Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-22T18:57:22.788Z Has data issue: false hasContentIssue false

Reference

Published online by Cambridge University Press:  12 August 2009

Michael H. Carr
Affiliation:
United States Geological Survey, Menlo Park
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Surface of Mars , pp. 283 - 296
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenback-Richter, L., Gupta, R., Stetter, K. and Woese, C., (1987). Were the original eubacteria thermophiles?Syst. Appl. Microbiol., 9, 34–9.CrossRefGoogle Scholar
Acuna, M. H., Connerny, J. E., Wasilewski, P., et al., (1999). Global distribution of crustal magnetism discovered by the Mars Global Surveyor MAG/ER experiment. Science, 279, 1676–80.Google Scholar
Aharonson, O., Zuber, M. T., Neumann, G. A. and Head, J. W. (1998). Mars: northern hemisphere slopes and slope distributions. Geophys. Res. Lett., 25, 4413–16.CrossRefGoogle Scholar
Aharonson, O., Zuber, M. T. and Rothman, D. H. (2001). Statistics of Mars' topography from the Mars Orbiter Laser Altimeter: slopes, correlations and physical models. J. Geophys. Res., 106(E10), 23,723–35.CrossRefGoogle Scholar
Aharonson, O., Zuber, M. T., Rothman, D. H., Schorghofer, N. and Whipple, K. X. (2002). Drainage basins and channel incision on Mars. Proc. Natl. Acad. Sci. U.S.A., 99, 1780–3.CrossRefGoogle ScholarPubMed
Aharonson, O., Schorghofer, N. and Gerstell, M. F. (2003). Slope streak formation and dust deposition rates on Mars. J. Geophys. Res., 108(E12), doi:10.1029/2003JE002123.CrossRefGoogle Scholar
Allen, C. C. (1979). Volcano-ice interactions on Mars. J. Geophys. Res., 84, 8048–59.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D. and Ulyanov, A. (2002). Lead isotope ages of chondrules and calcium-aluminum rich inclusions. Science, 297, 213.CrossRefGoogle Scholar
Anders, E. (1996). Evaluating the evidence for past life on Mars. Science, 274, 2119–20.CrossRefGoogle ScholarPubMed
Anderson, F. S. and Grimm, R. E. (1998). Rift processes at the Valles Marineris, Mars: constraints from gravity on necking and rate-dependent strength evolution. J. Geophys. Res., 103, 11,113–24.CrossRefGoogle Scholar
Anderson, R. C., Dohm, J. M., Golombek, M. P., et al. (8 authors) (2001). Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res., 106(E9), 20,563–85.CrossRefGoogle Scholar
Armstrong, J. C. and Leovy, C. B. (2005). Long term wind erosion on Mars. Icarus, 176, 57–74.CrossRefGoogle Scholar
Arvidson, R. E., Carusi, A., Coradini, A., et al. (8 authors) (1976). Latitudinal variation of wind erosion of crater ejecta deposits on Mars. Icarus, 27, 503–16.CrossRefGoogle Scholar
Arvidson, R. E., Seelos, F.P., Deal, K. S., et al. (2003). Mantled and exhumed terrains in Terra Meridiani, Mars. J. Geophys. Res., 108(E12), doi:10.1029/2002JE001982.CrossRefGoogle Scholar
Bagnold, R. A. (1941). The Physics of Wind-Blown Sand and Desert Dunes. London: Methuen.Google Scholar
Baker, V. R. (1979). Erosional processes in channelized water flows on Mars. J. Geophys. Res., 84, 7985–93.CrossRefGoogle Scholar
Baker, V. R. (1982). The Channels of Mars. Austin: Texas University Press.Google Scholar
Baker, V. R. (1990). Spring sapping and valley network development. Geol. Soc. Am. Sp. Paper, 252, 235–65.Google Scholar
Baker, V. R. (2001). Water and the martian landscape. Nature, 412, 228–36.CrossRefGoogle ScholarPubMed
Baker, V. R. and Kochel, R. C. (1979). Martian channel morphology: Maja and Kasei Vallis. J. Geophys. Res., 84, 7961–83.CrossRefGoogle Scholar
Baker, V. R. and Milton, D. J. (1974). Erosion by catastrophic floods on Mars and Earth. Icarus, 23, 27–41.CrossRefGoogle Scholar
Baker, V. R. and Nummedal, D. (1978). The Channeled Scabland. Field Guide. Washington DC: NASA.
Baker, V. R. and Partridge, J. (1986). Small martian valleys: pristine and degraded morphology. J. Geophys. Res., 91, 3561–72.CrossRefGoogle Scholar
Baker, V. R., Strom, R. G., Gulick, V. C., et al. (6 authors) (1991). Ancient oceans, ice sheets and the hydrologic cycle on Mars. Nature, 352, 589–94.CrossRefGoogle Scholar
Baker, V. R., Strom, R. G., Dohm, J. M., et al. (2000). Oceanus Borealis, ancient glaciers, and the MEGAOUTFLO hypothesis. LPSC XXXI, Abstract 1863.
Bandfield, J. L. (2002). Global mineral distributions on Mars. J. Geophys. Res., 107(E6), doi:10.1029/2001JE001510.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E. and Christensen, P. R. (2000). A global view of martian surface compositions from MGS-TES. Science, 287, 1626–30.CrossRefGoogle Scholar
Banerdt, W. B. and Golombek, M. P. (2000). Tectonics of the Tharsis region of Mars: insights from MGS topography and gravity. LPSC XXXI, Abstract 2038.
Banerdt, W. B., Golombek, M. P. and Tanaka, K. L. (1992). Stress and tectonics on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 249–97.Google Scholar
Banin, A., Clark, B. C. and Wänke, H. (1992). Surface chemistry and mineralogy. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 594–625.Google Scholar
Barlow, N. G. and Perez, C. B. (2003). Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles. J. Geophys. Res., 108(E8), doi:10,1029/2002JE002036.CrossRefGoogle Scholar
Barlow, N. G., Boyce, J. M., Costard, F. M., et al. (9 authors) (2000). Standardizing the nomenclature of martian impact crater ejecta morphologies. J. Geophys. Res., 105(E11), 26,733–8.CrossRefGoogle Scholar
Becker, R. H. and Pepin, R. O. (1984). The case for a martian origin of the shergottites: nitrogen and noble gases in EETA79001. Earth Planet. Sci. Lett., 69, 225–42.CrossRefGoogle Scholar
Benito, G., Mediavilla, F., Fernandez, M., Marquez, A., Martinez, J., and Aguita, F. (1997). Chasma Boreale, Mars. A sapping and outflow channel with a tectonic-thermal origin. Icarus, 129, 528–38.CrossRefGoogle Scholar
Berman, D. C. and Hartmann, W. K. (2002). Recent fluvial, volcanic and tectonic activity on the Cerberus plains of Mars. Icarus, 159, 1–17.CrossRefGoogle Scholar
Bibring, J. P., Langevin, Y., Poulet, F., et al. (2004). Perennial water ice identified in the south polar cap of Mars. Nature, 428, 627–30.CrossRefGoogle ScholarPubMed
Bibring, J., Langevin, Y., Gendrin, A., et al. (10 authors) (2005). Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 1576–81.CrossRefGoogle ScholarPubMed
Bibring, J., Langevin, , Y., Mustard, J. F., et al. (2006). Global mineralogical and aqueous history derived from OMEGA/Mars Express data. Science, 312, 400–4.CrossRefGoogle ScholarPubMed
Biemann, K., Oro, J., Toulmin, P., et al. (12 authors) (1977). The search for organic substances and inorganic volatile compounds on the martian surface. J. Geophys. Res., 82, 4641–58.CrossRefGoogle Scholar
Binder, A. B., Arvidson, R. E., Guinness, E. A., et al. (8 authors) (1977). The geology of the Viking 1 landing site. J. Geophys. Res., 82, 4439–51.CrossRefGoogle Scholar
Blasius, K. R., Cutts, J. A., Guest, J. E. and Masursky, H. (1977). Geology of Valles Marineris: first analysis of imaging from the Viking 1 orbiter. J. Geophys. Res., 82, 4067–91.CrossRefGoogle Scholar
Bogard, D. D. and Johnson, P. (1983). Martian gases in an Antarctic meteorite. Science, 221, 651–4.CrossRefGoogle Scholar
Bogard, D. D., Nyquist, L. E. and Johnson, P. (1984). Noble gas content of shergottite and implications for the martian origin of SNC meteorites. Geochim. Cosmochim. Acta., 48, 1723–39.CrossRefGoogle Scholar
Boice, D. and Huebner, W. (1999). Physics and chemistry of comets. In Encyclopedia of the Solar System, ed. Weissman, P. R., et al. San Diego: Academic Press, pp. 519–56.Google Scholar
Borg, L. E., Nyquist, L. E., Taylor, L. A., Wiesmann, H. and Shih, C.-Y. (2003). Constraints on martian differentiation processes from Rb-Sr and Sm-Nd isotopic analysis of the basaltic shergottite QUE94201. Geochim. Cosmochim. Acta., 61, 4915.CrossRefGoogle Scholar
Boynton, W., Feldman, W. C., Squyres, S. W., et al. (2001). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science, 297, 81–5.CrossRefGoogle Scholar
Bradley, J. P., Harvey, R. P. and McSween, H. Y. (1997). No nanofossils in martian meteorite. Nature, 390, 454.CrossRefGoogle ScholarPubMed
Brain, D. A. and Jakosky, B. M. (1998). Atmospheric loss since the onset of the martian geologic record: combined role of impact erosion and sputtering. J. Geophys. Res., 103(E10), 22,689–94.CrossRefGoogle Scholar
Brasier, M. D., Green, O. R., Jephcoat, A. P., et al. (2002). Questioning the evidence for Earth's oldest fossils. Nature, 416, 76–81.CrossRefGoogle ScholarPubMed
Brass, G. W. (1980). Stability of brines on Mars. Icarus, 42, 20–80.CrossRefGoogle Scholar
Braun, M. G. and Zuber, M. T. (2000). Formation and evolution of large chasms in the Elysium region of Mars: influence of tectonic loading and water flow. Eos Trans. AGU, 81, 48.Google Scholar
Bridges, J. C., Catling, D. C., Saxton, J. M., Swindle, T. D., Lyon, I. C., and Grady, M. M. (2001). Alteration assemblages in martian meteorites: implications for near-surface processes. Space Sci. Rev., 96, 365–92.CrossRefGoogle Scholar
Bridges, N. T. (1999). Ventifacts at the Pathfinder landing site. J. Geophys. Res., 104(E4), 8595–615.CrossRefGoogle Scholar
Brooks, J. J., Logan, G. A., Buick, P. and Summons, R. E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–6.CrossRefGoogle Scholar
Burns, R. G. (1987). Ferric sulfates on Mars. J. Geophys. Res., 92, e570–4.CrossRefGoogle Scholar
Burr, D. M., Grier, J. A., McEwen, A. S. and Keszthelyi, L. P. (2002a). Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus, 159, 53–73.CrossRefGoogle Scholar
Burr, D. M., McEwen, A. S. and Sakimoto, S. E. (2002b). Recent aqueous floods from the Cerberus Fossae, Mars. Geophys. Res. Lett., 29(1), 10.1029/2001Gl013345.CrossRefGoogle Scholar
Byrne, S. and Ingersoll, P. (2003a). A sublimation model for martian south polar ice features. Geophys. Res. Lett., 299, 1051–3.Google Scholar
Byrne, S. and Ingersoll, P. (2003b). Martian climatic events on timescales of centuries: evidence from feature morphology in the residual polar ice cap. Geophys. Res. Lett., 30(13), doi:.10.1029/2003GL017597.CrossRefGoogle Scholar
Byrne, S. and Murray, B. C. (2002). North polar stratigraphy and the polar erg of Mars., J. Geophys. Res., 107(E6), doi:10.1029/2001JE001615.CrossRefGoogle Scholar
Cabrol, N. A. and Grin, E. A. (1999). Distribution, classification and ages of martian impact crater lakes. Icarus, 142, 160–72.CrossRefGoogle Scholar
Cabrol, N. A., Grin, E. A., Carr, M. H., et al. (20 authors) (2003). Exploring Gusev crater with Spirit: review of science objectives and testable hypotheses. J. Geophys. Res., 108(E12), doi:10.1029/2002JE002026.CrossRefGoogle Scholar
Cailleau, B., Walter, T. R., Janle, P. and Hauber, E. (2003). Modeling volcanic deformation in a regional stress field: implications for formation of the graben structures on Alba Patera, Mars. J. Geophys. Res., 108(E12), doi:10.1029/2003JE002135.CrossRefGoogle Scholar
Carr, M. H. (1979). Formation of martian flood features by release of water from confined aquifers. J. Geophys. Res., 84, 2995–3007.CrossRefGoogle Scholar
Carr, M. H. (1981). The Surface of Mars. New Haven, Conn.: Yale University Press.Google Scholar
Carr, M. H. (1983). The stability of streams and lakes on Mars. Icarus, 56, 476–95.CrossRefGoogle Scholar
Carr, M. H. (1989). Recharge of an early atmosphere of Mars by impact-induced release of CO2. Icarus, 79, 311–27.CrossRefGoogle Scholar
Carr, M. H. (1990). D/H on Mars: effects of floods, volcanism, impacts and polar processes. Icarus, 87, 210–27.CrossRefGoogle Scholar
Carr, M. H. (1992). Post-Noachian erosion rates: implications for Mars climate change. LPSC XXIII, 205–6.Google Scholar
Carr, M. H. (1996). Water on Mars. Oxford: Oxford University Press.Google Scholar
Carr, M. H. (1999). Retention of an atmosphere on early Mars. J. Geophys. Res., 104, 21,897–909.CrossRefGoogle Scholar
Carr, M. H. (2001). Mars Global Surveyor observations of martian fretted terrain. J. Geophys. Res., 106, 23,571–94.CrossRefGoogle Scholar
Carr, M. H. (2002). Elevation of water-worn features on Mars: implications for circulation of groundwater. J. Geophys. Res., 107(E12), 5131, doi:10.1029/2002JE001845.CrossRefGoogle Scholar
Carr, M. H. and Chuang, F. C. (1997). Martian drainage densities. J. Geophys. Res., 102(E4), 9145–52.CrossRefGoogle Scholar
Carr, M. H. and Malin, M. C. (2000). Meter-scale characteristics of martian channels and valleys. Icarus, 146, 366–86.CrossRefGoogle Scholar
Carr, M. H. and Head, J. W. (2002). Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res., 108(E5), doi10.1029/2002JE001963.Google Scholar
Carr, M. H. and Head, J. W. (2003). Basal melting of snow on early Mars: a possible origin of some valley networks. Geophys. Res. Lett., 30(24), doi10.1029/2003GL018575.CrossRefGoogle Scholar
Carr, M. H., Crumpler, L. S., Cutts, J. A., Greeley, R., Guest, J. E. and Masursky, H. (1977). Martian impact craters and emplacement of ejecta by surface flow. J. Geophys. Res., 82, 4055–65.CrossRefGoogle Scholar
Carr, M. H. and Schaber, G. G. (1977). Martian permafrost features. J. Geophys. Res., 82, 4039–55.CrossRefGoogle Scholar
Carr, M. H., Wu, S. C., Jordan, R. and Schafer, F. J. (1987). Volumes of channels, canyons and chaos in the circum-Chryse region of Mars. LPSC XVIII, pp. 156–7.
CATWG (1979). Standard techniques for presentation and analysis of crater size-frequency data. Icarus, 37, 467–74.CrossRef
Chapman, M. G. (1994). Evidence, age and thickness of a frozen paleolake in Utopia Planitia, Mars. Icarus, 109, 393–406.CrossRefGoogle Scholar
Chapman, M. G. (2002). Layered, massive and thin sediments on Mars: possible Late Noachian to Late Amazonian tephra? In Valcano-Ice Interactions on Earth and Mars, ed. Smellie, J. L. and Chapman, M. G.. Geol. Soc., London, Sp. Publ., 202 pp. 273–93.Google Scholar
Chapman, M. G. and Tanaka, K. L. (2001). Interior trough deposits on Mars: subice volcanoes?J. Geophys. Res., 106, 10,087–100.CrossRefGoogle Scholar
Chen, J. H. and Wasserburg, G. J. (1986). Formation ages and evolution of Shergotty and its parent planet from U-Th-Pb systematics. Geochim. Cosmochim. Acta., 50, 955–68.CrossRefGoogle Scholar
Christensen, P. R. (1986). Regional dust deposits on Mars: physical properties, age, and history. J. Geophys. Res., 91, 3533–45.CrossRefGoogle Scholar
Christensen, P. R. (2003). Formation of recent martian gullies through melting of extensive water-rich snow deposits. Nature, 422, 45–8.CrossRefGoogle ScholarPubMed
Christensen, P. R. (2004). Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science, 306, 1733–9.CrossRefGoogle ScholarPubMed
Christensen, P. R., Bandfield, J. L., Clark, R. N., et al. (2000). Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer. Evidence for near surface water. J. Geophys. Res., 105, 9623–42.CrossRefGoogle Scholar
Christiansen, E. H. (1989). Lahars in the Elysium region of Mars. Geology, 17, 203–6.2.3.CO;2>CrossRefGoogle Scholar
Chyba, C. F. (1990). Impact delivery and erosion of planetary oceans in the early inner solar system, Nature, 343, 129–33.CrossRefGoogle Scholar
Chyba, C. F. (1991). Terrestrial mantle siderophiles and the lunar impact record. Icarus, 92, 217–33.CrossRefGoogle Scholar
Clague, D. A. and Dalrymple, G. B. (1987). The Hawaiian-Emperor volcanic chain. In Volcanism in Hawaii, ed. Decker, R. W.et al. U.S. Geol. Survey Prof. Paper 1350, 5–73.Google Scholar
Clark, B. C., Morris, R. V., McLennan, S. M., et al. (2005). Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett., 240, 73–94.CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1983). Oxygen isotopes in euchrites, shergottites, nakhlites and chassignites. Earth Planet. Sci. Lett., 62, 1–6.CrossRefGoogle Scholar
Clifford, S. M. (1987). Polar basal melting on Mars. J. Geophys. Res., 92, 9135–52.CrossRefGoogle Scholar
Clifford, S. M. (1993). A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res., 98, 10973–1016.CrossRefGoogle Scholar
Clifford, S. M. and Parker, T. J. (2001). The evolution of the martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus, 154, 40–79.CrossRefGoogle Scholar
Clifford, S. M. and Zimbelman, J. R. (1988). Softened terrain on Mars. LPSC XIX, pp. 199–200.Google Scholar
Clow, G. D. (1987). Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus, 72, 95–127.CrossRefGoogle Scholar
Colaprete, A. and Toon, O. B. (2003). Carbon dioxide clouds in an early dense martian atmosphere. J. Geophys. Res., 108(E4), doi:10.1029/2002/JE001967.CrossRefGoogle Scholar
Coleman, N. M. (2002). Aqueous flows formed the outflow channels on Mars. LPSC XXXIII, Abstract 1059.
