Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-01T15:35:24.604Z Has data issue: false hasContentIssue false

19 - Design, level, interface, and complexity: morphometric interpretation revisited

Published online by Cambridge University Press:  10 August 2009

Charles E. Oxnard
Affiliation:
School of Anatomy and Human Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009 Australia
Fred Anapol
Affiliation:
University of Wisconsin, Milwaukee
Rebecca Z. German
Affiliation:
University of Cincinnati
Nina G. Jablonski
Affiliation:
California Academy of Sciences, San Francisco
Get access

Summary

Origins of morphometrics

The origin of morphometrics lies in the burst of methodological creativity that predates the availability of relevant datasets requiring such methods. A seminal decade saw developments from Hotelling (1931), Wilks (1935), Bartlett (1935), Fisher (1936), Mahalanobis (1936), and others. And the next 20 years provided the extensions of the methods by Rao (1948), Yates (1950), Kendall (1957), and others. Most of these investigations concentrated on developing the methods. The actual data examined during these developments were so few that, though they permitted analysis by manual techniques, they were too restricted to allow examination of real biological problems. One well-known dataset was Anderson's measurements of four variables, the lengths and breadths of sepals and petals, taken on 50 specimens each of three groups of iris. These data were used by Fisher (1936) in the development of the techniques, and by many other investigators since, including myself (e.g., Oxnard, 1973, 1983/84), both for development and for checking.

Of course, the antecedents of morphometrics came from even earlier times (e.g., Galton, 1889; Pearson, 1901) and even the nineteenth and late eighteenth centuries (e.g., Adanson, 1763; Quetelet, 1842). But it was not until the second half of the twentieth century that morphometric methods could be applied to large datasets (many variables, many specimens, many groups) and could be aimed at examining real rather than exemplar anthropological problems (e.g., Trevor, 1955; Ashton et al., 1957, 1975, 1976, 1981; Oxnard, 1967; Howells, 1973).

