Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T21:29:20.297Z Has data issue: false hasContentIssue false

8 - Quorum sensing and cell-to-cell communication in the dental biofilm

Published online by Cambridge University Press:  08 August 2009

Donald R. Demuth
Affiliation:
School of Dentistry University of Louisville, KY USA
Richard J. Lamont
Affiliation:
Department of Oral Biology University of Florida Gainesville, FL USA
Donald R. Demuth
Affiliation:
University of Louisville, Kentucky
Richard Lamont
Affiliation:
University of Florida
Get access

Summary

INTRODUCTION

The microbial community that exists in the oral cavity is perhaps the most accessible, complex and pathogenic of the naturally occurring human biofilms. Over 500 different species of bacteria have been identified in the mature biofilm that forms on tooth surfaces (38). This complex community tenaciously adheres to and develops on the acquired salivary pellicle, a conditioning film of salivary proteins and glycoproteins adsorbed to oral tissue surfaces. The initial colonizers of the salivary pellicle are predominantly Gram-positive facultative anaerobes such as the streptococci; these organisms normally exist in commensal harmony with the host. However, as the oral biofilm matures, there is a change in the microbial composition, with an increasing presence of Gram-negative organisms. The two most common oral diseases in humans, dental caries and periodontal disease, arise from populational shifts in the biofilm in response to a variety of host and/or environmental stimuli. This results in over-representation of pathogenic organisms in the biofilm at afflicted sites in the oral cavity. For example, excessive consumption of dietary sucrose favors the overgrowth of highly fermentative acidophilic organisms such as Streptococcus mutans. The acidic local environment generated by these organisms promotes demineralization of the hydroxyapatite matrix of enamel, thus increasing the risk of dental caries. In contrast, periodontal disease is caused by a biofilm that thrives in the subgingival pocket and induces a chronic inflammatory condition that results in the destruction of the connective tissues and bone that support the teeth (23).