Comer, R. P., Solomon, S. C. and Head, J. W. (1985). Mars: thickness of the lithosphere from the tectonic response to volcanic loads. Rev. Geophys., 23, 61–92.CrossRefGoogle Scholar
Connerny, J. E., Acuna, M. H., Wasukewski, P. J., et al. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284, 794–8.CrossRefGoogle Scholar
Costard, F. M. and Kargel, J. S. (1995). Outwash plains and thermokarst on Mars. Icarus, 114, 93–112.CrossRefGoogle Scholar
Costard, F., Forget, F., Mangold, N. and Peulvast, J. P. (2002). Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity. Science, 295, 110–13.CrossRefGoogle ScholarPubMed
Craddock, R. A. and Howard, A. D. (2002). The case for rainfall on a warm, wet early Mars. J. Geophys. Res., 107(E11), doi:10.1029/2001JE001505.CrossRefGoogle Scholar
Craddock, R. A. and Maxwell, T. A. (1993). Geomorphic evolution of the martian highlands through ancient fluvial processes. J. Geophys. Res., 98, 3453–68.CrossRefGoogle Scholar
Crown, D. A. and Greeley, R. (1993). Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. J. Geophys. Res., 98(E2), 3431–51.CrossRefGoogle Scholar
Crown, D. A., Price, K. H. and Greeley, R. (1992). Geologic evolution of the east rim of the Hellas basin, Mars. Icarus, 100, 1–25.CrossRefGoogle Scholar
Crown, D. A., McElfresch, S. B., Pierce, T. L. and Mest, S. C. (2003) Geomophology of debris aprons in the eastern Hellas region of Mars. LPSC XXXIV, Abstract 1126.
Davies, P. (1995). Are We Alone? London: Penguin.Google Scholar
Davis, P. A. and Golombek, M. P. (1990). Discontinuities in the shallow martian crust at Lunae, Susria and Sinai Plana. J. Geophys. Res., 95, 14,231–48.CrossRefGoogle Scholar
DeHon, R. A. (1992). Martian lake basins and lacustrine plains. Earth, Moon, and Planets, 56, 95–122.CrossRefGoogle Scholar
Dohnanyi, J. S. (1972). Interplanetary objects in review: statistics of their masses and dynamics. Icarus, 17, 1–48.CrossRefGoogle Scholar
Edgett, K. S. and Malin, M. C. (2002). Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett., 29(24), 2179 doi:10.1029/2002GL016515.CrossRefGoogle Scholar
Edgett, K. S. and Parker, T. J. (1997). Water on early Mars: possible subaqueous sedimentary deposits covering ancient cratered terrain of Western Arabia and Sinus Meridiani. Geophys. Res. Lett., 24, 2897–900.CrossRefGoogle Scholar
Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A. and Thomas, P. C. (2003). Mars landscape evolution: influence of stratigraphy on geomorphology of the north polar region. Geomorphology, 52, 289–98.CrossRefGoogle Scholar
Ernst, W. G. (1983). The early earth and the Archean rock record. In TheEarth's earliest biosphere, ed. Schopf, J. W.. Princeton, pp. 41–52.Google Scholar
Eugster, O., Weigel, A. and Palnau, E. (1997). Ejection times of martian meteorites. Geochim. Cosmochim. Acta., 61, 2749–58.CrossRefGoogle Scholar
Fahrig, W. F. (1987). Geol. Assoc. Canada Sp. Paper 34, ed. Halls, H. C. and Fahrig, W. F.., pp. 331–48.Google Scholar
Farmer, C. B. and Doms, P. E. (1979). Global and seasonal water vapor on Mars and implications for permafrost. J. Geophys. Res., 84, 2881–8.CrossRefGoogle Scholar
Farmer, C. B., Davies, D. W. and LaPorte, D. D. (1976). Northern summer ice cap – water vapor observations from Viking 2. Science, 194, 1399–41.CrossRefGoogle ScholarPubMed
Farmer, C. B., et al. (1977). Mars: water vapor observations from the Viking orbiters. J. Geophys. Res., 82, 4225–8.CrossRefGoogle Scholar
Fasset, C. I. and Head, J. W., (2004). Snowmelt and the formation of valley networks on martian volcanoes, LPSC XXXV, Abstract 1113.
Fassett, C. I. and Head, J. W. (2005). Fluvial sedimentary deposits on Mars: ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett., 32(14), doi:10.1029/2005GL023456.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al. (2002). Global distribution of neutrons from Mars: results from Mars Odyssey. Science, 297, 75–8.CrossRefGoogle ScholarPubMed
Feldman, W. C., Prettyman, T. H., Maurice, S., et al. (2004). The global distribution of near surface hydrogen on Mars. J. Geophys. Res., 109(E9), doi:10.1029/2003JE02160.CrossRefGoogle Scholar
Fernandez, J. A. (1999). Cometary dynamics. In Encyclopedia of the Solar System, ed. Weissman, P. R.et al. San Diego: Academic Press, pp. 537–56.Google Scholar
Ferril, D. A. and Morris, A. P. (2003). Dilational normal faults. J. Struct. Geol., 25, 183–96.CrossRefGoogle Scholar
Ferrill, D. A., Wyrick, D. Y., Morris, A. P., Sims, D. W. and Franklin, N. M. (2004). Dilational fault slip and pit chain formation on Mars. GSA Today, 14(19), 4–12.2.0.CO;2>CrossRefGoogle Scholar
Fishbaugh, K. E. and Head, J. W. (2000). North polar region of Mars: topography of circumpolar deposits form Mars Orbiter Laser Altimeter (MOLA) data and evidence for asymmetric retreat of the polar cap. J. Geophys. Res., 105(E9), doi:10.1029/1999JE001230.CrossRefGoogle Scholar
Fishbaugh, K. E. and Head, J. W. (2002). Chasma Boreale, Mars: topographic characterization from Mars Orbiter Laser Altimeter data and implications for mechanisms of formation. J. Geophys. Res., 107(E3), doi:10.1029/2001JE001351.CrossRefGoogle Scholar
Fishbaugh, K. E. and Head, J. W. (2005). Origin and characteristics of the Mars north polar basal unit and implications for polar geologic history. Icarus, 174, 444–74.CrossRefGoogle Scholar
Fisher, J. A., Richardson, M. I., Newman, C. E., et al. (2005). A survey of martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images. J. Geophys. Res., 110(E3), doi:10.1029/2003JE002165.CrossRefGoogle Scholar
Fiske, R. S. and Jackson, E. D. (1972). Orientation and growth of Hawaiian volcanic rifts – the effect of regional structure and gravitational stresses. Proc. Roy. Soc., London, Ser. A., 329, 299–326.CrossRefGoogle Scholar
Foley, E. N., Economou, T. and Clayton, R. M. (2003). Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer. J. Geophys. Res., 108(E12), doi:10.1029/2002JE002019.Google Scholar
Folk, R. L. (1993). SEM imaging of bacteria and nanobacteria in carbonate sediments and rocks. J. Sed. Pet., 63, 990–9.Google Scholar
Folkner, W. N., Yoder, C. F., Yuan, D. N., Standish, E. M. and Preston, R. A. (1997). Internal structure and seasonal mass redistribution on Mars from radio tracking of Mars Pathfinder. Science, 278, 1749–52.CrossRefGoogle Scholar
Forget, F. and Pierrehumbert, R. T. (1997). Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science, 278, 1273–6.CrossRefGoogle ScholarPubMed
Formisano, V., Atreya, S., Encranaz, T., Ignatiev, N., and Guiranna, M.et al. (2004). Detection of methane in the atmosphere of Mars. Science, 306, 1758–61.CrossRefGoogle ScholarPubMed
Forsythe, R. D. and Blackwelder, C. R. (1998). Closed drainage basins of the martian highlands: constraints on the early martian hydrologic cycle. J. Geophys. Res., 103(E13), 31,421–32.CrossRefGoogle Scholar
Forsythe, R. D. and Zimbelman, J. R. (1995). A case for ancient evaporite basins on Mars. J. Geophys. Res., 100, 5553–63.CrossRefGoogle Scholar
Francis, P. W. and Wadge, G. (1983). The Olympus Mons aureole: formation by gravitational spreading. J. Geophys. Res., 88, 8333–44.CrossRefGoogle Scholar
French, H. M. (1976). The periglacial environment. New York: Longman.Google Scholar
Frey, H. V. (1979). Pseudocraters on Mars. J. Geophys. Res., 84, 8075–86.CrossRefGoogle Scholar
Frey, H. V. (2002). Age and origin of the crustal dichotomy in eastern Mars. LPSC XXXIII, Abstract 1727.
Frey, H. V., Roark, J. H., Shockey, K. M., Frey, E. L. and Sakimoto, S. E. (2002a). Ancient lowlands on Mars. Geophys. Res. Lett., 29, 1384, doi.10.1029/2001GL013832.CrossRefGoogle Scholar
Frey, H. V., Roark, J. H., Hohner, G. J., Wernecke, A. and Sakimoto, S. E. (2002b). Buried impact basins as constraints on the thickness of ridged plains and northern lowland plains on Mars. LPSC XXXIII, Abstract 1804.
Frey, H. V. and Schultz, R. A. (1988). Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophys. Res. Lett., 15, 229–32.CrossRefGoogle Scholar
Friedman, E. I. (1980). Endolithic microbial life in hot and cold deserts. Origins of Life, 10, 223–35.CrossRefGoogle Scholar
Friedman, G. M. and Sanders, J. E. (1978). Principles of Sedimentology. New York: WileyGoogle Scholar
Fuller, E. R. and Head, J. W. (2002a). Geologic history of the smoothest plains on Mars (Amazonis Planitia) and astrobiological implications. LPSC XXXIII, Abstract 1539.
Fuller, E. R. and Head, J. W. (2002b). Amazonis Planitia: the role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars. J. Geophys. Res., 107(E10), doi:10.1029/2002JE001842.CrossRefGoogle Scholar
Gaidos, E. and Marion, G. (2003). Geologic and geochemical legacy of a cold early Mars. J. Geophys. Res., 108(E6), doi:10.1029/2002JE002000.CrossRefGoogle Scholar
Gault, D. E. and Greeley, R. (1978). Exploratory experiments of impact craters formed in viscous-liquid targets: analogs for martian impact craters?Icarus, 34, 486–95.CrossRefGoogle Scholar
Gault, D. E., Quaide, W. L. and Oberbeck, V. R. (1968). Impact cratering mechanics and structures. In Shock Metamorphism of Natural Materials, ed. French, B. M. and Short, N. M.. Baltimore: Mono Book Corp., pp. 87–99.Google Scholar
Geissler, P. E. (2005). Three decades of martian surface changes. J. Geophys. Res., 110(E2), doi:10.1029/2004JE002345.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al. (16 authors) (2004). Chemistry of rocks and soils in Gusev crater from the alpha particle X-ray spectrometer. Science, 305, 829–32.CrossRefGoogle ScholarPubMed
Gendrin, A., Mangold, N., Bibring, J., et al. (11 authors) (2005). Sulfates in martian layered terrains: the OMEGA/Mars Express view. Science, 302, 1587–91.CrossRefGoogle Scholar
Ghatan, G. J. and Head, J. W. (2002). Candidate subglacial volcanoes in the south polar region of Mars: morphology, morphometry, and eruption conditions. J. Geophys. Res., 107(E7), doi:10.1029/2001JE001519.CrossRefGoogle Scholar
Ghatan, G. J. and Head, J. W. (2004). Regional drainage of meltwater beneath a Hesperian-age south circumpolar ice sheet on Mars. J. Geophys. Res., 109(E7), doi:10.1029/2003JE002196.CrossRefGoogle Scholar
Ghatan, G. J., Head, J. W. and Pratt, S. (2003). Cavi Angusti, Mars: characterization and assessment of possible formation mechanisms. J. Geophys. Res., 108(E5), doi:10.1029/2002JE001972.CrossRefGoogle Scholar
Gierasch, P. J. (1974). Martian dust storms. Rev. Geophys. Space Phys., 12, 730–4.CrossRefGoogle Scholar
Gladman, B., Burns, J. A., Duncan, M., Lee, P. and Levinson, H. G. (1996). The exchange of impact ejecta between terrestrial planets. Science, 271, 1387–90.CrossRefGoogle Scholar
Golden, D. C., Ming, D. W., Lauer, H. V., et al. (2002). Inorganic formation of “truncated hexa-octahedral” magnetite: implications for inorganic processes in martian meteorite ALH84001. LPSC XXXIII, Abstract 1839.
