biologische Zentrablatt 28, 631–639Google Scholar
Morren, C. H. (1836). Mémoire sur l'emigration de puceron du pêcher (Aphis persicae), et sur les caractères et l'anatomie de cette espèce. Annales des Sciences Naturelles 6(2), 65–93Google Scholar
Müller, C. B. & Godfray, H. C. J. (1997). Apparent competition between two aphid species. Journal of Animal Ecology 66, 57–64CrossRefGoogle Scholar
Murray, M. B., Cannell, M. G. R. & Smith, R. I. (1989). Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology 26, 693–700CrossRefGoogle Scholar
Nee, S., Read, A. F., Greenwood, J. J. D. & Harvey, P. H. (1991). The relationship between abundance and body size in British birds. Nature 351, 312–313CrossRefGoogle Scholar
Nicholson, A. J. (1933). The balance of animal populations. Journal of Animal Ecology 2 (Suppl. 1), 132–178CrossRefGoogle Scholar
Nicholson, A. J. (1954). An outline of the dynamics of animal populations. Australian Journal of Zoology 2, 9–65CrossRefGoogle Scholar
Odum, E. P. (1953). Fundamentals of Ecology. Philadelphia: Saunders
Olkowski, W. (1973). A model ecosystem management program for street tree insects in Berkeley, California. PhD Thesis, University of California, Berkeley
Olkowski, W., Olkowski, H. & Bosch, R. (1982). Linden aphid parasite establishment. Environmental Entomology 11, 1023–1025CrossRefGoogle Scholar
Owen, D. F. (1978). Why do aphids synthesize melezitose?Oikos 31, 264–267CrossRefGoogle Scholar
Owen, D. F. (1980a). How plants may benefit from the animals that eat them?Oikos 35, 230–235CrossRefGoogle Scholar
Owen, D. F. (1980b). Response to Petelle's comments. Oikos 35, 128CrossRefGoogle Scholar
Owen, D. F. & Wiegert, R. G. (1976). Do consumers maximise plant fitness?Oikos 27, 488–492CrossRefGoogle Scholar
Owen, D. F. & Wiegert, R. G. (1981). Mutualism between grasses and grazers: an evolutionary hypothesis. Oikos 36, 376–378CrossRefGoogle Scholar
Owen, R. (1849). On Parthenogenesis or the Successive Production of Procreating Individuals from a Single Ovum. London: John van Voorst
Pearl, R. & Reed, L. J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings National Academy Science, USA 6, 275–288CrossRefGoogle ScholarPubMed
Pennacchio, F., Digilio, M. C. & Tremblay, E. (1995). Biochemical and metabolic alterations in Acyrthosiphon pisum parasitized by Aphidius ervi. Archives of Insect Biochemistry and Physiology 30, 351–367CrossRefGoogle Scholar
Petelle, M. (1980). Aphids and melezitose: a test of Owen's 1978 hypothesis. Oikos 35, 127–128CrossRefGoogle Scholar
Pitman, N. C. A. & Jorgensen, P. M. (2002). Estimating the size of the world's threatened flora. Science 298, 989–999CrossRefGoogle ScholarPubMed
Plantegenest, M. & Kindlmann, P. (1999). Evolutionarily stable strategies of migration in heterogenous environments. Evolutionary Ecology 13, 229–244CrossRefGoogle Scholar
Ponsen, M. B. (1972). The site of potato leafroll virus multiplication in its vector, Myzus persicae. Wageningen Agricultural University Papers No. 72–16
Ponsen, M. B. (1991). Structure of the digestive system of aphids, in particular Hyalopterus and Coloradoa, and its bearing on the evolution of filter chambers in the Aphidoidea. Wageningen Agricultural University Papers No. 91-5
Rabinowitz, D. (1981). Seven forms of rarity. In The Biological Aspects of Rare Plant Conservation, ed. H. Synge. New York: Wiley, pp. 205–217
Rabinowitz, D., Rapp, J. K. & Dixon, P. M. (1984). Competitive abilities of grass species: means of persistence or cause of abundance. Ecology 65, 1144–1154CrossRefGoogle Scholar
Rana, J. S., Dixon, A. F. G. & Jarosik, V. (2002). Costs and benefits of prey specialization in a generalist insect predator. Journal of Animal Ecology 71, 15–22CrossRefGoogle Scholar
Réaumur, R. P. de (1737). Mémoires pour servir àl'histoire des insectes. 111(9) Paris: De L'imprimiere Royale, pp. 332–350