Type
Chapter
Information
Shaping Primate Evolution
Form, Function, and Behavior
, pp. 391 - 414
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adanson, M. (1763). Famille des plantes. Vol. 1. Paris: Vincent
Albrecht, G. H. (1980). Multivariate analysis and the study of form, with special reference to canonical variate analysis. Amer. Zool., 20, 679–693CrossRefGoogle Scholar
Albrecht, G. H. (1991). Thin plate splines and the primate scapula. Amer. J. Phys. Anthropol., 28, 125–126Google Scholar
Ashton, E. H., Healy, M. J. R., and Lipton, S. (1957). The descriptive use of discriminant functions in physical anthropology. Proc. Roy. Soc. Lond. B, 146, 555–572CrossRefGoogle ScholarPubMed
Ashton, E. H., Flinn, R. M., and Oxnard, C. E. (1975). The taxonomic and functional significance of overall body proportions in primates. J. Zool. Lond., 175, 73–105CrossRefGoogle Scholar
Ashton, E. H., Flinn, R. M., Oxnard, C. E., and Spence, T. F. (1976). The adaptive and classificatory significance of certain quantitative features of the forelimb in primates. J. Zool. Lond., 163, 319–350CrossRefGoogle Scholar
Ashton, E. H., Flinn, R. M., Moore, W. J., Oxnard, C. E., and Spence, T. F. (1981). Further quantitative studies of form and function in the primate pelvis with special reference to Australopithecus. Trans. Zool. Soc. Lond., 360, 1–98Google Scholar
Bartlett, M. S. (1935). Contingency table interactions. Supp. J. Roy. Stat. Soc., 9, 248–252CrossRefGoogle Scholar
Barton, R. A. and Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058CrossRefGoogle ScholarPubMed
Blackith, R. E. and Reyment, R. A. (1971) Multivariate Morphometrics. London: Academic Press
Bookstein, F. L. (1989). Principal warps: thin plate splines and the decomposition of deformations. IEEETrans. Pattern Anal., 11, 567–585CrossRefGoogle Scholar
Bookstein, F. L. (1991). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge: Cambridge University Press
Britten, R. J. (2002). Divergence between samples of chimpanzee and human DNA sequences is 5%, counting indels. Proc. Nat. Acad. Sci., 99, 13633–13635CrossRefGoogle ScholarPubMed
Clark, D. A., Mitra, P. P., and Wang, S. S.-H. (2001). Scalable architecture in mammalian brains. Nature, 411, 189–193CrossRefGoogle ScholarPubMed
Clark, R. J. and Tobias, P. V. (1995). Sterkfontein Member 2 foot bones of the oldest South African hominid. Science, 269, 521–524CrossRefGoogle Scholar
Crompton, R. H. and Li, Y. (1997). Running before they could walk? Locomotor adaptations and bipedalism in early hominids. In: Archaeological Sciences 1995, ed. A. Slater, A. Sinclair, and J. A. J. Gowlett. Oxford: Oxford Bow Press. pp. 422–427
Crompton, R. H., Li, Y.Günther, M. M., and Alexander, R. M. (1996). Segment inertial properties of primates: new techniques for laboratory and field studies of locomotion. Amer. J. Phys. Anthropol., 99, 547–5703.0.CO;2-R>CrossRefGoogle ScholarPubMed
Crompton, R. H., Li, Y., Wang, W., Günther, M., and Savage, R. (1998). The mechanical effectiveness of erect and ‘bent knee, bent hip’ bipedal walking in Australopithecus afarensis. J. Hum. Evol., 35, 55–74CrossRefGoogle Scholar
Day, M. H. (1977). Guide to Fossil Man. London: Cassell
de Winter, W. (1997). Perspectives on Mammalian Brain Evolution. Ph.D. Thesis, University of Western Australia
Winter, W. and Oxnard, C. E. (2001). Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature, 409, 710–714CrossRefGoogle ScholarPubMed
Dryden, I. L. and Mardia, K. V. (1998) Statistical Shape Analysis. New York, NY: Wiley
Finlay, B. L. and Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1783CrossRefGoogle ScholarPubMed
Fisher, R. A. (1935). The Design of Experiments. Edinburgh: Oliver & Boyd
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugenics, 7, 179–188CrossRefGoogle Scholar
Fleagle, J. G. (1974). Dynamics of brachiating siamang [Hylobates (Symphalangus) syndactylus]. Nature, 248, 259–260CrossRefGoogle Scholar
Fleagle, J. G. (1976). Locomotor behavior and skeletal anatomy of sympatric Malaysian leaf monkeys (Presbytis obscura and Presbytis melalophos). Yrbk. Phys. Anthropol., 20, 440–453Google Scholar
Galton, F. (1889). Natural Inheritance. London: Macmillan
German, R. Z. and Franks, H. A. (1991). Timing in the movements of jaws, tongue and hyoid during feeding in the hyrax, Procavia syriacus. J. Exp. Zool., 257, 34–42CrossRefGoogle ScholarPubMed
Herschkovitz, P. (1977). The Living New World Monkeys. Chicago, IL: University of Chicago Press
Hotelling, H. (1931). The generalisation of “students” ratio. Ann. Math. Statist., 2, 360–378CrossRefGoogle Scholar
Howells, W. W. (1973). Cranial Variation in Man: a Study by Multivariate Analysis of Patterns of Differences among Recent Human Populations. Harvard, MA: Peabody Museum