Golden, D. C., Ming, D. W., and Morris, R. V., et al. (2004). Evidence for exclusively inorganic formation of magnetite in martian meteorite ALH84001. Am. Mineral., 89, 681–95.CrossRefGoogle Scholar
Goldspiel, J. M. and Squyres, S. W. (1991). Ancient aqueous sedimentation on Mars. Icarus, 89, 393–410.CrossRefGoogle Scholar
Goldspiel, J. M. and Squyres, S. W. (2000). Groundwater sapping and valley formation on Mars. Icarus, 148, 176–92.CrossRefGoogle Scholar
Golombek, M. P. and Bridges, N. T. (2000). Erosion rates on Mars and implications for climate change: constraints from the Pathfinder landing site. J. Geophys. Res., 105(E1), 1841–53.CrossRefGoogle Scholar
Golombek, M. P., Tanaka, K. L. and Franklin, B. J. (1996). Extension across Tempe Terra, Mars from measurements of faults scarp widths and deformed craters. J. Geophys. Res., 101, 26,119–30.CrossRefGoogle Scholar
Golombek, M. P., Cook, R. A., Economou, T. E., et al. (14 authors) (1997). Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science, 278, 1743–52.CrossRefGoogle ScholarPubMed
Golombek, M. P., Anderson, R. C., Barnes, J. R., et al. (53 authors) (1999). Overview of the Mars Pathfinder mission: launch through landing. Surface operations, data sets and science results. J. Geophys. Res., 104, 8523–53.CrossRefGoogle Scholar
Golombek, M. P., Anderson, F. S. and Zuber, M. T. (2001). Martian wrinkle ridge topography: evidence for subsurface faults from MOLA. J. Geophys. Res., 106(E10), 23,811–21.CrossRefGoogle Scholar
Golombek, M. P., Anderson, R. C., Barnes, J. R, et al. (22 authors) (2003). Selection of the Mars Exploration Rover land sites. J. Geophys. Res., 108(E12), doi:10.1029/2003JE002074.CrossRefGoogle Scholar
Golombek, M. P., Crumpler, L. S., Grant, J. A., et al. (18 authors) (2006). Geology of the Gusev cratered plains from the Spirit rover traverse. J. Geophys. Res., 111(E2), doi:10.1029/2005JE002503.CrossRefGoogle Scholar
Gooding, J. G., Wentworth, S. J. and Zolensky, M. E. (1988). Calcium carbonate and sulfate of possible extraterrestrial origin in EETA79001 meteorite. Geochim. Cosmochim. Acta., 52, 909–15.CrossRefGoogle Scholar
Gough, D. O. (1981). Solar interior structure and luminosity variations. Solar Phys., 74, 21–34.CrossRefGoogle Scholar
Grant, J. A. and Parker, T. J.(2002). Drainage evolution in the Margaritifer Sinus region of Mars. J. Geophys. Res., 107(E9), doi:10.1029/2001JE001678.CrossRefGoogle Scholar
Greeley, R. and Crown, D. A. (1990). Volcanic geology of Tyrrhena Patera, Mars. J. Geophys. Res., 95(B5), 7133–49.CrossRefGoogle Scholar
Greeley, R. and Fagents, S. A. (2001). Icelandic pseudocraters as analogs to some volcanic cones on Mars. J. Geophys. Res., 106, 20,527–46.CrossRefGoogle Scholar
Greeley, R. and Guest, J. E. (1987). Geologic map of the eastern equatorial region of Mars. U. S. Geological Survey, Misc. Inv. Map I-1802-B.Google Scholar
Greeley, R. and Iverson, J. D. (1985). Wind as a Geological Process on Earth, Mars, Venus and Titan. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Greeley, R. and Schneid, B. D. (1991). Magma generation on Mars: amounts, rates and comparisons with Earth, Moon and Venus. Science, 254, 996–8.CrossRefGoogle ScholarPubMed
Greeley, R., Leach, R., White, B., Iverson, J. and Pollack, J. (1980). Threshold windspeeds for sands on Mars: wind tunnel simulations. Geophys. Res. Lett., 7, 121–4.CrossRefGoogle Scholar
Greeley, R., White, B. R., Pollack, J. B., Iverson, J. D. and Leach, R. N. (1981). Dust storms on Mars: considerations and simulations. Geol. Soc. Am. Sp. Paper, 186, 101–21.Google Scholar
Greeley, R., Lancaster, N., Lee, S. and Thomas, P. (1992). Martian eolian processes, sediments and features. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 730–66.Google Scholar
Greeley, R., Draft, M., Sullivan, R., Wilson, G., et al. (1999). Aeolian features and processes at the Mars Pathfinder landing site. J. Geophys. Res., 104, 8573–84.CrossRefGoogle Scholar
Greeley, R., Squyres, S. W., Arvidson, R. E., et al. (2004). Wind-related processes detected by the Spirit Rover at Gusev Crater, Mars. Science, 305, 810–21.CrossRefGoogle ScholarPubMed
Greeley, R., Arvidson, R. E., Barlett, P. W., et al. (2006). Wind-related features and processes observed by the Mars Exploration Rover, Spirit. J. Geophys. Res., 111(E2), doi10.1029/2005JE002491.CrossRefGoogle Scholar
Grieve, R. A. (2001). The terrestrial cratering record. In Accretion of Extraterrestrial Matter Through Earth's History, ed. Peuker-Ehrenbrink, B.et al. Dordrecht: Kluwer, pp. 379–402.CrossRefGoogle Scholar
Grieve, R. A. and Shoemaker, E. M. (1994). The record of past impacts on Earth. In Hazards due to Comets and Asteroids, ed. Gehrels, T.. Tucson: University of Arizona press, pp. 417–62.Google Scholar
Grotzinger, J. P., Arvidson, R. E., Bell, J. F., et al. (2005). Stratigraphy, sedimentology and depositional environment of the Burns Formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett., 240, 11–72.CrossRefGoogle Scholar
Grun, E. (1999). Interplanetary dust and the zodiacal cloud. In Encyclopedia of the Solar System, ed. Weissman, P. R., et al. San Diego: Academic Press, pp. 673–96.Google Scholar
Gulick, V. C. (1998). Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J. Geophys. Res., 103, 19,365–87.CrossRefGoogle Scholar
Gulick, V. C. (2001). Origin of the valley networks on Mars: a hydrologic perspective. Geomorphology, 37, 241–68.CrossRefGoogle Scholar
Gulick, V. C. and Baker, V. R. (1990). Origin and evolution of valleys on martian volcanoes. J. Geophys. Res., 95, 14,325–44.CrossRefGoogle Scholar
Gulick, V. C., Tyler, D., McKay, C. P. and Haberle, R. M. (1997). Episodic ocean-induced CO2 greenhouse on Mars: implications for fluvial valley formation. Icarus, 130, 68–86.CrossRefGoogle ScholarPubMed
Haberle, R. M. (1998). Early climate models. J. Geophys. Res., 103(E12), 28,467–79.CrossRefGoogle Scholar
Haberle, R. M. and Jakosky, B. M. (1990). Sublimation and transport of water from the north residual polar cap on Mars. Icarus, 90, 187–204.CrossRefGoogle Scholar
Haberle, R. M., Tyler, D., McKay, C. P., Davis, W. L., et al. (1994). A model for the evolution of CO2 on Mars. Icarus, 109, 102–20.CrossRefGoogle ScholarPubMed
Haberle, R. M., Monmessin, F., Forget, F., Levrard, B., Head, J. W. and Laskar, J. (2004). GCM simulations of tropical ice accumulations: implications for cold-based glaciers. LPSC XXXV, Abstract 1711.
Halliday, A. N., Wänke, H., Birck, J.-L. and Clayton, R. N. (2001). The accretion, composition and early differentiation of Mars. In Chronology and Evolution of Mars, ed. Kallenbach, R.et al. Dordrecht: Kluwer, pp. 197–230.CrossRefGoogle Scholar
Hamlin, S. E., Kargel, J. S., Tanaka, K. L., Lewis, K. J. and MacAyeal, D. R. (2000). Preminiary studies of icy debris flows in the martian fretted terrain. LPSC XXXI, Abstract 1785.
Hanna, J. C. and Phillips, R. J. (2005). Tectonic pressurization of aquifers in the formation of Mangala and Athabasca Valles on Mars. LPSC XXXVI, Abstract 2261.
Harder, H. and Christensen, U. R. (1996). A one plume model of martian mantle convection. Nature, 380, 507.CrossRefGoogle Scholar
Harris, S. A. (1977). The aureole of Olympus Mons, Mars. J. Geophys. Res., 82, 3099–107.CrossRefGoogle Scholar
Harrison, K. P. and Grimm, R. E. (2003). Rheological constraints on martian landslides. Icarus, 163, 347–62.CrossRefGoogle Scholar
Hartmann, W. K. (1977). Relative crater production rates on planets. Icarus, 31, 260–76.CrossRefGoogle Scholar
Hartmann, W. K. (1999). Martian cratering. IV: Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor. Meteoritics Planet. Sci., 34, 167–77.CrossRefGoogle Scholar
Hartmann, W. K. and Neukum, G. (2001). Cratering chronology and the evolution of Mars. In Chronology and Evolution of Mars, ed. Kallenbach, R.et al. Dordrecht: Kluwer, pp. 165–94.CrossRefGoogle Scholar
Haskins, L. A., Wang, A., Jolliff, B., et al. (34 authors) (2005). Water alteration of rocks and soils on Mars and the Spirit rover site in Gusev crater. Nature, 436, 66–9.CrossRefGoogle Scholar
Hauber, E., Gwinner, K., Reiss, D., et al. (2005a). Delta-like deposits in Xanthe Terra, Mars as seen with the high resolution stereo camera (HRSC). LPSC XXXVI, Abstract 1661.Google Scholar
Hauber, E., Gasselt, S., Ivanov, B., et al. (2005b). Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars. Nature, 434, 356–61.CrossRefGoogle Scholar
Hauber, G., Gwinner, K., Gendrin, A., et al. (2006). An integrated study of interior layered deposits in Hebes Chasma, Valles Marineris, Mars, using MGS, MO and MEX data. LPSC XXXVII, Abstract 2022.
Head, J. W. (1974). Orientale multi-ring basin interior and implications for the petrogenesis of lunar highland samples. The Moon, 11, 327–56.CrossRefGoogle Scholar
Head, J. W. (2001). Evidence for geologically recent advance of the south polar cap. J. Geophys. Res., 106(E5), 10,075–85.CrossRefGoogle Scholar
Head, J. W. and Marchant, D. R. (2003). Cold based mountain glaciers on Mars: western Arsia Mons. Geology, 31, 641–4.2.0.CO;2>CrossRefGoogle Scholar
Head, J. W. and Pratt, S. (2001) Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. J. Geophys. Res., 106, 12,275–99.CrossRefGoogle Scholar
Head, J. W. and Wilson, L. (2002). Mars: a review and synthesis of general environments and geologic settings of magma-H2O interactions. In Volcano-Ice Interactions on Earth and Mars, ed. Smellie, J. L. and Chapman, M. G.. Geol. Soc., London, Sp. Publ.,202, pp. 27–57.Google Scholar
Head, J. W., Heisinger, H., Ivanov, M. A., Kreslavsky, M. A., Pratt, S. and Thomson, B. J. (1999). Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science, 286, 2134–7.CrossRefGoogle ScholarPubMed
Head, J. W., Kreslavsky, M. A. and Pratt, S. (2002). Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. J. Geophys. Res., 107(E1), doi:10.1029/2000JE001445.CrossRefGoogle Scholar
Head, J. W., Wilson, L. and Mitchel, K. L. (2003b). Generation of recent water floods at Cerberus Fossae, Mars by dike emplacement, cryosphere cracking and confined aquifer groundwater release. Geophys. Res. Lett., 30(11), 1577, doi:10.1029/2003GL017135.CrossRefGoogle Scholar
Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E. and Marchant, D. R. (2003a). Recent ice ages on Mars. Nature, 426, 797–802.CrossRefGoogle Scholar
Head, J. W., Neukum, G., Jaumann, R., et al. (2005a). Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434, 346–51.CrossRefGoogle Scholar
Head, J. W., Marchant, D. R., Agnew, M. C., Fassett, C. I. and Kreslavsky, M. A. (2005b). Extensive valley glacier deposits in the northern mid-latitudes of Mars: evidence for late Amazonian obliquity-driven climate change. Earth Planet. Sci. Lett., 241, 663–71.CrossRefGoogle Scholar
Hecht, M. H. (2002). Metastability of liquid water on Mars. Icarus, 156, 373–86.CrossRefGoogle Scholar
Heisinger, H. and Head, J. W. (2001). Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. J. Geophys. Res., 105, 11,999–2,022.CrossRefGoogle Scholar
Heisinger, H. and Head, J. W. (2002). Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history. Planet. Space Sci., 50, 939–81.CrossRefGoogle Scholar
Herkenhoff, K. E. and Plaut, J. J. (2000). Surface ages and the resurface rates of the polar deposits on Mars. Icarus, 144, 243–53.CrossRefGoogle Scholar
Herkenhoff, K. E., et al. (23 authors) (2004a). Textures of the soils and rocks at Gusev crater from Spirit's microscopic imager. Science, 305, 824–6.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R. E., et al. (2004b). Evidence from Opportunity's microscopic imager for water on Meridiani Planum. Science, 306, 1727–30.CrossRefGoogle Scholar
Hess, S. L., Ryan, J. W., Tillman, J. E., Henry, R. M. and Leovy, C. N. (1980). The annual cycle of pressure on Mars measured by Viking 1 and 2. Geophys. Res. Lett., 7, 197–200.CrossRefGoogle Scholar
Hodges, C. A. and Moore, H. J. (1979). The sub-glacial birth of Olympus Mons and its aureoles. J. Geophys. Res., 84, 8061–74.CrossRefGoogle Scholar
Hodges, C. A. and Moore, H. J. (1994). Atlas of volcanic landforms on Mars, U.S. Geol. Survey Prof. Paper 1534.
Hodges, R. R. (2002). The rate of loss of water from Mars. Geophys. Res. Lett., 29, 1038, doi:10.1029/2001GL013853.CrossRefGoogle Scholar
Hoefen, R. M., Clark, R. N., Bandfield, J. L., Smith, M. D., Pearl, J. C. and Christensen, P. R. (2003). Discovery of olivine in the Nili Fossae region of Mars. Science, 302, 627–30.CrossRefGoogle ScholarPubMed
Hoffman, N. (2000). White Mars. Icarus, 146, 326–42.CrossRefGoogle Scholar
Hoffman, N. (2002). Active polar gullies on Mars and the role of carbon dioxide. Astrobiology, 2, 313–23.CrossRefGoogle ScholarPubMed
Horowitz, N. H. (1986). To Utopia and Back: The Search for Life in the Solar System. New York: W. H. Freeman.Google Scholar
Howard, A. D. (1978). Origin of the stepped topography of the martian poles. Icarus, 34, 581–9.CrossRefGoogle Scholar
Howard, A. D. (1981). Etched plains and braided ridges of the south polar region of Mars: features produced by basal melting and ground ice. NASA Tech. Memo 84211, pp. 286–8.Google Scholar
Howard, A. D. (2000). The role of eolian processes in forming surface features of the martian polar layered deposits. Icarus, 144, 267–88.CrossRefGoogle Scholar
Howard, A. D. and Moore, J. M. (2006). A geomorphic transect across the martian highlands-lowlands boundary near the prime meridian: evidence for a sedimentary platform graded to a deep ocean. J. Geophys. Res.Google Scholar
Howard, A. D., Cutts, J. A. and Blasius, K. R. (1982). Stratigraphic relationships within the martian polar cap deposits. Icarus, 50, 161–215.CrossRefGoogle Scholar
Howard, A. D., Moore, J. M. and Irwin, R. P. (2005). An intense terminal epoch of widespread fluvial activity on early Mars. I. Valley network incision and associated deposits. J. Geophys. Res., 110(E12), S14, doi:10.1029/2005JE002459.CrossRefGoogle Scholar
Hungr, O. (1995). A model for runout analysis of rapid flow slides, debris flows and avalanches. Can. Geotech., 32, 610–23.CrossRefGoogle Scholar
Hunten, D. M. (1979). Possible oxidant sources in the atmosphere and surface of Mars. J. Mol. Evol., 14, 71–8.CrossRefGoogle ScholarPubMed
Hynek, B. M. and Phillips, R. J. (2001). Evidence of extensive denudation of the martian highlands. Geology, 29, 407–10.2.0.CO;2>CrossRefGoogle Scholar
Hynek, B. M., Arvidson, R. E. and Phillips, R. J. (2002). Geologic setting and origin of Terra Meridiani hematite deposits. J. Geophys. Res., 107(E10), doi:10.1029/2002JE001891.CrossRefGoogle Scholar
Hynek, B. M., Philips, R. J. and Arvidson, R. E. (2003). Explosive volcanism in the Tharsis region: global evidence in the martian geologic record. J. Geophys. Res., 108(E9), doi:10.1029/2003JE002062.CrossRefGoogle Scholar
Ingersoll, A. P. (1970). Mars: occurrence of liquid water. Icarus, 79, 3404–10.Google Scholar
Irwin, R. P., Maxwell, T. A., Craddock, R. A. and Leverington, D. W. (2002). A large paleolake basin at the head of Ma'adim Vallis, Mars. Science, 296, 2209–12.CrossRefGoogle ScholarPubMed
Irwin, R. P., Howard, A. D. and Maxwell, T. A. (2002). Geomorphology of Ma'adim Vallis, Mars and associated paleolake basins. J. Geophys. Res., 109(E12), doi:10.1029/2004JE002287.Google Scholar
Ivanov, A. B. (2001). Mars/Moon cratering rate ratio estimates. In Chronology and Evolution of Mars, ed. Kallenbach, R.. Dordrecht: Kluwer, pp. 97–104.CrossRefGoogle Scholar
Ivanov, M. A. and Head, J. W. (2001). Chryse Planitia, Mars: topographic configuration, outflow channel continuity and sequence and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res., 106(E2), doi:10.1029/20000JE001257.CrossRefGoogle Scholar
Ivanov, M. A. and Head, J. W. (2003). Syrtis Major and Isidis basin contact: morphological and topographic characteristics of Syrtis Major lava flows and material of the Vastitas Borealis Formation. J. Geophys. Res., 108(E6), doi:10.1029/2002JE001944.CrossRefGoogle Scholar
Ivanov, A. B. and Muhleman, D. O. (2000). The role of sublimation for the formation of the northern ice cap: results from the Mars Orbiter Laser Altimeter. Icarus, 144, 436–48.CrossRef
Ivanov, M. A. and Head, J. W. (2006). Alba Patera, Mars: Topography, structure and evolution of a unique late Hesperian-Early Amazonian shield volcano. J. Geophys. Res., in press.CrossRefGoogle Scholar
Jakosky, B. M. and Carr, M. H. (1985). Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature, 315, 559–61.CrossRefGoogle Scholar
Jakosky, B. M. and Haberle, R. M. (1990). Year-to-year instability of the south polar cap. J. Geophys. Res., 95, 359–365.CrossRefGoogle Scholar
Jakosky, B. M. and Haberle R. M. (1992). The seasonal behavior of water on Mars. In Mars., ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University Arizona Press, pp. 969–1019.Google Scholar
Jakosky, B. M. and Jones, J. (1997). The history of martian volatiles. Rev. Geophys., 35, 1–16.CrossRefGoogle Scholar
Jakosky, B. M., Mellon, M. T., Varnes, E. S., Feldman, W. C., Boynton, W. V. and Haberle, R. M. (2005). Mars low-latitude neutron distribution: possible remnant near-surface water ice and a mechanism for its recent emplacement. Icarus, 175, 58–67.CrossRefGoogle Scholar
Jaumann, R. (2005). Martian valley networks and associated fluvial features as seen by the Mars Express High Resolution Camera (HRSC). LPSC XXXVI, Abstract 1815.