Renshaw, E. (1991). Modelling Biological Populations in Space and Time. Cambridge: Cambridge University Press
Rhabé, Y., Digilio, M. C., Febvay, G., Guillaud, J., Fanti, P. & Pennacchio, F. (2002). Metabolic and symbiotic interactions in amino acid pools of the pea aphid, Acyrthosiphon pisum, parasitized by the braconid Aphidius ervi. Journal of Insect Physiology 48, 507–516CrossRefGoogle Scholar
Ricklefs, R. E. (1990). Ecology, 3rd edn. New York: Freeman & Co
Ricklefs, R. E. & Latham, R. E. (1992). Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperate perennial herbs. American Naturalist 139, 1305–1321CrossRefGoogle Scholar
Robert, Y. & Rouzé-Jouan, J. (1976). Activitésaisonnière de vol des pucerons [Hom. Aphididae] dans l'ouest de la France. Résultats de neuf années de piégeage (1967–1975). Annales de la SociétéEntomologique de France (NS) 12, 671–690Google Scholar
Root, R. B. (1967). The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs 37, 317–350CrossRefGoogle Scholar
Russel, R. J. (1968). Certain aspects of the ecology of Anthocoris nemorum (L.) and Anthocoris confusus Reuter (Hemiptera: Anthocoridae). PhD Thesis, University of Glasgow
Satoo, T. (1970). A synthesis of studies by the harvest method. Ecological Studies 1, 55–72CrossRefGoogle Scholar
Scheurer, S. (1964). Untersuchungen zum Massenwechsel einiger Fichten bewohnender Lachnidenarten im Harz. Biologisches Zentrablatt 83, 427–467Google Scholar
Scheurer, S. (1971). Biologische und ökologische Beobachtungen an auf Pinus lebenden Cinarinen im Bereich der Dübener Heide (DDR) während de Jahre 1965–1967. Hercynia (Leipzig) 8, 108–144Google Scholar
Schulze, E.-D, (2000). The carbon and nitrogen cycle of forest ecosystems. In Carbon and Nitrogen Cycling in European Forest Ecosystems, ed. E.-D. Schulze, vol. 142. Berlin: Springer Verlag, pp. 3–13CrossRef
Seger, J. (1983). Partial bivoltinism may cause alternating sex-ratio biases that favour eusociality. Nature 301, 59–62CrossRefGoogle Scholar
Sequeira, R. & Dixon, A. F. G. (1997). Population dynamics of tree dwelling aphids: the importance of seasonality and time scale. Ecology 78, 2603–2610Google Scholar
Shearer, J. W. (1976). Polymorphism and population ecology of the European maple aphid, Periphyllus testudinaceus (Fernie). PhD Thesis, University of Glasgow
Shirt, D. B. (1987). British Red Data Books: 2. Insects. Peterborough: Nature Conservancy Council
Sibbett, G. S., Bettiga, L. & Bailey, M. (1982). Walnut aphid becoming a costly midsummer pest. California Agriculture 36, 21–22Google Scholar
Slansky, F. & Feeny, P. (1977). Stabilisation of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecological Monographs 47, 209–228CrossRefGoogle Scholar
Smalley, A. E. (1960). Energy flow of a salt marsh grasshopper population. Ecology 41, 672–677CrossRefGoogle Scholar
Smith, H. S. (1935). The role of biotic factors in the determination of population densities. Journal of Economic Entomology 28, 873–898CrossRefGoogle Scholar
Smith, J. D. (1948). Symbiotic micro-organisms of aphids and fixation of atmospheric nitrogen. Nature 162, 930–931CrossRefGoogle ScholarPubMed
Smith, J. S. & Tedders, W. L. (1980). Light measurements for studying sooty mold growth on simulated pecan foliage. Transaction of the American Society of Agricultural Engineers 23, 481–484CrossRefGoogle Scholar
Southwood, T. R. E. (1976). Bionomic strategies and population parameters. In Theoretical Ecology, ed. R. M. May. Oxford: Blackwell Scientific Publications, pp. 26–48
Stadler, B., Michalzik, B. & Müller, T. (1998). Linking aphid ecology with nutrient fluxes in coniferous forests. Ecology 79, 1514–1525CrossRefGoogle Scholar
Stadler, B. & Michalzik, B. (2004). Phyllosphere ecology in a changing environment: the role of insects in forested ecosystems. In Biogeochemistry of Forested Catchments in a Changing Environment: a case study in N E Bavaria, ed. E. Matzner. Ecological Studies172, 251–270CrossRef