Hylander, W. L., Johnson, K. R., and Crompton, A. W. (1987). Loading patterns and jaw movements during mastication in Macaca fascicularis: a bone strain, electromyographic and cineradiographic analysis. Amer. J. Phys. Anthropol., 72, 287–314CrossRefGoogle ScholarPubMed
Jablonski, N. G. and Chaplin, G. (1993). Origin of habitual terrestrial bipedalism in the ancestor of the Hominidae. J. Hum. Evol., 24, 259–280CrossRefGoogle Scholar
Jenkins, F. A. (1972). Chimpanzee bipedalism: cineradiographic analysis and implications for the evolution of gait. Science, 178, 877–879CrossRefGoogle Scholar
Jenkins, F. A. (1975) Primate Locomotion. New York, NY: Academic Press
Jerison, H. J. (1973). Evolution of the Brain and Intelligence. New York, NY: Academic Press
Jungers, W. L. and Fleagle, J. G. (1980) Post-natal growth allometry of the extremities in Cebus albifrons and Cebus apella: a longitudinal and comparative study. Amer. J. Phys. Anthropol., 53, 471–478CrossRefGoogle Scholar
Jungers, W. L. and Stern, J. T. (1980). Telemetered electromyography of forelimb muscle chains in gibbons (Hylobates lar). Science, 208, 617–619CrossRefGoogle Scholar
Kendall, M. G. (1957). A Course in Multivariate Analysis. London: Griffin
Kidd, R. (1995). An Investigation into the Patterns of Morphological Variation in the Proximal Tarsus of Selected Human Groups, Apes and Fossils. Ph.D. thesis, University of Western Australia
Kidd, R., O'Higgins, P., and Oxnard, C. E. (1996). The OH8 foot: a reappraisal of the functional morphology of the hindfoot utilising a multivariate analysis. J. Hum. Evol., 31, 269–291CrossRefGoogle Scholar
Kidd, R. and Oxnard, C. E. (2002). Patterns of morphological discrimination in selected human tarsal elements. Amer. J. Phys. Anthropol., 117, 169–181CrossRefGoogle ScholarPubMed
Lestrel, P. E. (1997). Fourier Descriptors and Their Applications in Biology. Cambridge: Cambridge University Press
Lestrel, P. E. (2000). Morphometrics for the Life Sciences. Singapore: World Scientific
Lisowski, F. P., Albrecht, G. H., and Oxnard, C. E. (1974). The form of the talus in some higher primates. Amer. J. Phys. Anthropol., 41, 191–215CrossRefGoogle ScholarPubMed
Lisowski, F. P., Albrecht, G. H., and Oxnard, C. E. (1976). African fossil tali: further multivariate morphometric studies. Amer. J. Phys. Anthropol., 45, 5–18CrossRefGoogle ScholarPubMed
Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proc. Nat. Inst. Sci. India, 2, 49–55Google Scholar
Mittermeier, R. A. (1978). Locomotion and posture in Ateles geoffroyi and Ateles paniscus. Folia Primatol., 30, 161–193CrossRefGoogle ScholarPubMed
Normile, D. (2001). Gene expression differs in human and chimp brains. Science, 292, 44–45CrossRefGoogle ScholarPubMed
O'Higgins, P. (2000). Quantitative approaches to the study of craniofacial growth and evolution: advances in morphometric techniques. In: Development, Growth and Evolution: Implications for the Study of Hominid Skeletal Evolution, ed. P. O'Higgins and M. Cohn. London: Academic Press. pp. 164–185
Olson, E. C. and Miller, R. L. (1954). Morphological Integration. Chicago, IL: University of Chicago Press
Oxnard, C. E. (1967). The functional morphology of the primate shoulder as revealed by comparative anatomical, osteometric and discriminant function techniques. Amer. J. Phys. Anthropol. 26, 219–240CrossRefGoogle Scholar
Oxnard, C. E. (1973). Form and Pattern in Human Evolution: Some Mathematical, Physical and Engineering Approaches. Chicago, IL: University of Chicago Press
Oxnard, C. E. (1975). Uniqueness and Diversity in Human Evolution: Morphometric Studies of Australopithecines. Chicago, IL: University of Chicago Press
Oxnard, C. E. (1976). Some methodological factors in studying the morphological–behavioral interface. Burg Wartenstein Symposium, 71, 1–65Google Scholar
Oxnard, C. E. (1979). The morphological behavioral interface in extant primates: some implications for systematics and evolution. In: Environment, Behavior and Morphology: Dynamic Interactions in Primates, ed. M. E. Morbeck, H. Preuschoft, and N. Gomberg. New York, NY: Gustav Fischer. pp. 209–227
Oxnard, C. E. (1983/84). The Order of Man: a Biomathematical Anatomy of the Primates. New Haven, CT: Yale University Press; Hong Kong: Hong Kong University Press
Oxnard, C. E. (1995). The challenge of human origins: morphology and molecules, morphometrics and modelling. In: The Origin and Past of Modern Humans from DNA, ed. S. Brenner and K. Hanihara. Singapore: World Scientific Publications. pp. 11–30