Johnston, C. G. and Vestal, J. R. (1989). Distribution of inorganic species in two cryptoendolithic communities. Geomicrobiol. J., 7, 137–53.CrossRefGoogle Scholar
Jons, H.-P. (1985). Late sedimentation and late sediments in the northern lowlands on Mars. LPSC XVI, pp. 414–15.Google Scholar
Jons, H.-P. (1986). Arcuate ground undulations, gelifluxion-like features and “front tori” in the northern lowlands of Mars – what do they indicate? LPSC XVII, pp. 404–5.Google Scholar
Kahn, R. A., Martin, T. Z., Zurek, R. W. and Lee, S. W. (1992). The martian dust cycle. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 1017–53.Google Scholar
Kargel, J. S. (1993) Geomorphic processes in the Argyre-Dorsa Argentea region of Mars. LPSC XXIV, pp. 753–4.Google Scholar
Kargel, J. S. (2004). Mars – A Warmer, Wetter Planet. New York: Springer Praxis.Google Scholar
Kargel, J. S. and Strom, R. G. (1991). Terrestrial glacial eskers: analogs for martian sinuous ridges., LPSC XXII, 683–4.Google Scholar
Kargel, J. S. and Strom, R. G. (1992). Ancient glaciation on Mars. Geology, 20, 3–7.2.3.CO;2>CrossRefGoogle Scholar
Kargel, J. S., Baker, V. R., Beget, J. E., et al. (7 authors) (1995). Evidence for ancient continental glaciation in the martian northern plains. J. Geophys. Res., 100, 5351–68.CrossRefGoogle Scholar
Kass, D. M. (2001). Loss of water to space from Mars: processes and implications. Eos Trans. AGU, 82, (Fall Meeting Suppl.), Abstract P12E-02.
Kasting, J. F. (1991). CO2 condensation and the climate of early Mars. Icarus, 94, 1–13.CrossRefGoogle ScholarPubMed
Keszthelyi, L., McEwen, A. S. and Thordarson, Th. (2000). Terrestrial analogs and thermal models for martian flood lavas. J. Geophys. Res., 105, 15,027–49.CrossRefGoogle Scholar
Kieffer, H. H., Chase, S. C., Martin, T. Z., Miner, E. D. and Palluconi, F. D. (1976). Martian north pole summer temperatures: dirty water ice. Science, 194, 1341–4.CrossRefGoogle ScholarPubMed
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R. and Jakosky, B. M.et al. (1977). Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res., 82, 4249–91.CrossRefGoogle Scholar
Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S. (1992). Mars, Tucson:University of Arizona Press.Google Scholar
Klein, H. P. (1979). The Viking mission and the search for life on Mars. Rev. Geophy., 17, 1655–1662.CrossRefGoogle Scholar
Kleine, T., Munker, C., Metzger, K. and Palme, H. (2002). Rapid accretion and early core formation in asteroids and the terrestrial planets from Hf-W chronometry. Nature, 418, 952–5.CrossRefGoogle ScholarPubMed
Kleine, T., Palme, , H., Mezger, K. and Halliday, A. N. (2005). Hf-W chronometry of lunar metals and the age and early differentiation of the Moon. Science, 310, 1671–4.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al. (2004). Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer. Science, 306, 1741–5.CrossRefGoogle ScholarPubMed
Kochel, R. C., Howard, A. D. and McLane, C. (1985). Channel networks developed by groundwater sapping in fine-grained sediments: analogs to some martian valleys. In Models in Geomorphology, ed. Woldenberg, M. J.. Boston: Allen and Unwin, pp. 313–41.Google Scholar
Kolb, E. J. and Tanaka, K. L. (2001). Geologic history of the polar regions of Mars based on Mars Global Surveyor data. II. Amazonian period. Icarus, 154, 22–39.CrossRefGoogle Scholar
Komar, P. D. (1979). Comparisons of the hydraulics of water flows in martian outflow channels with flows of similar scale on Earth. Icarus, 42, 317–29.CrossRefGoogle Scholar
Komatsu, G., Geissler, P. E., Strom, R. G. and Singer, R. B. (1993). Stratigraphy and erosional landforms of layered deposits in Valles Marineris. J. Geophys. Res., 98, 11,105–21.CrossRefGoogle Scholar
Koutnik, M., Byrne, S. and Murray, B. (2002). South polar layered deposits of Mars: the cratering record. J. Geophys. Res., 107(E11), doi:10.1029/2001JE001805.CrossRefGoogle Scholar
Krasnapolsky, V. A., Mailliard, J. P. and Owen, T. (2004). Detection of methane in the martian atmosphere: evidence for life?Icarus, 172, 537–47.CrossRefGoogle Scholar
Kreslavsky, M. A. and Head, J. W. (2002). Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis Formation as a sublimation residue from frozen, ponded bodies of water. J. Geophys. Res., 107(E12), doi:10.1029/2001JE001831.CrossRefGoogle Scholar
Kuhn, W. R. and Atreya, S. W. (1979). Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth. Icarus, 37, 207–13.CrossRefGoogle Scholar
Kuzmin, R. O., Greeley, R., Landheim, R., Cabrol, N. A. and Farmer, J. D. (2000). Geologic map of the MTM-15,182 and MTM-15,187 quadrangles, Gusev Crater-Ma'adim Vallis region, Mars. U.S. Geol. Survey, Misc. Inv. Map I-2666.
Lachenbruch, A. H. (1962). Mechanics of thermal contraction cracks and ice wedge polygons in permafrost. Geol. Soc. Am. Sp. Paper 70.CrossRef
Laity, J. E. and Malin, M. C. (1985). Sapping processes and the development of theater-headed valley networks in the Colorado Plateau. Geol. Soc. Am. Bull., 96, 203–17.2.0.CO;2>CrossRefGoogle Scholar
Lancaster, N. and Greeley, R. (1990). Sediment volume in the north polar sand seas of Mars. J. Geophys. Res., 95, 10,921–7.CrossRefGoogle Scholar
Lane, M. D. and Christensen, P. R. (2000). Convection in a catastrophic flood deposit as the mechanism for the giant polygons on Mars. J. Geophys. Res., 105, 17,617–27.CrossRefGoogle Scholar
Lane, M. D., Christensen, P. R. and Hartmann, W. K. (2003). Utilization of the THEMIS visible and infrared imaging for crater population studies of the Meridiani Planum landing site and southwest Arabi Terra. Geophys. Res. Lett., 29, doi10.1029/2002GLO16515.Google Scholar
Langevin, Y., Poulet, F., Bibring, J. and Gondet, B. (2005). Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science, 307, 1584–6.CrossRefGoogle ScholarPubMed
Laskar, J. and Robutel, P. (1993). The chaotic obliquity of the planets. Nature, 362, 608–12.CrossRefGoogle Scholar
Laskar, J., Levrard, B. and Mustard, J. F. (2002). Orbital forcing of the martian polar layered deposits. Nature, 419, 375–7.CrossRefGoogle ScholarPubMed
Laskar, J., Correia, A., Gastineau, F., Joutel, F., Levrard, B. and Robutel, P., et al. (2004). Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus, 170, 343–64.CrossRefGoogle Scholar
Laul, J. C., Smith, M. R., Wänke, H., et al. (1986). Chemical systematics of the Shergotty meteorite and the composition of its parent body (Mars). Geochim. Cosmochim. Acta, 28, 3035–8.Google Scholar
Lazcano, A. and Miller, S. L. (1996). The origin and early evolution of life: prebiotic chemistry, the pre-RNA world and time. Cell, 85, 793–8.CrossRefGoogle Scholar
Lee, P., Cockell, C. S., Marinova, M. M., McKay, C. P. and Rice, J. W. (2001). Snow and ice melt flow features on Devon Island, Nunavut, arctic Canada as possible analogs for recent slope flow features on Mars. LPSC XXXII, Abstract 1809.
Leighton, R. B. and Murray, B. C. (1966). Behavior of carbon dioxide and other volatiles on Mars. Science, 153, 136–44.CrossRefGoogle ScholarPubMed
Lemoine, F. G., Smith, D. E., Rowlands, D. D., et al. (2001). An improved solution of the gravity field of Mars (GMM-2B, from Mars Global Surveyor. J. Geophys. Res., 106(E10), 23,359–76.CrossRefGoogle Scholar
Lepland, A., Zuilen, M. A., Arrhenius, G., Whitehouse, M. J. and Fedo, C. M. (2005). Questioning the evidence for Earth's earliest life – Akilia revisited. Geology, 33, 77–9.CrossRefGoogle Scholar
Leverington, D. W. (2004). Volcanic rilles, streamlined islands, and the origin of outflow channels on Mars. J. Geophys. Res., 109(E11), doi:10.1020/2004JE002311.CrossRefGoogle Scholar
Leverington, D. W. and Maxwell, T. A. (2004). An igneous origin for features of a candidate crater-lake system in western Memnonia, Mars. J. Geophys. Res., 109(E6), doi:10.1029/2004JE002237.CrossRefGoogle Scholar
Levin, G. V. (1988). A reappraisal of life on Mars. Adv. In Aeronautice, 71, 187–297.Google Scholar
Lipschutz, M. E. and Schultz, L. (1990). Meteorites. In Encyclopedia of the Solar System, ed. Weissman, P. R.et al. San Diego: Academic Press, pp. 629–71.Google Scholar
Lopes, R., Guest, J. E. and Wilson, L. (1980). Origin of the Olympus Mons aureole and the perimeter scarp. Moon and Planets, 22, 221–34.CrossRefGoogle Scholar
Lopes, R., Guest, J. E., Hiller, K. and Neukum, G. (1982). Further evidence for a mass movement origin of the Olympus Mons aureole. J. Geophys. Res., 87, 9917–28.CrossRefGoogle Scholar
Lowe, D. R. (1994). Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22, 387–90.2.3.CO;2>CrossRefGoogle ScholarPubMed
Lucchitta, B. K. (1979). Landslides in Valles Marineris, Mars. J. Geophys. Res., 84, 8097–113.CrossRefGoogle Scholar
Lucchitta, B. K. (1981). Mars and Earth: comparison of cold climate features. Icarus, 45, 264–303.CrossRefGoogle Scholar
Lucchitta, B. K. (1982). Ice sculpture in the martian outflow channels. J. Geophys. Res., 87, 9951–73.CrossRefGoogle Scholar
Lucchitta, B. K. (1984). Ice and debris in the fretted terrain, Mars. J. Geophys. Res., 89, B409–B418.CrossRefGoogle Scholar
Lucchitta, B. K. (1987). Valles Marineris, Mars: wet debris flows and ground ice. Icarus, 72, 411–29.CrossRefGoogle Scholar
Lucchitta, B. K. (1989). Young volcanic deposits in the Valles Marineris, Mars. Icarus, 86, 476–509.CrossRefGoogle Scholar
Lucchitta, B. K. (1993). Ice in the northern plains: relic of a frozen ocean? LPI Tech. Rept. 93–04, 9–10.Google Scholar
Lucchitta, B. K. (2001). Antarctic ice streams and outflow channels on Mars. Geophys. Res. Lett., 28, 403–6.CrossRefGoogle Scholar
Lucchitta, B. K., Ferguson, H. M. and Summers, C. (1986). Sedimentary deposits in the northern lowland plains, Mars Proc. 17th Lunar Planet. Sci. Conf. J. Geophys. Res., 91, E166–174.CrossRefGoogle Scholar
Lucchitta, B. K., McEwen, A. S., Clow, G. D., et al. (7 authors) (1992). The canyon system on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. I.. TUCSON: University of Arizona Press, pp. 453–92.Google Scholar
Lucchitta, B. K., Isbell, N. K. and Howington-Kraus, A. (1994). Topography of Valles Marineris: implications for erosional and structural history. J. Geophys. Res., 99, 3783–98.CrossRefGoogle Scholar
Luhmann, J. G. and Kozyra, I. U. (1991). Dayside pick-up oxygen ion precipitation at Venus and Mars: spatial distributions, energy deposition and consequences. J. Geophys. Res., 96, 5457–67.CrossRefGoogle Scholar
Magalhaes, J. A. and Gierasch, P. (1982). A model of martian slope winds: implications for eolian transport. J. Geophys. Res., 87, 9975–84.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2000a). Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330–5.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2000b). Sedimentary rocks of early Mars. Science, 290, 1927–37.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2000c). Observations of aprons in martian frettted terrain. LPSC XXXI, Abstract 1053.
Malin, M. C. and Edgett, K. S. (2001). Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res., 106, 23,429–570.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2002). Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett., 29(24), 2179 doi:10.1029/2002GL016515.Google Scholar
Malin, M. C. and Edgett, K. S. (2003). Evidence for persistent flow and aqueous sedimentation on early Mars. Science, 302, 1931–4.CrossRefGoogle ScholarPubMed
Malin, M. C., Caplinger, M. A. and Davis, S. D. (2001). Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. Science, 294, 2146–8.CrossRefGoogle ScholarPubMed
Manga, N. (2004). Martian floods at Cerberus Fossae can be produced by groundwater discharge. Geophys. Res. Lett., 31, L02702 doi:10.1029/2003GL018958.CrossRefGoogle Scholar
Mandl, G. (1988). Mechanics of Tectonic Faulting. New York: Elsevier.Google Scholar
Mangold, N. (2003). Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale. Evidence of ice sublimation initiated by fractures. J. Geophys. Res., 108(E4), doi:10.1029/2002JE001885.CrossRefGoogle Scholar
Mangold, N., Allemand, P., Thomas, P., Duval, P. and Geraud, Y. (2002 ). Experimental and theoretical deformation of ice-rock mixtures: implications on rheology and ice content of Martian permafrost. Planet. Space Sci., 50, 385–401.CrossRefGoogle Scholar
Mangold, N., Costard, F. and Forget, F. (2003). Debris flows over sand dunes on Mars: evidence for liquid water. J. Geophys. Res., 108(E4), doi:10.1029/2003JE001958.CrossRefGoogle Scholar
Mangold, N., Quantin, C., Anson, V., Delacourt, C. and Allemand, P. (2004). Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area. Science, 305, 78–81.CrossRefGoogle ScholarPubMed
Martin, L. J., James, P. B., Dollifus, A., Iwasaki, K. 8 Beish, J. D. (1992). Telescopic observations. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 34–70.Google Scholar
Masson, P. (1985). Origin and evolution of the Valles Marineris region of Mars. Adv. Space Sci., 5, 83–92.CrossRefGoogle Scholar
Mastin, L. G. and Pollard, D. D. (1988). Surface deformation and shallow dike intrusion processes at Inyo Crater, Long Valley, California. J. Geophys. Res., 93, 13,221–35.CrossRefGoogle Scholar
Masursky, H. (1973). An overview of geological results from Mariner 9. J. Geophys. Res., 78, 4009–30.CrossRefGoogle Scholar
McCauley, J. F. (1978). Geologic map of the Coprates quadrangle of Mars. U.S. Geol. Surv. Misc. Inv. Map I-897.
McCauley, J. F., Carr, M. H., Cutts, J. A., et al. (8 authors) (1972). Preliminary Mariner 9 report on the geology of Mars. Icarus, 17, 289–327.CrossRefGoogle Scholar
McEwen, A. S. (1989). Mobility of large rock avalanches: evidence from Valles Marineris, Mars. Geology, 17, 1111–14.2.3.CO;2>CrossRefGoogle Scholar
McEwen, A. S., Malin, M. C., Carr, M. H. and Hartmann, W. K. (1999). Voluminous volcanism on early Mars revealed in Valles Marineris. Nature, 397, 584–6.CrossRefGoogle Scholar
McEwen, A. S., Preblich, B. S., Turtle, E. P., et al. (9 authors) (2005). The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus, 176, 331–50.CrossRefGoogle Scholar
McGill, G. E. (1986). The giant polygons of Utopia, northern martian plains. Geophys. Res. Lett., 13, 705–8.CrossRefGoogle Scholar
McGill, G. E. (1989). Buried topography of Utopia, Mars: persistence of a giant impact depression. J. Geophys. Res., 94, 2853–759.CrossRefGoogle Scholar
McGill, G. E. (2000). Crustal history of north Arabia Terra, Mars. J. Geophys. Res., 105, 6945–59.CrossRefGoogle Scholar
McGill, G. E. (2001). The Utopia Basin revisited: regional slope and shorelines from MOLA profiles. Geophys. Res. Lett., 28, 411–14.CrossRefGoogle Scholar
McGill, G. E. and Squyres, S. W. (1991). Origin of martian crustal dichotomy: evaluating hypotheses. Icarus, 93, 386–93.CrossRefGoogle Scholar
McGovern, P. J., Solomon, S. C., Head, J. W., Smith, D. E., Zuber, M. T. and Neumann, G. A. (2001). Extension and uplift at Alba Patera, Mars: insights from MOLA observations and loading models. J. Geophys. Res., 106(E4), 23,769–809.CrossRefGoogle Scholar
McGovern, P. J., Solomon, S. C., Smith, D. E., et al. (10 authors) (2002). Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution. J. Geophys. Res., 107(E12), doi:10.1029/2002JE001854.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., Vali, H., Romanek, C. S. and Clemett, X. D., et al. (1996). Search for past life on Mars. Possible relic biogenic activity in martian meteorite ALH84001. Science, 273, 924–30.CrossRefGoogle ScholarPubMed
McKee, E. D. (1979). A study of global sand seas. U.S. Geol. Surv. Prof. Paper 1052.