Type
Chapter
Information
Bacterial Cell-to-Cell Communication
Role in Virulence and Pathogenesis
, pp. 175 - 198
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beare, P. A., For, R. J., Martin, L. W. and Lamont, I. L. 2003. Siderophore-mediated cell signaling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Molec. Microbiol. 47: 195–207.CrossRefGoogle ScholarPubMed
Blehert, D. S., Palmer, R. J., Xavier, J. B., Almeida, J. S. and Kolenbrander, P. E. 2003. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J. Bacteriol. 185: 4851–60.CrossRefGoogle ScholarPubMed
Bramanti, T. E., Holt, S. C., Ebersole, J. L. and Dyke, T. 1993. Regulation of Porphyromonas gingivalis virulence: hemin limitation effects on the outer membrane protein (OMP) expression and biological activity. J. Periodont. Res. 28: 464–6.CrossRefGoogle ScholarPubMed
Burgess, N. A., Kirke, D. F., Williams, P.et al. 2002. LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology. 148: 763–72.CrossRefGoogle Scholar
Champagne, C. M., Holt, S. C., Dyke, T. E., Gordon, B. J. and Shapira, L. 1996. Lipopolysaccharide isolated from Porphyromonas gingivalis grown in hemin-limited chemostat conditions has a reduced capacity for human neutrophil priming. Oral Microbiol. Immunol. 5: 319–25.CrossRefGoogle Scholar
Chen, X., Schauder, S., Potier, N.et al. 2002. Structural identification of a bacterial quorum sensing signal containing boron. Nature 415: 545–9.CrossRefGoogle ScholarPubMed
Chung, W. O., Park, Y., Lamont, R. J.et al. 2001. Signaling system in Porphyromonas gingivalis based on a LuxS protein. J. Bacteriol. 183: 3903–9.CrossRefGoogle ScholarPubMed
Cook, G. S., Costeton, J. W. and Lamont, J. J. 1998. Biofilm formation by Porphyromonas gingivalis and Streptococcus gordonii. J. Periodont. Res. 33: 323–7.CrossRefGoogle ScholarPubMed
Demuth, D. R., Irvine, D. C., Costerton, J. W., Cook, G. S. and Lamont, R. J. 2001. Discrete protein determinant directs the species-specific adherence of Porphyromonas gingivalis to oral streptococci. Infect. Immun. 69: 5736–41.CrossRefGoogle ScholarPubMed
Demuth, D. R. and Jenkinson, H. F. 1997. Structure, function and antigenicity of strepotococcal antigen I/II polypeptides. Molec. Microbiol. 23: 183–90.Google Scholar
Du, L. D. and Kolenbrander, P. E. 2000. Identification of saliva-regulated genes of Streptococcus gordonii DL1 by differential display using random arbitrarily primed PCR. Infect. Immun. 68: 4834–7.CrossRefGoogle ScholarPubMed
Egland, P. G., Du, L. D. and Kolenbrander, P. E. 2001. Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with Actinomyces naeslundii. Infect. Immun. 69: 7512–16.CrossRefGoogle ScholarPubMed
Fong, K. P., Chung, W. O., Lamont, R. J. and Demuth, D. R. 2001. Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect. Immun. 69: 7625–34.CrossRefGoogle ScholarPubMed
Fong, K. P., Gao, L. and Demuth, D. R. 2003. luxS and arcB control aerobic growth of Actinobacillus actinomycetemcomitans under iron limitation. Infect. Immun. 71: 298–308.CrossRefGoogle ScholarPubMed
Frias, J., Olle, E. and Alsina, M. 2001. Periodontal pathogens produce quorum sensing signal molecules. Infect. Immun. 69: 3431–4.CrossRefGoogle ScholarPubMed
Gomez, J. A., Criado, M. T. and Ferreiros, C. M. 1998. Cooperation between the components of meningococcal transferrin receptor, TbpA and TbpB, in the uptake of transferrin iron by the 37kDa ferric binding protein (FbpA). Res. Microbiol. 149: 381–7.CrossRefGoogle Scholar
Grenier, D. and Mayrand, D. 1986. Nutritional relationships between oral bacteria. Infect. Immun. 53: 616–20.Google ScholarPubMed
Guggenheim, M., Shapiro, S., Gmür, R. and Guggenheim, B. 2001. Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl. Environ. Microbiol. 67: 1343–50.CrossRefGoogle Scholar
Hasegawa, Y., Nishiyama, S., Nishikawa, K.et al. 2003. A novel type of two-component regulatory system affecting gingipains in Porphyromonas gingivalis. Microbiol. Immunol. 47: 849–58.CrossRefGoogle ScholarPubMed
Haubek, D., Ennibi, O. K., Poulsen, K., Benzarti, N. and Baelum, V. 2004. The highly leukotoxic JP2 clone of Actinobacillus actinomycetemcomitans and progression of periodontal attachment loss. J. Dent. Res. 83: 767–70.CrossRefGoogle ScholarPubMed
Hayashi, J., Nishikawa, K., Hirano, R., Noguchi, T. and Yoshimura, F. 2000. Identification of a two-component signal transduction system involved in fimbriation of Porphyromonas gingivalis. Microbiol. Immunol. 44: 279–82.CrossRefGoogle ScholarPubMed
Kolenbrander, P. E. 2000. Oral microbial communities: biofilms, interactions, and genetic systems. A. Rev. Microbiol. 54: 413–37.CrossRefGoogle ScholarPubMed
Lamont, R. J. and Jenkinson, H. F. 1998. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol. Molec. Biol. Rev. 62: 1244–63.Google ScholarPubMed
Lamont, R. J., El-Sabaeny, A., Park, Y.et al. 2002. Role of the Streptococcus gordonii. SspB protein in the development of Porphyromonas gingivalis biofilms on streptococcal substrates. Microbiology 148: 1627–36.CrossRefGoogle ScholarPubMed
Lenz, D. H., Mok, K. C., Lilley, B. N.et al. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio chloerae. Cell 118: 69–82.CrossRefGoogle Scholar
Liljemark, W. F., Bloomquist, C. G., Reilly, B. E.et al. 1997. Growth dynamics in a natural biofilm and its impact on oral disease management. Adv. Dent. Res. 11: 14–23.CrossRefGoogle Scholar
