Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T09:21:14.191Z Has data issue: false hasContentIssue false

19 - Payload delivery penetrators

Published online by Cambridge University Press:  12 August 2009

Andrew Ball
Affiliation:
The Open University, Milton Keynes
James Garry
Affiliation:
Universiteit Leiden
Ralph Lorenz
Affiliation:
The Johns Hopkins University
Viktor Kerzhanovich
Affiliation:
NASA Jet Propulsion Laboratory
Get access

Summary

Payload delivery penetrators are bullet-shaped vehicles designed to penetrate a surface and emplace experiments at some depth. The basic technology for these has existed for several decades based largely on military heritage (e.g. Simmons, 1977; Murphy et al., 1981a; Bogdanov et al., 1988), however only in the mid 1990s did proposals for their use in Solar System exploration begin to be adopted for actual flight. In the US, Mars penetrators were studied for several years (and, indeed, field tested) as part of a possible post-Viking mission, while in the Soviet Union planetary penetrator work seems to have started in the mid 1980s.

Impact speeds range from about 60 to 300 m s−1. The resulting impact load experienced by penetrators as they decelerate in geological materials routinely exceeds 500 g, and terrestrial systems in the military field can be rated at 10 000 g or even 100 000 g, although the choice of components at these levels is severely limited (being more suited to the relatively simple job of triggering a detonator than making planetary science measurements). Additional impact damping may be included in the form of crushable material (e.g. honeycomb or solid rocket motor casing), sacrificial ‘cavitator’ spikes protruding ahead of the penetrator's tip (e.g. Luna-Glob high-speed penetrator concept, with speeds exceeding 1.5 km s−1) and gas-filled cavities (e.g. the Mars 96 penetrators).

Masses have ranged from the tiny DS-2 Mars Microprobes at 2.5 kg each (excluding aeroshell) to 62.5 kg each for the Mars 96 penetrators.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×