McKenzie, D. and Nimmo, F. (1999). The generation of martian floods by the melting of ground ice above dikes. Nature, 397, 231–3.CrossRefGoogle Scholar
McLennan, S. M., Bell, J. F., Calvin, W. M., et al. (2005). Evidence for groundwater involvement in the provenence and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum. Earth Planet. Sci. Lett., 240, 95–121.CrossRefGoogle Scholar
McSween, H. Y. (1994). What have we learned about Mars from SNC meteorites. Meteoritics, 29, 757–79.CrossRefGoogle Scholar
McSween, H. Y. (1999). SNC meteorites: clues to martian petrologic evolution. Rev. Geophys., 23, 391–416.CrossRefGoogle Scholar
McSween, H. Y. (2001). The rocks of Mars, from far and near. Metoritics and Planet. Sci., 37, 7–25.CrossRefGoogle Scholar
McSween, H. Y. and Treiman, A. H. (1998). Martian meteorites. In Planetary Materials, ed. Papike, J. J.. America Washington, D. C.: Mineralogical Society.Google Scholar
McSween, H. Y., Murchie, S. L., Crisp, J. A., et al. (20 authors) (1999). Chemical, multispectral and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. J. Geophys. Res., 104(E4), 8679–715.CrossRefGoogle Scholar
McSween, H. Y., et al. (2001). Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature, 409, 487–90.CrossRefGoogle ScholarPubMed
McSween, H. Y., Grove, T. L. and Wyatt, M. B. (2003). Constraints on the composition and petrogenesis of the martian crust. J. Geophys. Res., 108(E12), doi:10.1029/2003JE002175.CrossRefGoogle Scholar
McSween, H. Y., Arvidson, R. E., Bell, J. F., et al. (34 authors) (2004). Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science, 305, 842–5.CrossRefGoogle ScholarPubMed
Mège, D. and Masson, P. (1996). Amounts of crustal stretching in Valles Marineris, Mars. Planet. Space Sci., 44, 749–82.CrossRefGoogle Scholar
Mellon, M. T. and Jakosky, B. M. (1995). The distribution and behavior of martian ground ice during past and present epochs. J. Geophys. Res., 100, 11,781–99.CrossRefGoogle Scholar
Mellon, M. T. and Phillips, R. J. (2001). Recent gullies on Mars and the source of liquid water. J. Geophys. Res., 106(E10), 23,165–79.CrossRefGoogle Scholar
Melosh, H. J. (1983). Acoustic fluidization. Am. Sci., 71, 158–65.Google ScholarPubMed
Melosh, H. J. (1984). Impact ejection, spallation and the origin of meteorites. Icarus, 59, 234–60.CrossRefGoogle Scholar
Melosh, H. J. (1989). Impact Cratering. Oxford: OUP.Google Scholar
Melosh, H. J. and Vickery, A. M. (1989). Impact erosion of the primordial martian atmosphere. Nature, 338, 487–9.CrossRefGoogle Scholar
Metzger, S. M. (1991). A survey of esker morphometries, the connection to New York state glaciation and criteria for subglacial melt-water channels. LPSC XXII, pp. 891–2.Google Scholar
Michaux, C. M. and Newburn, R. L. (1972). Mars Scientific Model. Jet Propulsion Lab., Doc. 606–1.
Milam, K. A., Stockstill, K. R., Moersch, J. E., et al. (9 authors) (2003). THEMIS characterization of the MER Gusev crater landing site. J. Geophys. Res., 108(E12), doi:10.1029/2002JE002023.CrossRefGoogle Scholar
Milkovich, S. M. and Head, J. W. (2005). North polar cap of Mars: polar layered deposit characterization and identification of a fundamental climate signal. J. Geophys. Res., 110(E5), doi:10.1029?2004JE002349.CrossRefGoogle Scholar
Milkovich, S. M., Head, J. W. and Pratt, S. (2002). Meltback of Hesperian-aged ice-rich deposits near the south pole. Evidence for drainage channels and lakes. J. Geophys. Res., 107(E6), doi:10.1029/2001JE0018–02.CrossRefGoogle Scholar
Milton, D. J. (1973). Water and processes of degradation in the Martian landscape. J. Geophys. Res., 78, 4037–48.CrossRefGoogle Scholar
Milton, D. J., Barlow, B. C., Breett, R., et al. (10 authors) (1972). Gosses Bluff impact structure, Australia. Science, 175, 1119–207.CrossRefGoogle ScholarPubMed
Mischna, M. A., Richardson, M. I., Wilson, R. J. and McCleese, D. J. (2003). On the orbital forcing of martian water and CO2 cycles: a general circulation model study with simplified volatile schemes. J. Geophys. Res., 108(E6), doi:10.1029/2003JE002051.CrossRefGoogle Scholar
Mitrofanov, L., Anfimov, D., Kozyrev, M., et al. (2002). Maps of subsurface hydrogen from the High Energy Neutron Detector, Mars Odyssey. Science, 297, 78–81.CrossRefGoogle ScholarPubMed
Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P. and Friend, C. R. (1996). Evidence of life on Earth before 3,800 million years ago. Nature, 384, 55–9.CrossRefGoogle ScholarPubMed
Mojzsis, S. J. and Mark, T. (2000). Vestiges of a beginning: clues to the emergent biosphere recorded in the oldest known sedimentary rocks. GSA Today, 10(4), 1–6.Google Scholar
Montesi, L. and Zuber, M. T. (2003). Clues to the lithospheric structure of Mars from wrinkle ridge set and localization instability. J. Geophys. Res., 108(E6), doi: 10.1029/2002 JE001974.CrossRefGoogle Scholar
Moore, J. M. and Wilhelms, D. E. (2001). Hellas as a possible site of ancient ice-covered lakes on Mars. Icarus, 154, 258–76.CrossRefGoogle Scholar
Moore, J. M., Clow, G. D., Davis, W. L., et al. (8 authors) (1995). The circum-Chryse region as a possible example of a hydrologic cycle on Mars: geologic observations and theoretical evaluation. J. Geophys. Res., 100(E3), 5433–47.CrossRefGoogle ScholarPubMed
Morris, R. V., Klingelhofer, G., Bernhardt, B., et al. (17 authors) (2004). Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit rover. Science, 305, 833–6.CrossRefGoogle ScholarPubMed
Mouginis-Mark, P. J. (1990). Recent water release in the Tharsis region of Mars. Icarus, 84, 363–73.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Wilson, L. and Head, J. W. (1982). Explosive volcanism on Hecates Tholus, Mars: investigation of eruption conditions. J. Geophys. Res., 87, 411–14.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Wilson, L. and Zimbelman, J. R. (1988). Polygenetic eruptions on Alba Patera, Mars. Bull. Volc., 50, 361–79.CrossRefGoogle Scholar
Murray, J. B., Muller, J-P, Neukum, G., et al. (12 authors) (2005). Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to the equator. Nature, 434, 352–6.CrossRefGoogle ScholarPubMed
Musselwhite, D. S., Swindle, T. D. and Lunine, J. I. (2001). Liquid CO2 breakout and formation of recent small gullies on Mars. Geophys. Res. Lett., 28, 1283–5.CrossRefGoogle Scholar
Mustard, J. F., Cooper, C. D. and Rifkin, M. K. (2001). Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature, 412, 4211–414.CrossRefGoogle ScholarPubMed
Mustard, J. F., Poulet, F., Gendrin, A., et al. (2005). Olivine and pyroxene diversity in the crust of Mars. Science, 307, 1594–7.CrossRefGoogle ScholarPubMed
Mutch, T. A., Arvidson, R. A., Binder, A. B., Guiness, E. A. and Morris, E. C. (1977). The geology of the Viking lander 2 site. J. Geophys. Res., 82, 4452–67.CrossRefGoogle Scholar
National Research Council (1990). The Search for Life's Origins. Washington, D.C.: National Academy Press.
National Research Council (1992). Biological Contamination of Mars: Issues and Recommendations. Washington, D.C.: National Academy Press.
National Research Council (1999). Size Limits of Very Small Microorganisms. Washington, D.C.: National Academy Press.
Nedell, S. S., Squyres, S. W. and Anderson, D. W. (1987). Origin and evolution of the layered deposits in the Valles Marineris, Mars. Icarus, 70, 409–41.CrossRefGoogle Scholar
Neukum, G. (1983). Meteoritenbombardement und Datierung planetarer Oberflächen. Habilitation Dissertation for Faculty Membership, Ludwig-Maximilians University, Munich, Germany.
Neukum, G. and Hiller, K. (1981). Martian ages. J. Geophys. Res., 86(B4), 3097–121.CrossRefGoogle Scholar
Neukum, G. and Ivanov, B. A. (1994). Crater size distributions and impact probabilities. In Hazards due to Comets and Asteroids, ed. Gehrels, T.. Tucson: University of Arizona Press, pp. 359–416.Google Scholar
Neukum, G., Konig, B. and Arkani-Hamad, J. (1975). A study of lunar impact crater size distributions. The Moon, 12, 201–29.CrossRefGoogle Scholar
Neukum, G., Ivanov, B. A. and Hartmann, W. K. (2001). Cratering record in the inner solar system in relation to the lunar reference system. In Chronology and Evolution of Mars, ed. Kallenbach, R.et al. Dordrecht: Kluwer, pp. 55–86.CrossRefGoogle Scholar
Neukum, G., Jaumannn, R., Hoffmann, H., et al. (2004). Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature, 432, 971–9.CrossRefGoogle ScholarPubMed
Neumann, G. A., Zuber, M. T., Wieczorek, M. A., McGovern, P. J., Lemoine, F. G. and Smith, D. E. (2004). Crustal structure of Mars from gravity and topography. J. Geophys. Res., 109(E8), doi:10.1029/2004JE002262.CrossRefGoogle Scholar
Newman, M. J. and Rood, R. T. (1977). Implications of solar evolution for Earth's early atmosphere. Science, 198, 1035–7.CrossRefGoogle ScholarPubMed
Newsome, H. E. (1980). Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus, 44, 207–16.CrossRefGoogle Scholar
Newsome, H. E., Britell, G. E., Hibbets, C. A., Crossey, L. J. and Kudo, A. M. (1996). Impact cratering and the formation of crater lakes on Mars. J. Geophys. Res., 101, 14,951–5.CrossRefGoogle Scholar
Newsome, H. E., Barber, C. A., Hare, T. M., Schelbe, R. T., Sutherland, V. A. and Feldman, W. C. (2003). Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: implications for formation of hematite deposits on Mars. J. Geophys. Res., 108(E12), doi:10.1029/2002JE01993.Google Scholar
Nimmo, F. (2000). Dike intrusion as a possible cause of linear martian magnetic anomalies. Geology, 28, 391–4.2.0.CO;2>CrossRefGoogle Scholar
Nimmo, F. and Tanaka, K. (2005). Early crustal evolution of Mars. Ann. Rev. Earth Planet. Sci., 33, 533–6.CrossRefGoogle Scholar
Nisbet, E. G. and Sleep, N. H. (2001). The habitat and nature of early life. Nature, 409, 1083–91.CrossRefGoogle ScholarPubMed
Nummedal, D. and Prior, D. B. (1981). Generation of martian chaos and channels by debris flows. Icarus, 45, 77–86.CrossRefGoogle Scholar
Nyquist, L. E., Bogard, D. D., Shih, C.-Y., Greshake, A., Stoffler, D. and Eugster, O. (2001). Ages and geologic histories of martian meteorites. In Chronology and Evolution of Mars, ed. Kallenbach, R.et al. Dordrecht: Kluwer, pp. 105–64.CrossRefGoogle Scholar
Oberbeck, V. R. (1975). The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys. Space Phys., 13, 337–62.CrossRefGoogle Scholar
Pace, N. R. (1991). Origin of life – facing up to the physical setting. Cell, 65, 531–3.CrossRefGoogle ScholarPubMed
Paige, D. A. (1992). The thermal stability of near-surface ground ice on Mars. Nature, 356, 43–5.CrossRefGoogle Scholar
Palluconi, F. D. and Kieffer, H. H. (1981). Thermal inertia mapping of Mars from 60°S to 60°N. Icarus, 45, 415–26.CrossRefGoogle Scholar
Parker, T. J., Saunders, R. S. and Schneeberger, D. M. (1989). Transitional morphology in the west Deuteronilus Mensae region of Mars: implications for modification of the lowland/upland boundary. Icarus, 82, 111–45.CrossRefGoogle Scholar
Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. and Schneeberger, D. M. (1993). Coastal geomorphology of the martian northern plains. J. Geophys. Res., 98, 11,061–78.CrossRefGoogle Scholar
Parker, T. J., Clifford, S. M. and Banerdt, W. B. (2000). Argyre Planitia and the Mars global hydrologic cycle. LPSC XXXI, Abstract 2033.
Pathare, A. V. and Paige, D. A. (2005). The effects of martian orbital variations upon the sublimation and relaxation of north polar troughs and scarps. Icarus, 174, 419–43.CrossRefGoogle Scholar
Pathare, A. V., Paige, D. A. and Tutttle, E. (2005). Viscous relaxation of craters within the martian south polar layered deposits. Icarus, 174, 396–418.CrossRefGoogle Scholar
Pechman, J. C. (1980). The origin of polygonal troughs on the northern plains of Mars. Icarus, 42, 185–210.CrossRefGoogle Scholar
Pepin, R. O. (1991). On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus, 92, 2–79.CrossRefGoogle Scholar
Pepin, R. O. (1994). Evolution of the martian atmosphere. Icarus, 111, 289–304.CrossRefGoogle Scholar
Phillips, R. J., Saunders, R. S. and Conel, J. E. (1973). Mars: crustal structure inferred from gravity anomalies. J. Geophys. Res., 78, 4815–20.CrossRefGoogle Scholar
Phillips, R. J., Zuber, M. T., Solomon, S. C., et al. (2001). Ancient geodynamics and global-scale hydrology on Mars. Science, 291, 2587–91.CrossRefGoogle ScholarPubMed
Picardi, G., Plaut, J. J., Biccari, D., et al. (2005). Radar soundings of the subsurface of Mars. Science, 310. 1925–8.CrossRefGoogle ScholarPubMed
Pieri, D. C. (1980). Martian valleys: morphology, distribution, age and origin. Science, 210, 895–7.CrossRefGoogle ScholarPubMed
Pike, R. J. (1980a). Control of crater morphology by gravity and target type: Mars, Earth, Moon. LPSC XI, pp. 2159–89.Google Scholar
Pike, R. J. (1980b). Formation of complex impact craters: evidence from Mars and other planets. Icarus, 43, 1–19.CrossRefGoogle Scholar
Plescia, J. B. (2000). Geology of the Uranius group volcanic constructs: Uranius Patera, Ceraunius Tholus and Uranius Tholus. Icarus, 143, 376–96.CrossRefGoogle Scholar
Plescia, J. B. (2003a). Cerberus Fossae, Elysium, Mars: a source for lava and water. Icarus, 164, 79–95.CrossRefGoogle Scholar
Plescia, J. B. (2003b). Tharsis Tholus: an unusual martian volcano. Icarus, 165, 223–41.CrossRefGoogle Scholar
Plescia, J. B. (2004). Morphometric properties of martian volcanoes. J. Geophys. Res., 109, E03003, doi:10.1029.202JE002031.CrossRefGoogle Scholar
Plescia, J. B. and Golombek, M. P. (1986). Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol. Soc. Am. Bull., 97, 1289–99.2.0.CO;2>CrossRefGoogle Scholar
Plescia, J. B. and Saunders, R. S. (1979). The chronology of martian volcanoes, LPSC XIX, 2841–59.Google Scholar
Plescia, J. B. and Saunders, R. S. (1982). Tectonic history of the Tharsis region of Mars. J. Geophys. Res., 87, 9775–91.CrossRefGoogle Scholar
Pollack, J. B., Colkburn, D. S., Flaser, M., Kahn, R., Carlston, C. E., Pidek, D. (1979). Properties and effects of dust particles suspended in the martian atmosphere. J. Geophys. Res., 84, 2929–45.CrossRefGoogle Scholar
Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K. (1987). The case for a warm, wet climate on early Mars. Icarus, 71, 203–24.CrossRefGoogle ScholarPubMed
Pollack, J. B., Roush, T., Witteborn, F., et al. (1990). Thermal emission spectra of Mars (5.4–10.5 μm): Evidence for sulfates, carbonates and hydrates. J. Geophys. Res., 95, 14,595–627.CrossRefGoogle Scholar
Postawko, S. E. and Kuhn, W. R. (1986). Effect of greenhouse gases on (CO2, H2O, SO2) on martian paleoclimates. J. Geophys. Res., 91, D431–8.CrossRefGoogle Scholar
Prettyman, T. H., Feldman, W. C., Mellon, M. T., et al. (13 authors) (2004). Composition and structure of the martian surface at high southern latitudes from neutron spectroscopy. J. Geophys. Res., 109(E5), doi:10.1029/2003JE002139.CrossRefGoogle Scholar
Rabinowitz, D. L., Bowell, E., Shoemaker, E. M. and Muinonem, K. (1994). The population of Earth-crossing asteroids. In Hazards due to Comets and Asteroids, ed. Gehrels, T.. Tucson: University of Arizona Press, pp. 285–312.Google Scholar
Reese, C. C., Solomatov, V. S. and Baumgardner, J. R. (2002). Survival of impact-induced thermal anomalies in the martian mantle. J. Geophys. Res., 107(E10), doi:10.1029/2000JE001474.CrossRefGoogle Scholar
Reider, R., Gellert, R., Anderson, R. C., et al. (2004). Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science, 306, 1746–9.CrossRefGoogle Scholar
Reimers, C. E. and Komar, P. D. (1979). Evidence for explosive volcanic density currents on certain martian volcanoes. Icarus, 39, 88–110.CrossRefGoogle Scholar
Rice, J. W., Christensen, P. R., Ruff, S. W. and Harris, J. C. (2003). Martian fluvial landforms: a THEMIS perspective after one year at Mars. LPSC XXXIV, Abstract 2091.