Stork, N. E. & Lyal, C. H. C. (1993). Extinction or co-extinction rates. Nature 366, 307–307CrossRefGoogle Scholar
Straw, N. A., Halldórsson, G. & Benedikz, T. (1998). Damage sustained by individual trees: empirical studies on the impact of the green spruce aphid. In The Green Spruce Aphid in Western Europe: Ecology, Staus, Impacts and Prospects for Management, ed. K. R. Day, G. Halldórsson, S. Harding & N. A. Straw, Forestry Commission Technical Paper 24, pp. 15–31
Stroyan, H. L. G. (1977). Homoptera Aphidoidea Chaitophoridae and Callaphididae. Handbook for the Identification of British Insects, vol. 11, part 4(a). London: Royal Entomological Society of London
Tang, Y. Q., Yokomi, R. K. & Gagné, R. J. (1994). Life history and description of Endaphis maculans (Diptera: Cecidomyiidae), an endoparasitoid of aphids in Florida and the Caribbean basin. Annals Entomological Society of America 87, 523–531CrossRefGoogle Scholar
Taylor, L. R. (1974a). Insect migration, flight periodicity and boundary layer. Journal of Animal Ecology 43, 225–238CrossRefGoogle Scholar
Taylor, L. R. (1974b). Monitoring change in the distribution and abundance of insects. Report Rothamsted Experimental Station 1973 2, 202–239Google Scholar
Tedders, W. (1978). Important biological and morphological characteristics of the foliar-feeding aphids of pecan. USDA Technical Bulletin No. 1579
Tedders, W. L. & Smith, J. S. (1976). Shading effect on pecan by sooty mold growth. Journal of Economic Entomology 69, 551–553CrossRefGoogle Scholar
Tedders, W. L., Smith, J. S. & White, A. W. (1981a). Experiment to determine the effect of feeding by Monellia caryella (Fitch) and of simulated honeydew on pecan seedlings in the greenhouse. Journal of Georgia Entomological Society 16, 515–517Google Scholar
Tedders, W. L., Wood, B. W. & Snow, J. W. (1981b). Effects of feeding by Monelliopsis nigropunctata, Monellia caryella, and Melanocallis caryaefoliae on growth of pecan seedlings in the greenhouse. Journal of Economic Entomology 75, 287–291CrossRefGoogle Scholar
Tedders, W. L. & Wood, B. W. (1985). Estimate of the influence of feeding by Monelliopsis pecanis and Monellia caryella (Homoptera: Aphididae) on the fruit, foliage, carbohydrate reserves, and tree productivity of mature ‘Stuart’ pecans. Journal of Economic Entomology 78, 642–646CrossRefGoogle Scholar
Thacker, J. I., Hopkins, G. W. & Dixon, A. F. G. (2003). The co-extinction threat to insect herbivores: aphids and coccids on endangered trees
Tjallingii, W. F. (1978). Mechanoreceptors of the aphid labium. Entomologia Experimentalis et Applicata 24, 531–537CrossRefGoogle Scholar
Tóth, L. (1937). Entwicklungszyklus und Symbiose von Pemphugus spirothecae Pass. (Aphidina). Zeitschrift für Morphologie und Okologie der Tiere 33, 412–437CrossRefGoogle Scholar
Trager, W. (1970). Symbiosis. New York: Van Nostran
Tremblay, E. & Iaccarino, F. M. (1971). Notizie sull' ultra strultura dei trofociti di Aphidius matricariae Haliday. Bolletino del Laboratorio di Entomologia Agraria ‘Filippo Silvestri’ 29, 305–314Google Scholar
Tremblay, E. & Ponzi, R. (1999). Ultrastructural observation on symbiont degeneration in the male line of Pseudaulacaspis pentagona (Targioni Tozzeti) (Hemiptera: Coccoidea: Diaspididae). Entomologica 33, 157–163Google Scholar
Tsai, C. S., Killham, K. & Cresser, M. S. (1997). Dynamic response of microbial biomass, respiration rate and ATP to glucose additions. Soil Biology and Biochemistry 29, 1249–1256CrossRefGoogle Scholar
Turchin, P. (1990). Rarity of density dependence or population regulation with lags?Nature 344, 660–663CrossRefGoogle Scholar
Turchin, P. (2001). Does population ecology have general rules?Oikos 94, 17–26CrossRefGoogle Scholar