Lilley, B. N. and Bassler, B. L. 2000. Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Molec. Microbiol. 36: 940–54.CrossRefGoogle ScholarPubMed
Liu, Y. and Fletcher, H. M. 2001. Environmental regulation of recA gene expression in Porphyromonas gingivalis. Oral Microbiol. Immunol. 16: 136–43.CrossRefGoogle ScholarPubMed
Maeda, K., Nagata, H., Yamamoto, Y.et al. 2004. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis functions as a coadhesin for Porphyromonas gingivalis major fimbriae. Infect. Immun. 72: 1341–48.CrossRefGoogle ScholarPubMed
Malpica, R., Franco, B., Rodriguez, C., Kwon, O. and Georgellis, D. 2004. Identification of a quinine-sensitive redox switch in the ArcB kinase. Proc. Natn. Acad. Sci. USA 101: 13318–23.CrossRefGoogle Scholar
Matsubara, M., Kitaoka, S. I., Takeda, S. I. and Mizuno, T. 2000. Tuning of porin expression under anaerobic growth conditions by his-to-asp cross phosphorelay through both the EnvZ-osmosensor and ArcB anaerosensor in Escherichia coli. Genes Cells 5: 555–69.CrossRefGoogle ScholarPubMed
Matsushika, A. and Mizuno, T. 2000. Characterization of three putative sub-domains in the signal input domain of the ArcB hybrid sensor in Escherichia coli. J. Biochem. 127: 855–60.CrossRefGoogle ScholarPubMed
McNab, R., Ford, S. K., El-Sabaeny, A.et al. 2003. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185: 274–84.CrossRefGoogle ScholarPubMed
Merritt, J., Qi, F., Goodman, S. D., Anderson, M. H. and Shi, W. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71: 1972–9.CrossRefGoogle ScholarPubMed
Mikx, F. H. and Hoeven, J. S. 1975. Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures. Arch. Oral Biol. 20: 407–10.CrossRefGoogle ScholarPubMed
Miller, M. B. and Bassler, B. L. 2001. Quorum sensing in bacteria. A. Rev. Microbiol. 55: 165–99.CrossRefGoogle ScholarPubMed
Miller, S. T., Xavier, K. B., Campagna, S. R.et al. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum sensing signal AI-2. Molec. Cell. 15: 677–87.CrossRefGoogle ScholarPubMed
Paster, B. J., Boches, S. K., Galvin, J. L.et al. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183: 3770–83.CrossRefGoogle ScholarPubMed
Rodreiguez, C., Kwon, O. and Georgellis, D. 2004. Effect of D-lactate on the physiological activity of the ArcB sensor kinase in Escherichia coli. J. Bacteriol. 186: 2085–90.CrossRefGoogle Scholar
Smalley, J. W., Birss, A. J., McKee, A. S. and Marsh, P. D. 1991. Haemin-restriction influences haemin-binding, haemagglutination and protease activity of cells and extracellular membrane vesicles of Porphyromonas gingivalis W50. FEMS Microbiol. Lett. 61: 63–7.CrossRefGoogle Scholar
Socransky, S. S. and Haffajee, A. D. 1992. The bacterial etiology of destructive periodontal disease: current concepts. J. Periodontol. 63: 322–31.CrossRefGoogle ScholarPubMed
Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. and Kent, R. L. 1998. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25: 134–44.CrossRefGoogle ScholarPubMed
Sroka, A., Sztukowska, M., Potempa, J., Travis, J. and Genco, C. A. 2001. Degradation of host heme proteins by lysine- and arginine-specific cysteine proteinases (gingipains) of Porphyromonas gingivalis. J. Bacteriol. 183: 5609–16.CrossRefGoogle ScholarPubMed
Surette, M. G., Miller, M. B. and Bassler, B. L. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium and Vibrio harveyi: a new family of genes responsible for auto-inducer production. Proc. Natn. Acad. Sci. USA 96: 1639–44.CrossRefGoogle Scholar
Taga, M. E., Miller, S. T. and Bassler, B. L. 2003. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Molec. Microbiol. 50: 1411–27.CrossRefGoogle ScholarPubMed
Wen, Z. T. and Burne, R. A. 2004. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J. Bacteriol. 186: 2682–91.CrossRefGoogle ScholarPubMed
Whittaker, C. J., Klier, C. M. and Kolenbrander, P. E. 1996. Mechanisms of adhesion by oral bacteria. A. Rev. Microbiol. 50: 513–50.CrossRefGoogle ScholarPubMed
Winzer, K., Hardie, K. R. and Williams, P. 2002. Bacterial cell-to-cell communication: sorry, can't talk now – gone to lunch. Curr. Opin. Microbiol. 5: 2215–22.CrossRefGoogle ScholarPubMed
Xavier, K. B. and Bassler, B. L. 2003. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6: 191–7.CrossRefGoogle ScholarPubMed
Xie, H., Cai, S. and Lamont, R. J. 1997. Environmental regulation of fimbrial gene expression in Porphyromonas gingivalis. Infect. Immun. 65: 2265–71.Google ScholarPubMed
Xie, H., Cook, G., Costerton, J. W.et al. 2000. Intergeneric communication in dental plaque biofilms. J. Bacteriol. 182: 7067–9.CrossRefGoogle ScholarPubMed
Xie, H., Kozlova, N. and Lamont, R. J. 2004. Porphyromonas gingivalis genes involved in fimA regulation. Infect. Immun. 72: 651–8.CrossRefGoogle ScholarPubMed
Yaku, H., Kato, M., Hakoshima, T., Tsuzuki, M. and Mizuno, T. 1997. Interaction between CheY response regulator and the histidine containing phosphotransfer (HPt) domain of the ArcB sensor kinase in Escherichia coli. FEBS Lett. 408: 337–40.CrossRefGoogle ScholarPubMed
Zhang, Y., Lei, Y., Khammanivong, A. and Herzberg, M. C. 2004. Identification of a novel two-component system in Streptococcus gordonii V288 involved in biofilm formation. Infect. Immun. 72: 3489–94.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×