Ringwood, A. E. (1979). Origin of the Earth and the Moon. New York: Springer Verlag.CrossRefGoogle Scholar
Robers, M. J. (2005). Jökulhlaups: A reassessment of floodwater flow through glaciers. Rev. Geophys., 43, RG1002.Google Scholar
Robinson, M. S. and Tanaka, K. L. (1990). Magnitude of a catastrophic flood event at Kasei Vallis, Mars. Geology, 18, 902–5.2.3.CO;2>CrossRefGoogle Scholar
Roddy, D. J. (1977). Large scale impact and explosion craters: comparison of morphological and structural analogs. In Impact and Explosion Cratering, ed. Roddy, D. J.. New York: Pergamon, pp. 185–246.Google Scholar
Roddy, D. J. (1979). Structural deformation at the Flynn Creek impact structure, Tennessee: a preliminary report on deep drilling. LPSC XI, pp. 2519–34.Google Scholar
Rossbacher, L. A. and Judson, S. (1981). Ground ice on Mars: inventory, distribution and resulting landforms. Icarus, 45, 35–59.CrossRefGoogle Scholar
Rothschild, L. J. and Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409, 1092–101.CrossRefGoogle ScholarPubMed
Rotto, S. and Tanaka, K. L. (1995). Geologic/geomorphic map of the Chryse Planitia region of Mars. U.S. Geol. Survey Misc. Inv. Map I-2441.
Russell, P. S. and Head, J. W. (2003). Elysium-Utopia flows as mega-lahars: a model of dike intrusion, cryosphere cracking and water-sediment release. J. Geophys. Res., 108(E6), doi:10.1029/2002JE001995.CrossRefGoogle Scholar
Ryan, M. P. (1987). Elasticity and contractancy of Hawaiian olivine tholeiite and its role in the stability and structural evolution of subcaldera magma reservoirs and rift systems. In Volcanism in Hawaii, ed. Decker, R. W.et al. U.S. Geolo. Survey Prof. Paper 1350, pp. 1395–447.Google Scholar
Ryder, G. (2002). Mass flux in the ancient Earth-Moon system and benign implications for origin of life on Earth. J. Geophys. Res., 107(E4), doi:10.1029/2001JE001583.CrossRefGoogle Scholar
Sagan, C. (1977). Reducing greenhouses and the temperature history of Earth and Mars. Nature, 269, 224–6.CrossRefGoogle Scholar
Sagan, C. and Chyba, C. (1997). The early faint sun paradox: organic shielding of the ultraviolet-labile greenhouse gases. Science, 276, 1217–21.CrossRefGoogle ScholarPubMed
Schaeffer, M. W. (1993). Aqueous geochemistry on early Mars. Geochim. Cosmochim. Acta, 57, 4619–25.CrossRefGoogle Scholar
Schidlowski, M., Hayes, J. M. and Kaplan, I. R. (1983). Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen. In Earth's Earliest Biosphere, ed. Schopf, J. W.. Princeton: Princeton University Press, pp. 149–86.Google Scholar
Schmidt, R. M. and Housen, K. R. (1987). Some recent advances in the scaling of impact and explosion cratering. Int. J. Impact Eng., 5, 543–60.CrossRefGoogle Scholar
Schopf, J. W. (1999). Cradle of Life: The Discovery of Earth's Earliest Fossils. Princeton: Princeton University Press.Google Scholar
Schopf, J. W. and Walter, M. R. (1983). Archean microfossils: evidence of ancient microbes. In Earth's Earliest Biosphere, ed. Schopf, J. W.. Princeton: Princeton University Press, pp. 214–39.Google Scholar
Schopf, J. W., Kudtrysvtsev, A. B., Agresti, D. G., et al. (2002). Laser-Raman imagery of Earth's earliest fossils. Nature, 416, 73–6.CrossRefGoogle ScholarPubMed
Schorghofer, N. and Aharonson, O. (2004). Stability and exchange of subsurface ice on Mars. LPSC XXXV, Abstract 1463.
Schubert, G., Solomon, S. C., Turcotte, D. L., Drake, M. J. and Sleep, N. H. (1992). Origin and thermal evolution of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 147–83.Google Scholar
Schultz, P. H. (1992). Atmospheric effects on ejecta emplacement and crater formation from Magellan. J. Geophys. Res., 97, 16,183–248.Google Scholar
Schultz, P. H. and Gault, D. E. (1979). Atmospheric effects on martian ejecta emplacement. J. Geophys. Res., 84, 7669–87.CrossRefGoogle Scholar
Schultz, P. H. and Gault, D. E. (1984). On the formation of contiguous ramparts around martian impact craters. LPSC XV, pp. 732–3.Google Scholar
Schultz, P. H. and Lutz, A. B. (1988). Polar wandering on Mars. Icarus, 73, 91–141.CrossRefGoogle Scholar
Schultz, P. H., Schultz, R. A. and Rogers, J. (1982). The structure and evolution of ancient impact basins on Mars. J. Geophys. Res., 87, 9803–20.CrossRefGoogle Scholar
Schultz, R. A. (1991). Structural development of Coprates Chasma and western Ophir Planum, central Marineris rift, Mars. J. Geophys. Res., 96, 22,777–92.CrossRefGoogle Scholar
Schultz, R. A. and Frey, H. V. (1990). A new survey of multiring impact basins on Mars. J. Geophys. Res., 95, 14,175–289.CrossRefGoogle Scholar
Schultz, R. A. and Lin, J. (2001). Three-dimensional normal faulting models of Valles Marineris, Mars, and geodynamical implications. J. Geophys. Res., 106, 16,549–66.CrossRefGoogle Scholar
Sclater, J. G., Jaupart, C. and Galson, D. (1980). The heat flow through oceanic and continental crust and the heat loss of the earth. Rev. Geophys. Space Phys., 18, 269–311.CrossRefGoogle Scholar
Scott, D. H. and Dohm, J. M. (1992). Mars highland channels: an age reassessment. LPSC XXIII, pp. 1251–2.Google Scholar
Scott, D. H. and Tanaka, K. L. (1986). Geologic map of the western equatorial region of Mars. U.S. Geol. Survey Misc. Map I-1802-A.
Scott, E. D. and Wilson, L. (2002). Plinian eruptions and passive collapse events as mechanisms of formation for martian pit chain craters. J. Geophys. Res., 107(E4), 10.1029/2000JE001432.CrossRefGoogle Scholar
Segura, T. L., Toon, O. B., Colaprete, A. and Zahnle, K. (2002). Environmental effects of large impacts. Science, 298, 1977–80.CrossRefGoogle ScholarPubMed
Seibert, N. M. and Kargel, J. S. (2001). Small-scale martian polygonal terrain: implications for liquid surface water. Geophys. Res. Lett., 28, 899–902.CrossRefGoogle Scholar
Shaller, P. J., Murray, B. C. and Albee, A. L. (1989). Subaqueous landslides on Mars? LPSC XX, pp. 990–1.Google Scholar
Sharp, R. P. (1963). Wind ripples. J. Geol., 71, 617–36.CrossRefGoogle Scholar
Sharp, R. P. (1973a). Mars: troughed terrains. J. Geophys. Res., 78, 4063–72.CrossRefGoogle Scholar
Sharp, R. P. (1973b). Mars: fretted and chaotic terrains. J. Geophys. Res., 78, 4222–30.CrossRefGoogle Scholar
Sharp, R. P. and Malin, M. C. (1975). Channels on Mars. Geol. Soc. Am. Bull., 86, 593–609.2.0.CO;2>CrossRefGoogle Scholar
Shean, D. E., Head, J. W. and Marchant, D. R. (2005). Origin and evolution of cold-based tropical mountain glacier on Mars: the Pavonis Mons fan-shaped deposit. J. Geophys. Res., 110(E5), 10.1029/2004JR002360.CrossRefGoogle Scholar
Shoemaker, E. M. (1966). Preliminary analysis of the fine structure of the lunar surface in Mare Cognitum. In The Nature of the Lunar Surface, ed. Hess, W. N.et al. Baltimore: Johns Hopkins University Press, pp. 23–121.Google Scholar
Shoemaker, E. M. and Wolfe, R. F. (1982). Cratering time scales for the Galilean satellites. In Satellites of Jupiter, ed. Morrison, D.. Tucson: University of Arizona Press, pp. 277–339.Google Scholar
Shreve, R. L. (1966a). Statistical law of stream numbers. J. Geol., 74, 17–37.CrossRefGoogle Scholar
Shreve, R. L. (1966b). Sherman landslide, Alaska. Science, 154, 1639–43.CrossRefGoogle Scholar
Sleep, N. H. (1994). Martian plate tectonics. J. Geophys. Res., 99, 5639–55.CrossRefGoogle Scholar
Sleep, N. H. and Zahnle, K. (1998). Refugia from asteroid impact on early Mars and the early Earth. J. Geophys. Res., 103(E12), 28,529–44.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., et al. (12 authors) (1998). Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter. Science, 279, 1686–92.CrossRefGoogle ScholarPubMed
Smith, D. E., Sjogren, W. L., Tyler, G. L., Balmino, G., Lemoine, F. G. and Konopliv, A. S. (1999). The gravity field of Mars: results from Mars Global Surveyor. Science, 286, 94–7.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., Solomon, S. C., et al. (19 authors) (1999). The global topography of Mars and implications for surface evolution, Science, 284, 1495–1503.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., Frey, H. V., et al. (2001). Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping. J. Geophys. Res., 106(E10), 23,689–722.CrossRefGoogle Scholar
Smith, P. H., Zuber, M. T., Frey, H. V., et al. (19 authors) (1997). The imager for Mars Pathfinder experiment. J. Geophys. Res., 102, 4003–25.CrossRefGoogle Scholar
Smrekar, S. E., McGill, G. E., Raymond, C. A. and Dimitriou, A. M. (2004). Geologic evolution of the martian dichotomy in the Ismenius area of Mars and implications for plains magnetization. J. Geophys. Res., 109(E11), doi:10.1029/2004JE002260CrossRefGoogle Scholar
Soderblom, L. A., Kriedler, T. J. and Masursky, H. (1973). Latitudinal distribution of debris mantles on the martian surface. J. Geophys. Res., 78, 4117–22.CrossRefGoogle Scholar
Soderblom, L. A., et al. (2004). Soils of Eagle crater and Meridiani Planum at the Opportunity rover landing site. Science, 306, 1723–6.CrossRefGoogle ScholarPubMed
Solomon, S. C. and Head, J. W. (1982). Evolution of the Tharsis province of Mars: the importance of heterogeneous lithospheric thickness and volcanic construction. J. Geophys. Res., 87, 9755–74.CrossRefGoogle Scholar
Solomon, S. C., et al. (17 authors) (2005). New perspectives on ancient Mars. Science, 307, 1214–20.CrossRefGoogle ScholarPubMed
Spencer, J. R. and Croft, S. K. (1986). Valles Marineris as karst. NASA Tech. Memo 88383, 193–5.
Spencer, J. R. and Fanale, F. P. (1990). New models for the origin of Valles Marineris closed depressions. J. Geophys. Res., 95, 14,301–13.CrossRefGoogle Scholar
Spohn, T., Acuna, M. H., Breuer, D., et al. (2001). Geophysical constraints on the evolution of Mars. In Chronology and Evolution of Mars, ed. Kallenback, R.et al. Dordrecht: Kluwer, pp. 231–62.CrossRefGoogle Scholar
Squyres, S. W. (1979). The distribution of lobate debris aprons and similar flows on Mars. J. Geophys. Res., 84, 8087–96.CrossRefGoogle Scholar
Squyres, S. W. and Carr, M. H. (1986). Geomorphic evidence for the distribution of ground ice on Mars. Science, 231, 249–52.CrossRefGoogle ScholarPubMed
Squyres, S. W. and Kasting, J. F. (1994). Early Mars: how warm and how wet?Science, 265, 744–8.CrossRefGoogle ScholarPubMed
Squyres, S. W. and Knoll, A. H. (2005). Sedimentary rock at Meridiani Planum: origin, diagenesis and implications for life. Earth Planet. Sci. Lett., 240, 1–10.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Baumgartner, E. T., et al. (12 authors) (2003). Athena Mars rover science investigation. J. Geophys. Res., 108(E12), doi:10.1029/2003JE002121CrossRefGoogle Scholar
Squyres, S. W., et al. (50 authors) (2004a). The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars. Science, 306, 1698–1714.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F., et al. (2004b). The Spirit rover's Athena science investigation at Gusev crater, Mars. Science, 305, 794–9.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al. (2004c). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 1709–14.CrossRefGoogle Scholar
Squyres, S. W., Arvidon, R. E., Blaney, D. W., et al. (14 authors) (2006). The rocks of the Columbia Hills. J. Geophys. Res., 111, E02S11, doi:10.1029/2005JR002562CrossRefGoogle Scholar
Stepinski, T. F. and Coradetti, S., (2004). Systematic differences in topography of martian and terrestrial drainage basins. LPSC XXXV, Abstract 166.
Stepinski, T. F. and O'Hara, W. J. (2003). Vertical analysis of martian drainage basins. LPSC, XXXIV, Abstract 1659.
Stetter, K. O. (1996). Hyperthermophiles in the history of life. In Evolution of Hydrothermal Ecosystems on Earth (and Mars?), ed. Walter, M.. Ciba Foundation Symposium 202. New York: Wiley, pp. 1–18.Google Scholar
Stevens, T. O. and McKinley, J. P. (1995). Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science, 270, 450–4.CrossRefGoogle Scholar
Stevenson, D. J. (2001). Mars' core and magnetism. Nature, 412, 214–19.CrossRefGoogle ScholarPubMed
Stevenson, D. J., Spohn, T. and Schubert, G. (1983). Magnetism and thermal evolution of the terrestrial planets. Icarus, 54, 466–89.CrossRefGoogle Scholar
Stewart, E. M. and Head, J. W. (2001). Ancient martian volcanoes in the Aeolis region: new evidence from MOLA data. J. Geophys. Res., 106, 17,505–13.CrossRefGoogle Scholar
Stewart, S. T. and Nimmo, F. (2002). Surface runoff features on Mars: testing of the carbon dioxide hypothesis. J. Geophys. Res., 107(E9), doi:10.1029/2000JE001465CrossRefGoogle Scholar
Stöffler, D. and Ryder, G. (2001). Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System. In Chronology and Evolution of Mars, ed. Kallenbach, R.et al. Dordrecht: Kluwer, pp. 9–54.CrossRefGoogle Scholar
Strahler, A. N. (1958). Dimensional analysis applied to fluvially eroded landforms. Geol. Soc. Am. Bull., 69, 279–300.CrossRefGoogle Scholar
Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In Handbook of Applied Hydrology, ed. Chow, V. T.. New York: McGraw Hill.Google Scholar
Tanaka, K. L. (1985). Ice-lubricated gravity spreading of the Olympus Mons aureole deposits. Icarus, 62, 191–206.CrossRefGoogle Scholar
Tanaka, K. L. (1986). The stratigraphy of Mars. Proc. 17th Lunar and Planet. Sci. Conf., J. Geophys. Res., 91, E139–58.CrossRefGoogle Scholar
Tanaka, K. L. (1999). Debris-flow origin for the Simud/Tiu deposit on Mars. J. Geophys. Res., 104, 8637–52.CrossRefGoogle Scholar
Tanaka, K. L. and Golombek, M. P. (1989). Martian tension fractures and formation of grabens and collapse features in Valles Marineris. LPSC XIX, pp. 383–96.Google Scholar
Tanaka, K. L. and Leonard, G. J. (1995). Geology and landscape evolution of the Hellas region of Mars. J. Geophys. Res., 100(E3), 5407–32.CrossRefGoogle Scholar
Tanaka, K. L. and Scott, D. H. (1987). Geologic map of the polar regions of Mars. U.S. Geol. Survey, Misc. Inv. Map I-1802C.
Tanaka, K. L., Golombek, N. P. and Banerdt, W. B. (1991). Reconciliation of stress and structural histories of the Tharsis region of Mars. J. Geophys. Res., 96, 15,617–33.CrossRefGoogle Scholar
Tanaka, K. L., Banerdt, W. B., Kargel, J. S. and Hoffman, N. (2001). Huge CO2 charged debris flow deposit and tectonic sagging in the northern plains of Mars. Geology, 29, 427–30.2.0.CO;2>CrossRefGoogle Scholar
Thomas, P. C. and Gierasch, P. J. (1985). Dust devils on Mars. Science, 230, 175–7.CrossRefGoogle ScholarPubMed
Thomas, P. C. and Veverka, J. (1979). Seasonal and secular variations of wind streaks on Mars: an analysis of Mariner 9 and Viking data. J. Geophys. Res., 84, 8131–46.CrossRefGoogle Scholar
Thomas, P. C., Squyres, S. W. and Carr, M. H. (1990). Flank tectonics of martian volcanoes. J. Geophys. Res., 95, 14,345–55.CrossRefGoogle Scholar
Thomas, P. C., et al. (1992). Polar deposits of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 767–95.Google Scholar
Thomas, P. C., Malin, M. C., Edgett, K. S., et al. (2000). North-south geological differences between the residual polar caps of Mars. Nature, 404, 161–5.CrossRefGoogle ScholarPubMed
Thomas, P. C., Malin, M. C., James, P. B., Cantor, B. A., Williams, R. M., and Gierasch, P., et al. (2005). South polar residual cap of Mars: Features, stratigraphy and changes. Icarus, 174, 535–59.CrossRefGoogle Scholar
Thorarinsson, S. (1957). The jökulhlaup from the Katla area in 1955 compared with other jökulhlaups in Iceland. Reykjavik Mus. Nat. Hist., Misc. Paper 18, 21–5.Google Scholar
Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A. and Bilski, K. (1980). The astronomical theory of climate change on Mars. Icarus, 44, 552–607.CrossRefGoogle Scholar
Tosca, N. J., McLennan, S. M., Clark, B. C., et al. (2005). Geochemical modeling of evaporative processes on Mars: insight from the sedimentary record at Meridiani Planum. Earth Planet. Sci. Lett., 240, 122–48.CrossRefGoogle Scholar
Touma, J. and Wisdom, J. (1993). The chaotic obliquity of Mars. Science, 259, 1294–6.CrossRefGoogle ScholarPubMed
Treiman, A. H. and Louge, M. Y. (2004). Martian slope streaks and gullies: origins as dry granular flows. LPSC XXXV, Abstract 1323.