Turchin, P. & Taylor, A. D. (1992). Complex dynamics in ecological time series. Ecology 73, 289–305CrossRefGoogle Scholar
Uichanco, L. B. (1924). Studies on the embryology and postnatal development of the Aphididae with special reference to the history of the ‘symbiotic organ’ or ‘mycetome’. Philippine Journal of Science 24, 143–247Google Scholar
Varley, G. C., Gradwell, G. R. & Hassell, M. P. (1973). Insect Population Ecology: An Analytical Approach. Oxford: Blackwell Scientific Publications
Varn, M. W. & Pfeiffer, D. G. (1989). The effect of rosy apple aphid and spirea aphid (Homoptera: Aphididae) on dry matter accumulation and carbohydrate concentration in young apple trees. Journal of Economic Entomology 82, 565–569CrossRefGoogle Scholar
Verhulst, P. F. (1838). Notices sur la loi que la population suit dans son croissement. Correspondance Mathématique et Physique 10, 113–121Google Scholar
Völkl, W. & Mackauer, M. (1996). ‘Sacking’ the host: oviposition behaviour of a parasitoid wasp, Dyscritulus planiceps (Hymenoptera: Aphididae). Journal of Insect Behaviour 9, 975–980CrossRefGoogle Scholar
Voûte, A. D. (1957). Regulierung der Bevolkerungsdichte von schadlichen Insekten auf geringer Höhe durch Nährplanze (Myelophilus piniperda L., Retina buoliana Schiff., Diprion sertifer Geoffr.). Zeitschrift für Angewandte Entomologie 41, 172–178CrossRefGoogle Scholar
Wade, F. A. (1999). Population dynamics of the sycamore aphid (Drepanosiphum platanoidis Schrank). PhD Thesis, Imperial College, University of London
Walters, K. F. A., Dixon, A. F. G. & Eagles, G. (1984). Non-feeding by adult gynoparae of Rhopalosiphum padi and its bearing on the limiting resource in the production of sexual females in host alternating aphids. Entomologia Experimentalis et Applicata 36, 9–12CrossRefGoogle Scholar
Ward, S. A., Leather, S. R. & Dixon, A. F. G. (1984). Temperature prediction and the timing of sex in aphids. Oecologia 62, 230–233CrossRefGoogle ScholarPubMed
Ward, S. A., Leather, S. R., Pickup, J. & Harrington, R. (1998). Mortality during dispersal and the cost of host-specificity in parasites: how many aphids find hosts?Journal of Animal Ecology 67, 763–773CrossRefGoogle Scholar
Warrington, S. & Whittaker, J. B. (1985). An experimental field study of different levels of insect herbivory induced by Formica rufa predation on sycamore (Acer pseudoplatanus) II. Aphidoidea. Journal of Applied Ecology 22, 787–796CrossRefGoogle Scholar
Watt, A. D. & McFarlane, A. M. (2002). Will climate change have a different impact on different trophic levels? Phenological development of winter moth Operophtera brumata and its host plants. Ecological Entomology 27, 254–256CrossRefGoogle Scholar
Watt, A. D. & Woiwod, I. P. (1999). The effect of phenological asynchrony on population dynamics: analysis of fluctuations of British macrolepidoptera. Oikos 87, 411–416CrossRefGoogle Scholar
Way, M. J. & Banks, C. J. (1964). Natural mortality of eggs of the black bean aphid, Aphis fabae Scop., on the spindle tree, Euonymus europea L. Annals of Applied Biology 54, 255–267CrossRefGoogle Scholar
Way, M. J. & Banks, C. J. (1967). Intra-specific mechanisms in relation to the natural regulation of numbers of Aphis fabae Scop. Annals of Applied Biology 59, 189–205CrossRefGoogle Scholar
Wellings, P. W. (1980). Qualitative changes in the regulation of sycamore aphid numbers. PhD Thesis, University of East Anglia
Wellings, P. W. (1981). The effect of temperature on the growth and reproduction of two closely related aphid species on sycamore. Ecological Entomology 6, 209–214CrossRefGoogle Scholar
Wellings, P. W., Chambers, R. J., Dixon, A. F. G. & Aikman, D. (1985). Sycamore aphid numbers and population density. I. Some patterns. Journal of Animal Ecology 54, 411–424CrossRefGoogle Scholar