Oxnard, C. E. (1997a). From optical to computational Fourier transforms: the natural history of an investigation of the cancellous structure of bone. In: Fourier Descriptors and their Applications in Biology, ed. P. Lestrel. Cambridge: Cambridge University Press. pp. 379–408
Oxnard, C. E. (1997b). The time and place of human origins. In: Conceptual Issues in Modern Human Origins Research, ed. G. A. Clark and C. M. Willermet. New York, NY: De Gruyter. pp. 369–391
Oxnard, C. E. (2000). Morphometrics of the primate skeleton and the functional and developmental underpinnings of species diversity. In: Development, Growth and Evolution: Implications for the Study of the Hominoid Skeleton, ed. P. O'Higgins and M. Cohn. London: Academic Press. pp. 235–264
Oxnard, C. E. (in press). Evolution of the brain: the primate background and the chimpanzee/human comparison. Int. J. PrimatolGoogle Scholar
Oxnard, C. E. and Wessen, K. (2001) Modelling divergence, inter-breeding and migration: species evolution in a changing world. In: Faunal and Floral Migrations and Evolution in SE Asia–Australasia, ed. I. Metcalfe, J. M. B. Smith, M. Morwood, and I. Davidson. Netherlands: Swets and Zeitlinger. pp. 373– 385
Oxnard, C. E., Crompton, R., and Lieberman, S. (1990). Animal Lifestyles and Anatomies: the Case of the Prosimian Primates. Seattle, WA: Washington University Press
Oxnard, C. E., Lannigan, F., and O'Higgins, P. (1995). The mechanism of bone adaptation: tension and resorption in the human incus. In: Bone Structure and Remodelling, ed. A. Odegard and H. Weinans. Singapore: World Scientific Publications. pp. 105–125
Pan, R. L. and Oxnard, C. E. (2002a). Metrical dental analysis on golden monkey (Rhinopithecus roxellana). Primates, 42, 75–89CrossRefGoogle Scholar
Pan, R. L. and Oxnard, C. E. (2002b). Craniodental variation among macaques (Macaca): nonhuman primates. BioMed Central: Evol. Biol., 2, 10–26Google Scholar
Pan, R. L. and Oxnard, C. E. (in press). Functional homology or phylogenetic convergence: a methodological model based on dental variation among Asian colobines. Proc. Int. Primatol. Soc., Beijing
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Phil. Mag., 2, 559–572CrossRefGoogle Scholar
Quetelet, L. A. J. (1842). A Treatise on Man and the Development of his Faculties. Paris: Bachelier
Rao, C. R. (1948). The utilisation of multiple measurements in problems of biological classification. J. Roy. Statist. Soc., B10, 159–203Google Scholar
Reyment, R. A., Blackith, R. E., and Campbell, N. A. (1984). Multivariate Morphometrics. 2nd edn. London: Academic Press
Richtsmeier, J. T., Deleon, S. R., and Lele, S. R. (2002). The promise of geometric morphometrics. Yrbk. Phys. Anthropol., 45, 63–91CrossRefGoogle Scholar
Rodman, P. S. (1979). Skeletal differentiation of Macaca fascicularis and Macaca nemestrina in relation to arboreal and terrestrial quadrupedalism. Amer. J. Phys. Anthropol. 51, 51–62CrossRefGoogle Scholar
Savara, B. S. (1965). Applications of photogrammetry for quantitative study of tooth and face morphology. Amer. J. Phys. Anthropol., 23, 427–434CrossRefGoogle ScholarPubMed
Sneath, P. H. A. and Sokal, R. R. (1973). Numerical Taxonomy. San Francisco, CA: Freeman
Stephan, H. and Andy, O. J. (1969). Quantitative comparative neuroanatomy of primates: an attempt at a phylogenetic interpretation. Ann. N. Y. Acad. Sci. 167, 370–387CrossRefGoogle Scholar
Stern, J. T. and Oxnard, C. E. (1973). Primate Locomotion: some Links with Evolution and Morphology. Basel: Karger
Stern, J. T., Wells, J. P., Jungers, W. L., Vangor, A. K., and Fleagle, J. G. (1980). An electromyographic study of the pectoralis major in atelines and Hylobates, with special reference to the evolution of a pars clavicularis. Amer. J. Phys. Anthropol., 52, 13–25CrossRefGoogle ScholarPubMed
Tavare, S., Marshall, C. R., Will, O., Soligo, C., and Martin, R. D. (2002). Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature, 416, 726–729CrossRefGoogle ScholarPubMed
Trevor, J. C. (1955). The ancient inhabitants of Jebel Moya (Sudan). Occas. Pubs. Cambridge Univ. Mus. Arch. Ethnol., Vol. III. Cambridge: Cambridge University Press
Tukey, J. W. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley
Wessen, K. P. (2002). Simulating the Origin and Evolution of Ancient and Modern Humans. Ph.D. Thesis, University of Western Australia
Wilks, S. S. (1935). On the independence of k sets of normally distributed statistical variables. Econometrica, 3, 309–326CrossRefGoogle Scholar
Yates, F. (1950). The place of statistics in the study of growth and form. Proc. Roy. Soc. Lond. B, 137, 479–489CrossRefGoogle Scholar
Zohlman, J. F. (1993). Experimental Design and Statistical Inference. Oxford: Oxford University Press

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×