Treiman, A. H., Drake, M. J., Janssens, N. J., Wolff, R. and Enihara, M. (1986). Core formation in the Earth and the shergottite parent body. Geochim. Cosmochim. Acta, 50, 1061–70.CrossRefGoogle Scholar
Turcotte, D. L., Willeman, R. J., Haxby, W. F. and Norberry, J. (1981). Role of membrane stresses in support of planetary topography. J. Geophys. Res., 86, 3951–9.CrossRefGoogle Scholar
Engelhardt, W., Bertsch, W., Stoffler, D., Groschopf, P. and Reiff, W. (1967). Anzeichen für den meteoritischen Ursprung des Beckens von Steinheim. Naturwissenschaften, 54, 198–9.CrossRefGoogle Scholar
Wahrhaftig, C. and Cox, A. (1959). Rock glaciers in the Alaska Range. Geol. Soc. Am. Bull., 70, 383–426.CrossRefGoogle Scholar
Wallace, D. and Sagan, C. (1979). Evaporation of ice in planetary atmospheres: ice-covered rivers on Mars. Icarus, 39, 385–400.CrossRefGoogle Scholar
Walter, M. R. (1983). Archean stromatolites: evidence of the Earth's earliest Benthos. In Earth's Earliest Biosphere, ed. Schopf, J. W.. Princeton: Princeton University Press, pp. 187–213.Google Scholar
Wänke, H. (1981). Constitution of terrestrial planets. Phil. Trans. Roy. Soc. London Ser. A, 303, 287–303.CrossRefGoogle Scholar
Wänke, H. and Dreibus, G. (1988). Chemical composition and accretion history of terrestrial planets. Phil. Trans. Roy. Soc. London Ser. A, 325, 545–57.CrossRefGoogle Scholar
Ward, W. R. (1992). Long term orbital and spin dynamics of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 298–320.Google Scholar
Washburn, A. L. (1980). Geocryology. New York: Wiley.Google Scholar
Watters, T. R. (1991). Origin of periodically spaced wrinkle ridges on the Tharsis plateau of Mars. J. Geophys. Res., 96, 15,599–616.CrossRefGoogle Scholar
Watters, T. R. (1993). Compressional tectonism on Mars. J. Geophys. Res., 98(E5), 17,049–60.CrossRefGoogle Scholar
Weiss, B. P., Vali, H., Baundenbacher, F. J., et al. (2002). Records of an ancient magnetic field in ALH84001. Earth Planet. Sci. Lett., 201, 449–64.CrossRefGoogle Scholar
Weitz, C. M. and Parker, T. J. (2000). New evidence that the Valles Marineris interior deposits formed in standing bodies of water. LPSC XXXI, Abstract 1693.
Weitz, C. M., Parker, T. J., Mulmer, M. H., Anderson, F. S. and Grant, J. A. (2003). Geology of the Melas Chasma landing site for the Mars Exploration Rover mission. J. Geophys. Res., 108(E12), doi:10,1029/2002JE002014CrossRefGoogle Scholar
Wenrich, M. L. and Christensen, P. R. (1996). A formational model for the martian polygonal terrains. LSPC XXVII, pp. 1419–20.Google Scholar
Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. J. Geol., 30, 377–92.CrossRefGoogle Scholar
Whalley, W. B. and Azizi, F. (2003). Rheological models of active rock glaciers: evaluation, critique and possible test. Permafrost and Periglacial Processes, 5, 37–51.CrossRefGoogle Scholar
Wilhelms, D. E. (1987). The geologic history of the Moon. U.S. Geol. Survey, Prof. Paper 1348.
Wilhelms, D. E. and Squyres, S. W. (1984). The martian hemisphere dichotomy may be due to a large impact. Nature, 309, 138–40.CrossRefGoogle Scholar
Williams, P. J. and Smith, M. W. (1989). The frozen Earth. Cambridge: CUP.CrossRefGoogle Scholar
Williams, R. M. and Phillips, R. J. (2001). Morphometric measurements of martian valley networks from Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res., 106, 23,737–51.CrossRefGoogle Scholar
Williams, R. M., Phillips, R. J. and Malin, M. C. (2000). Flow rates and duration within Kasei Vallis, Mars: implications for the formation of a martian ocean. Geophys. Res. Lett., 27, 1073–6.CrossRefGoogle Scholar
Wilshire, H. G., Offield, T. W., Howard, K. A. and Cummings, D. (1972). Geology of the Sierra Madera cryptovolcanic structure, Pecos County, Texas. U.S. Geol. Survey, Prof. Paper 599-H.
Wilson, L. and Head, J. W. (1994). Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys., 32, 221–63.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (2001). Evidence for episodicity in the magma supply to the large Tharsis volcanoes. J. Geophys. Res., 106, 1423–33.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (2002). Tharsis-radial graben systems as the surface manifestations of plume related dike intrusion complexes: models and implications. J. Geophys. Res., 107(E8), 10.1029/2001JE001593CrossRefGoogle Scholar
Wilson, L. and Mouginis-Mark, P. J. (2003). Phreatomagmatic explosive origin of Hrad Vallis, Mars. J. Geophys. Res., 108(E8), doi 10.1029/2002JE001927CrossRefGoogle Scholar
Wilson, L., Ghatan, G. J., Head, J. W. and Mitchell, K. L. (2004). Mars outflow channels: a reappraisal of the estimation of water flow velocities from water depths, regional slopes and channel floor properties. J. Geophys. Res., 109(E9), doi:10.1029/2004JE002281CrossRefGoogle Scholar
Wilson, M. (1995). Igneous Petrogenesis. London: Chapman 8 Hall.Google Scholar
Wise, D. U., Golombek, M. P. and McGill, G. E. (1979). Tectonic evolution of Mars. J. Geophys. Res., 84, 7934–9.CrossRefGoogle Scholar
Withers, P. and Neumann, G. A. (2001). Enigmatic northern plains of Mars. Nature, 410, 651.CrossRefGoogle ScholarPubMed
Woese, C. R. (1987). Bacterial evolution. Microbiol. Rev., 51, 221–71.Google ScholarPubMed
Woese, C. R. (1990). Toward a natural system of organisms. Proc Natl. Acad. Sci. U.S.A., 87, 4576–9.CrossRefGoogle Scholar
Wood, C. A. and Ashwal, L. D. (1981). SNC meteorites: igneous rocks from Mars? LPSC XII, pp. 1359–75.Google Scholar
Wood, J. A. (1979). The Solar System. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
Wu, S. S. C. (1978). Mars synthetic topographic mapping. Icarus, 33, 417–40.CrossRefGoogle Scholar
Wyatt, M. B. and McSween, H. Y. (2002). Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature, 417, 263–6.CrossRefGoogle ScholarPubMed
Wyatt, M. B., McSween, H. Y., Tanaka, K. L. and Head, J. W. (2004). Global geologic context for rock types and surface alteration on Mars. Geology, 32, 645–8.CrossRef
Yin, G., Jacobsen, S. B., Yamashita, K., Blichert-Toft, J., Tetork, P. and Abarede, F. (2000). A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature, 418, 949–52.CrossRefGoogle Scholar
Yung, Y. L., Nair, H. and Gerstell, M. F. (1997). CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation. Icarus, 130, 222–4.CrossRefGoogle ScholarPubMed
Zahnle, K. (1998). Origins of atmospheres. In Origins, ed. Woodward, C. E.et al. Astron. Soc. Pacific Conf. Series, 148, 364–91.Google Scholar
Zhong, S. and Zuber, M. T. (2001). Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett., 189, 75–84.CrossRefGoogle Scholar
Zimbelman, J. R. and Greeley, R. (1982). Surface properties of ancient cratered terrain in the northern hemisphere of Mars. J. Geophys. Res., 87, 10,181–9.CrossRefGoogle Scholar
Zuber, M. T., Smith, D. E., Solomon, S. C., et al. (1998). Observations of the north pole region of Mars from the Mars Orbiter laser altimeter. Science, 282, 2053–60.CrossRefGoogle Scholar
Zuber, M. T., Solomon, S. C., Phillips, R. J., et al. (15 authors) (2000). Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287, 1788–92.CrossRefGoogle ScholarPubMed
Zurek, R. W., Barnes, J. R., Haberle, R. M., Pollack, J. B., Tillman, J. E. 8 Leovy, C. B. (1992). Introduction to the Mars atmosphere. In Mars ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 799–817.Google Scholar
Zurek, R. W., et al. (1992). Dynamics of the atmosphere of Mars. In Mars, ed. Jakosky, H. H. Kieffer, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 835–933.Google Scholar
http://www.msss.com
http://photojournal.jpl.nasa.gov
http://themis-data.asu.edu/
http://astrogeology.usgs.gov/mdim-bin/dataListPage.pl?lat=15N&lon=113E
http://valles.wr.usgs.gov/mcmolashaded/
http://marsrovers.jpl.nasa.gov/home/index.html
http://marswatch.astro.cornell.edu/pancam_instrument/links.html
http://pds.jpl.nasa.gov/
Achenback-Richter, L., Gupta, R., Stetter, K. and Woese, C., (1987). Were the original eubacteria thermophiles?Syst. Appl. Microbiol., 9, 34–9.CrossRefGoogle Scholar
Acuna, M. H., Connerny, J. E., Wasilewski, P., et al., (1999). Global distribution of crustal magnetism discovered by the Mars Global Surveyor MAG/ER experiment. Science, 279, 1676–80.Google Scholar
Aharonson, O., Zuber, M. T., Neumann, G. A. and Head, J. W. (1998). Mars: northern hemisphere slopes and slope distributions. Geophys. Res. Lett., 25, 4413–16.CrossRefGoogle Scholar
Aharonson, O., Zuber, M. T. and Rothman, D. H. (2001). Statistics of Mars' topography from the Mars Orbiter Laser Altimeter: slopes, correlations and physical models. J. Geophys. Res., 106(E10), 23,723–35.CrossRefGoogle Scholar
Aharonson, O., Zuber, M. T., Rothman, D. H., Schorghofer, N. and Whipple, K. X. (2002). Drainage basins and channel incision on Mars. Proc. Natl. Acad. Sci. U.S.A., 99, 1780–3.CrossRefGoogle ScholarPubMed
Aharonson, O., Schorghofer, N. and Gerstell, M. F. (2003). Slope streak formation and dust deposition rates on Mars. J. Geophys. Res., 108(E12), doi:10.1029/2003JE002123.CrossRefGoogle Scholar
Allen, C. C. (1979). Volcano-ice interactions on Mars. J. Geophys. Res., 84, 8048–59.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D. and Ulyanov, A. (2002). Lead isotope ages of chondrules and calcium-aluminum rich inclusions. Science, 297, 213.CrossRefGoogle Scholar
Anders, E. (1996). Evaluating the evidence for past life on Mars. Science, 274, 2119–20.CrossRefGoogle ScholarPubMed
Anderson, F. S. and Grimm, R. E. (1998). Rift processes at the Valles Marineris, Mars: constraints from gravity on necking and rate-dependent strength evolution. J. Geophys. Res., 103, 11,113–24.CrossRefGoogle Scholar
Anderson, R. C., Dohm, J. M., Golombek, M. P., et al. (8 authors) (2001). Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res., 106(E9), 20,563–85.CrossRefGoogle Scholar
Armstrong, J. C. and Leovy, C. B. (2005). Long term wind erosion on Mars. Icarus, 176, 57–74.CrossRefGoogle Scholar
Arvidson, R. E., Carusi, A., Coradini, A., et al. (8 authors) (1976). Latitudinal variation of wind erosion of crater ejecta deposits on Mars. Icarus, 27, 503–16.CrossRefGoogle Scholar
Arvidson, R. E., Seelos, F.P., Deal, K. S., et al. (2003). Mantled and exhumed terrains in Terra Meridiani, Mars. J. Geophys. Res., 108(E12), doi:10.1029/2002JE001982.CrossRefGoogle Scholar
Bagnold, R. A. (1941). The Physics of Wind-Blown Sand and Desert Dunes. London: Methuen.Google Scholar
Baker, V. R. (1979). Erosional processes in channelized water flows on Mars. J. Geophys. Res., 84, 7985–93.CrossRefGoogle Scholar
Baker, V. R. (1982). The Channels of Mars. Austin: Texas University Press.Google Scholar
Baker, V. R. (1990). Spring sapping and valley network development. Geol. Soc. Am. Sp. Paper, 252, 235–65.Google Scholar
Baker, V. R. (2001). Water and the martian landscape. Nature, 412, 228–36.CrossRefGoogle ScholarPubMed
Baker, V. R. and Kochel, R. C. (1979). Martian channel morphology: Maja and Kasei Vallis. J. Geophys. Res., 84, 7961–83.CrossRefGoogle Scholar
Baker, V. R. and Milton, D. J. (1974). Erosion by catastrophic floods on Mars and Earth. Icarus, 23, 27–41.CrossRefGoogle Scholar
Baker, V. R. and Nummedal, D. (1978). The Channeled Scabland. Field Guide. Washington DC: NASA.
Baker, V. R. and Partridge, J. (1986). Small martian valleys: pristine and degraded morphology. J. Geophys. Res., 91, 3561–72.CrossRefGoogle Scholar
Baker, V. R., Strom, R. G., Gulick, V. C., et al. (6 authors) (1991). Ancient oceans, ice sheets and the hydrologic cycle on Mars. Nature, 352, 589–94.CrossRefGoogle Scholar
Baker, V. R., Strom, R. G., Dohm, J. M., et al. (2000). Oceanus Borealis, ancient glaciers, and the MEGAOUTFLO hypothesis. LPSC XXXI, Abstract 1863.
Bandfield, J. L. (2002). Global mineral distributions on Mars. J. Geophys. Res., 107(E6), doi:10.1029/2001JE001510.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E. and Christensen, P. R. (2000). A global view of martian surface compositions from MGS-TES. Science, 287, 1626–30.CrossRefGoogle Scholar
Banerdt, W. B. and Golombek, M. P. (2000). Tectonics of the Tharsis region of Mars: insights from MGS topography and gravity. LPSC XXXI, Abstract 2038.