Wellings, P. W. & Dixon, A. F. G. (1987). Sycamore aphid numbers and population density. III. The role of aphid-induced changes in plant quality. Journal of Animal Ecology 56, 161–170CrossRefGoogle Scholar
Wellings, P. W., Leather, S. R. & Dixon, A. F. G. (1980). Seasonal variation in reproductive potential: a programmed feature of aphid life cycles. Journal of Animal Ecology 49, 975–985CrossRefGoogle Scholar
Werren, J. H. & Charnov, E. L. (1978). Facultative sex ratio and population dynamics. Nature 272, 349–350CrossRefGoogle ScholarPubMed
White, G. (1887). The Natural History of Selborne. London: Walter Scott
White, P. L. (1970). The effect of aphids on tree growth. PhD Thesis, University of Glasgow
Wilkaniec, B. (1990). The study of direct noxiousness of the rosy apple aphid (Dysaphis plantaginea (Pass.)) on apple (Malus sp.). Annals Academy of Agriculture, Poznan No. 195
Wilkinson, D. M., Sherratt, T. N., Phillips, D. M., Wratten, S. D., Dixon, A. F. G. & Young, A. J. (2002). The adaptive significance of autumn leaf colours. Oikos 99, 402–407CrossRefGoogle Scholar
Williams, C. B. (1964). Patterns in the Balance of Nature. London: Academic Press
Wood, B. W. & Tedders, W. L. (1986). Reduced net photosynthesis of leaves from mature pecan trees by three species of pecan aphid. Journal of Entomological Society 21, 355–360CrossRefGoogle Scholar
Wood, B. W., Tedders, W. L. & Dutcher, J. D. (1987). Energy drain by three pecan aphid species (Homoptera: Aphididae) and their influence on in-shell pecan production. Environmental Entomology 16, 1045–1056CrossRefGoogle Scholar
Wood, B. W., Tedders, W. L. & Reilly, C. C. (1988). Sooty mold fungus on pecan foliage suppresses light penetration and net photosynthesis. HortScience 23, 851–853Google Scholar
Wood, B. W., Tedders, W. L. & Thompson, J. M. (1985). Feeding influence of three pecan aphid species on carbon exchange and phloem integrity of seedling pecan foliage. Journal of American Horticultural Society 110, 393–397Google Scholar
Wratten, S. D. (1971). The role of the predatory coccinellid Adalia bipunctata L., in regulating the numbers of the lime aphid, Eucallipterus tiliae L. PhD Thesis, University of Glasgow
Wynne, I. R., Howard, J. J., Loxdale, H. D. & Brookes, C. P. (1994). Population genetic structure during aestivation in the sycamore aphid Drepanosiphum platanoidis (Hemoptera: Drepanosiphididae). European Journal of Entomology 91, 375–383Google Scholar
Yamaguchi, H. (1976). Biological studies on the todo-fir aphid Cinara todocola Inouye, with special reference to its population dynamics and morph determination. Bulletin of the Government Forest Experimental Station (Japan) No. 283
Yamaguchi, H. & Takai, M. (1977). An integrated control system for the todo-fir aphid, Cinara todocola Inouye in young todo-fir plantations. Bulletin of the Government Forest Experiment Station (Japan) No. 295, 61–96Google Scholar
Zahavi, A. (1975). Mate selection: a selection for handicap. Journal of Theoretical Biology 53, 205–214CrossRefGoogle ScholarPubMed
Zuparko, R. L. (1983). Biological control of Eucallipterus tiliae [Hom.: Aphididae] in San Jose, California, through establishment of Trioxys curvicaudus [Hym.: Aphidiidae]. Entomophaga 28, 325–330CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • A. F. G. Dixon, University of East Anglia
  • Book: Insect Herbivore-Host Dynamics
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542671.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • A. F. G. Dixon, University of East Anglia
  • Book: Insect Herbivore-Host Dynamics
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542671.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • A. F. G. Dixon, University of East Anglia
  • Book: Insect Herbivore-Host Dynamics
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542671.014
Available formats
×