Banerdt, W. B., Golombek, M. P. and Tanaka, K. L. (1992). Stress and tectonics on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 249–97.Google Scholar
Banin, A., Clark, B. C. and Wänke, H. (1992). Surface chemistry and mineralogy. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 594–625.Google Scholar
Barlow, N. G. and Perez, C. B. (2003). Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles. J. Geophys. Res., 108(E8), doi:10,1029/2002JE002036.CrossRefGoogle Scholar
Barlow, N. G., Boyce, J. M., Costard, F. M., et al. (9 authors) (2000). Standardizing the nomenclature of martian impact crater ejecta morphologies. J. Geophys. Res., 105(E11), 26,733–8.CrossRefGoogle Scholar
Becker, R. H. and Pepin, R. O. (1984). The case for a martian origin of the shergottites: nitrogen and noble gases in EETA79001. Earth Planet. Sci. Lett., 69, 225–42.CrossRefGoogle Scholar
Benito, G., Mediavilla, F., Fernandez, M., Marquez, A., Martinez, J., and Aguita, F. (1997). Chasma Boreale, Mars. A sapping and outflow channel with a tectonic-thermal origin. Icarus, 129, 528–38.CrossRefGoogle Scholar
Berman, D. C. and Hartmann, W. K. (2002). Recent fluvial, volcanic and tectonic activity on the Cerberus plains of Mars. Icarus, 159, 1–17.CrossRefGoogle Scholar
Bibring, J. P., Langevin, Y., Poulet, F., et al. (2004). Perennial water ice identified in the south polar cap of Mars. Nature, 428, 627–30.CrossRefGoogle ScholarPubMed
Bibring, J., Langevin, Y., Gendrin, A., et al. (10 authors) (2005). Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 1576–81.CrossRefGoogle ScholarPubMed
Bibring, J., Langevin, , Y., Mustard, J. F., et al. (2006). Global mineralogical and aqueous history derived from OMEGA/Mars Express data. Science, 312, 400–4.CrossRefGoogle ScholarPubMed
Biemann, K., Oro, J., Toulmin, P., et al. (12 authors) (1977). The search for organic substances and inorganic volatile compounds on the martian surface. J. Geophys. Res., 82, 4641–58.CrossRefGoogle Scholar
Binder, A. B., Arvidson, R. E., Guinness, E. A., et al. (8 authors) (1977). The geology of the Viking 1 landing site. J. Geophys. Res., 82, 4439–51.CrossRefGoogle Scholar
Blasius, K. R., Cutts, J. A., Guest, J. E. and Masursky, H. (1977). Geology of Valles Marineris: first analysis of imaging from the Viking 1 orbiter. J. Geophys. Res., 82, 4067–91.CrossRefGoogle Scholar
Bogard, D. D. and Johnson, P. (1983). Martian gases in an Antarctic meteorite. Science, 221, 651–4.CrossRefGoogle Scholar
Bogard, D. D., Nyquist, L. E. and Johnson, P. (1984). Noble gas content of shergottite and implications for the martian origin of SNC meteorites. Geochim. Cosmochim. Acta., 48, 1723–39.CrossRefGoogle Scholar
Boice, D. and Huebner, W. (1999). Physics and chemistry of comets. In Encyclopedia of the Solar System, ed. Weissman, P. R., et al. San Diego: Academic Press, pp. 519–56.Google Scholar
Borg, L. E., Nyquist, L. E., Taylor, L. A., Wiesmann, H. and Shih, C.-Y. (2003). Constraints on martian differentiation processes from Rb-Sr and Sm-Nd isotopic analysis of the basaltic shergottite QUE94201. Geochim. Cosmochim. Acta., 61, 4915.CrossRefGoogle Scholar
Boynton, W., Feldman, W. C., Squyres, S. W., et al. (2001). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science, 297, 81–5.CrossRefGoogle Scholar
Bradley, J. P., Harvey, R. P. and McSween, H. Y. (1997). No nanofossils in martian meteorite. Nature, 390, 454.CrossRefGoogle ScholarPubMed
Brain, D. A. and Jakosky, B. M. (1998). Atmospheric loss since the onset of the martian geologic record: combined role of impact erosion and sputtering. J. Geophys. Res., 103(E10), 22,689–94.CrossRefGoogle Scholar
Brasier, M. D., Green, O. R., Jephcoat, A. P., et al. (2002). Questioning the evidence for Earth's oldest fossils. Nature, 416, 76–81.CrossRefGoogle ScholarPubMed
Brass, G. W. (1980). Stability of brines on Mars. Icarus, 42, 20–80.CrossRefGoogle Scholar
Braun, M. G. and Zuber, M. T. (2000). Formation and evolution of large chasms in the Elysium region of Mars: influence of tectonic loading and water flow. Eos Trans. AGU, 81, 48.Google Scholar
Bridges, J. C., Catling, D. C., Saxton, J. M., Swindle, T. D., Lyon, I. C., and Grady, M. M. (2001). Alteration assemblages in martian meteorites: implications for near-surface processes. Space Sci. Rev., 96, 365–92.CrossRefGoogle Scholar
Bridges, N. T. (1999). Ventifacts at the Pathfinder landing site. J. Geophys. Res., 104(E4), 8595–615.CrossRefGoogle Scholar
Brooks, J. J., Logan, G. A., Buick, P. and Summons, R. E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–6.CrossRefGoogle Scholar
Burns, R. G. (1987). Ferric sulfates on Mars. J. Geophys. Res., 92, e570–4.CrossRefGoogle Scholar
Burr, D. M., Grier, J. A., McEwen, A. S. and Keszthelyi, L. P. (2002a). Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus, 159, 53–73.CrossRefGoogle Scholar
Burr, D. M., McEwen, A. S. and Sakimoto, S. E. (2002b). Recent aqueous floods from the Cerberus Fossae, Mars. Geophys. Res. Lett., 29(1), 10.1029/2001Gl013345.CrossRefGoogle Scholar
Byrne, S. and Ingersoll, P. (2003a). A sublimation model for martian south polar ice features. Geophys. Res. Lett., 299, 1051–3.Google Scholar
Byrne, S. and Ingersoll, P. (2003b). Martian climatic events on timescales of centuries: evidence from feature morphology in the residual polar ice cap. Geophys. Res. Lett., 30(13), doi:.10.1029/2003GL017597.CrossRefGoogle Scholar
Byrne, S. and Murray, B. C. (2002). North polar stratigraphy and the polar erg of Mars., J. Geophys. Res., 107(E6), doi:10.1029/2001JE001615.CrossRefGoogle Scholar
Cabrol, N. A. and Grin, E. A. (1999). Distribution, classification and ages of martian impact crater lakes. Icarus, 142, 160–72.CrossRefGoogle Scholar
Cabrol, N. A., Grin, E. A., Carr, M. H., et al. (20 authors) (2003). Exploring Gusev crater with Spirit: review of science objectives and testable hypotheses. J. Geophys. Res., 108(E12), doi:10.1029/2002JE002026.CrossRefGoogle Scholar
Cailleau, B., Walter, T. R., Janle, P. and Hauber, E. (2003). Modeling volcanic deformation in a regional stress field: implications for formation of the graben structures on Alba Patera, Mars. J. Geophys. Res., 108(E12), doi:10.1029/2003JE002135.CrossRefGoogle Scholar
Carr, M. H. (1979). Formation of martian flood features by release of water from confined aquifers. J. Geophys. Res., 84, 2995–3007.CrossRefGoogle Scholar
Carr, M. H. (1981). The Surface of Mars. New Haven, Conn.: Yale University Press.Google Scholar
Carr, M. H. (1983). The stability of streams and lakes on Mars. Icarus, 56, 476–95.CrossRefGoogle Scholar
Carr, M. H. (1989). Recharge of an early atmosphere of Mars by impact-induced release of CO2. Icarus, 79, 311–27.CrossRefGoogle Scholar
Carr, M. H. (1990). D/H on Mars: effects of floods, volcanism, impacts and polar processes. Icarus, 87, 210–27.CrossRefGoogle Scholar
Carr, M. H. (1992). Post-Noachian erosion rates: implications for Mars climate change. LPSC XXIII, 205–6.Google Scholar
Carr, M. H. (1996). Water on Mars. Oxford: Oxford University Press.Google Scholar
Carr, M. H. (1999). Retention of an atmosphere on early Mars. J. Geophys. Res., 104, 21,897–909.CrossRefGoogle Scholar
Carr, M. H. (2001). Mars Global Surveyor observations of martian fretted terrain. J. Geophys. Res., 106, 23,571–94.CrossRefGoogle Scholar
Carr, M. H. (2002). Elevation of water-worn features on Mars: implications for circulation of groundwater. J. Geophys. Res., 107(E12), 5131, doi:10.1029/2002JE001845.CrossRefGoogle Scholar
Carr, M. H. and Chuang, F. C. (1997). Martian drainage densities. J. Geophys. Res., 102(E4), 9145–52.CrossRefGoogle Scholar
Carr, M. H. and Malin, M. C. (2000). Meter-scale characteristics of martian channels and valleys. Icarus, 146, 366–86.CrossRefGoogle Scholar
Carr, M. H. and Head, J. W. (2002). Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res., 108(E5), doi10.1029/2002JE001963.Google Scholar
Carr, M. H. and Head, J. W. (2003). Basal melting of snow on early Mars: a possible origin of some valley networks. Geophys. Res. Lett., 30(24), doi10.1029/2003GL018575.CrossRefGoogle Scholar
Carr, M. H., Crumpler, L. S., Cutts, J. A., Greeley, R., Guest, J. E. and Masursky, H. (1977). Martian impact craters and emplacement of ejecta by surface flow. J. Geophys. Res., 82, 4055–65.CrossRefGoogle Scholar
Carr, M. H. and Schaber, G. G. (1977). Martian permafrost features. J. Geophys. Res., 82, 4039–55.CrossRefGoogle Scholar
Carr, M. H., Wu, S. C., Jordan, R. and Schafer, F. J. (1987). Volumes of channels, canyons and chaos in the circum-Chryse region of Mars. LPSC XVIII, pp. 156–7.
CATWG (1979). Standard techniques for presentation and analysis of crater size-frequency data. Icarus, 37, 467–74.CrossRef
Chapman, M. G. (1994). Evidence, age and thickness of a frozen paleolake in Utopia Planitia, Mars. Icarus, 109, 393–406.CrossRefGoogle Scholar
Chapman, M. G. (2002). Layered, massive and thin sediments on Mars: possible Late Noachian to Late Amazonian tephra? In Valcano-Ice Interactions on Earth and Mars, ed. Smellie, J. L. and Chapman, M. G.. Geol. Soc., London, Sp. Publ., 202 pp. 273–93.Google Scholar
Chapman, M. G. and Tanaka, K. L. (2001). Interior trough deposits on Mars: subice volcanoes?J. Geophys. Res., 106, 10,087–100.CrossRefGoogle Scholar
Chen, J. H. and Wasserburg, G. J. (1986). Formation ages and evolution of Shergotty and its parent planet from U-Th-Pb systematics. Geochim. Cosmochim. Acta., 50, 955–68.CrossRefGoogle Scholar
Christensen, P. R. (1986). Regional dust deposits on Mars: physical properties, age, and history. J. Geophys. Res., 91, 3533–45.CrossRefGoogle Scholar
Christensen, P. R. (2003). Formation of recent martian gullies through melting of extensive water-rich snow deposits. Nature, 422, 45–8.CrossRefGoogle ScholarPubMed
Christensen, P. R. (2004). Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science, 306, 1733–9.CrossRefGoogle ScholarPubMed
Christensen, P. R., Bandfield, J. L., Clark, R. N., et al. (2000). Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer. Evidence for near surface water. J. Geophys. Res., 105, 9623–42.CrossRefGoogle Scholar
Christiansen, E. H. (1989). Lahars in the Elysium region of Mars. Geology, 17, 203–6.2.3.CO;2>CrossRefGoogle Scholar
Chyba, C. F. (1990). Impact delivery and erosion of planetary oceans in the early inner solar system, Nature, 343, 129–33.CrossRefGoogle Scholar
Chyba, C. F. (1991). Terrestrial mantle siderophiles and the lunar impact record. Icarus, 92, 217–33.CrossRefGoogle Scholar
Clague, D. A. and Dalrymple, G. B. (1987). The Hawaiian-Emperor volcanic chain. In Volcanism in Hawaii, ed. Decker, R. W.et al. U.S. Geol. Survey Prof. Paper 1350, 5–73.Google Scholar
Clark, B. C., Morris, R. V., McLennan, S. M., et al. (2005). Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett., 240, 73–94.CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1983). Oxygen isotopes in euchrites, shergottites, nakhlites and chassignites. Earth Planet. Sci. Lett., 62, 1–6.CrossRefGoogle Scholar
Clifford, S. M. (1987). Polar basal melting on Mars. J. Geophys. Res., 92, 9135–52.CrossRefGoogle Scholar
Clifford, S. M. (1993). A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res., 98, 10973–1016.CrossRefGoogle Scholar
Clifford, S. M. and Parker, T. J. (2001). The evolution of the martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus, 154, 40–79.CrossRefGoogle Scholar
Clifford, S. M. and Zimbelman, J. R. (1988). Softened terrain on Mars. LPSC XIX, pp. 199–200.Google Scholar
Clow, G. D. (1987). Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus, 72, 95–127.CrossRefGoogle Scholar
Colaprete, A. and Toon, O. B. (2003). Carbon dioxide clouds in an early dense martian atmosphere. J. Geophys. Res., 108(E4), doi:10.1029/2002/JE001967.CrossRefGoogle Scholar
Coleman, N. M. (2002). Aqueous flows formed the outflow channels on Mars. LPSC XXXIII, Abstract 1059.
Comer, R. P., Solomon, S. C. and Head, J. W. (1985). Mars: thickness of the lithosphere from the tectonic response to volcanic loads. Rev. Geophys., 23, 61–92.CrossRefGoogle Scholar
Connerny, J. E., Acuna, M. H., Wasukewski, P. J., et al. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284, 794–8.CrossRefGoogle Scholar
Costard, F. M. and Kargel, J. S. (1995). Outwash plains and thermokarst on Mars. Icarus, 114, 93–112.CrossRefGoogle Scholar
Costard, F., Forget, F., Mangold, N. and Peulvast, J. P. (2002). Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity. Science, 295, 110–13.CrossRefGoogle ScholarPubMed
Craddock, R. A. and Howard, A. D. (2002). The case for rainfall on a warm, wet early Mars. J. Geophys. Res., 107(E11), doi:10.1029/2001JE001505.CrossRefGoogle Scholar
Craddock, R. A. and Maxwell, T. A. (1993). Geomorphic evolution of the martian highlands through ancient fluvial processes. J. Geophys. Res., 98, 3453–68.CrossRefGoogle Scholar
Crown, D. A. and Greeley, R. (1993). Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. J. Geophys. Res., 98(E2), 3431–51.CrossRefGoogle Scholar
Crown, D. A., Price, K. H. and Greeley, R. (1992). Geologic evolution of the east rim of the Hellas basin, Mars. Icarus, 100, 1–25.CrossRefGoogle Scholar
Crown, D. A., McElfresch, S. B., Pierce, T. L. and Mest, S. C. (2003) Geomophology of debris aprons in the eastern Hellas region of Mars. LPSC XXXIV, Abstract 1126.
Davies, P. (1995). Are We Alone? London: Penguin.Google Scholar
Davis, P. A. and Golombek, M. P. (1990). Discontinuities in the shallow martian crust at Lunae, Susria and Sinai Plana. J. Geophys. Res., 95, 14,231–48.CrossRefGoogle Scholar
DeHon, R. A. (1992). Martian lake basins and lacustrine plains. Earth, Moon, and Planets, 56, 95–122.CrossRefGoogle Scholar
Dohnanyi, J. S. (1972). Interplanetary objects in review: statistics of their masses and dynamics. Icarus, 17, 1–48.CrossRefGoogle Scholar
Edgett, K. S. and Malin, M. C. (2002). Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett., 29(24), 2179 doi:10.1029/2002GL016515.CrossRefGoogle Scholar
Edgett, K. S. and Parker, T. J. (1997). Water on early Mars: possible subaqueous sedimentary deposits covering ancient cratered terrain of Western Arabia and Sinus Meridiani. Geophys. Res. Lett., 24, 2897–900.CrossRefGoogle Scholar
Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A. and Thomas, P. C. (2003). Mars landscape evolution: influence of stratigraphy on geomorphology of the north polar region. Geomorphology, 52, 289–98.CrossRefGoogle Scholar
Ernst, W. G. (1983). The early earth and the Archean rock record. In TheEarth's earliest biosphere, ed. Schopf, J. W.. Princeton, pp. 41–52.Google Scholar
Eugster, O., Weigel, A. and Palnau, E. (1997). Ejection times of martian meteorites. Geochim. Cosmochim. Acta., 61, 2749–58.CrossRefGoogle Scholar
Fahrig, W. F. (1987). Geol. Assoc. Canada Sp. Paper 34, ed. Halls, H. C. and Fahrig, W. F.., pp. 331–48.Google Scholar
Farmer, C. B. and Doms, P. E. (1979). Global and seasonal water vapor on Mars and implications for permafrost. J. Geophys. Res., 84, 2881–8.CrossRefGoogle Scholar
Farmer, C. B., Davies, D. W. and LaPorte, D. D. (1976). Northern summer ice cap – water vapor observations from Viking 2. Science, 194, 1399–41.CrossRefGoogle ScholarPubMed
Farmer, C. B., et al. (1977). Mars: water vapor observations from the Viking orbiters. J. Geophys. Res., 82, 4225–8.CrossRefGoogle Scholar
Fasset, C. I. and Head, J. W., (2004). Snowmelt and the formation of valley networks on martian volcanoes, LPSC XXXV, Abstract 1113.
Fassett, C. I. and Head, J. W. (2005). Fluvial sedimentary deposits on Mars: ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett., 32(14), doi:10.1029/2005GL023456.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al. (2002). Global distribution of neutrons from Mars: results from Mars Odyssey. Science, 297, 75–8.CrossRefGoogle ScholarPubMed
Feldman, W. C., Prettyman, T. H., Maurice, S., et al. (2004). The global distribution of near surface hydrogen on Mars. J. Geophys. Res., 109(E9), doi:10.1029/2003JE02160.CrossRefGoogle Scholar
Fernandez, J. A. (1999). Cometary dynamics. In Encyclopedia of the Solar System, ed. Weissman, P. R.et al. San Diego: Academic Press, pp. 537–56.Google Scholar
Ferril, D. A. and Morris, A. P. (2003). Dilational normal faults. J. Struct. Geol., 25, 183–96.CrossRefGoogle Scholar
Ferrill, D. A., Wyrick, D. Y., Morris, A. P., Sims, D. W. and Franklin, N. M. (2004). Dilational fault slip and pit chain formation on Mars. GSA Today, 14(19), 4–12.2.0.CO;2>CrossRefGoogle Scholar
Fishbaugh, K. E. and Head, J. W. (2000). North polar region of Mars: topography of circumpolar deposits form Mars Orbiter Laser Altimeter (MOLA) data and evidence for asymmetric retreat of the polar cap. J. Geophys. Res., 105(E9), doi:10.1029/1999JE001230.CrossRefGoogle Scholar
Fishbaugh, K. E. and Head, J. W. (2002). Chasma Boreale, Mars: topographic characterization from Mars Orbiter Laser Altimeter data and implications for mechanisms of formation. J. Geophys. Res., 107(E3), doi:10.1029/2001JE001351.CrossRefGoogle Scholar
Fishbaugh, K. E. and Head, J. W. (2005). Origin and characteristics of the Mars north polar basal unit and implications for polar geologic history. Icarus, 174, 444–74.CrossRefGoogle Scholar
Fisher, J. A., Richardson, M. I., Newman, C. E., et al. (2005). A survey of martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images. J. Geophys. Res., 110(E3), doi:10.1029/2003JE002165.CrossRefGoogle Scholar
Fiske, R. S. and Jackson, E. D. (1972). Orientation and growth of Hawaiian volcanic rifts – the effect of regional structure and gravitational stresses. Proc. Roy. Soc., London, Ser. A., 329, 299–326.CrossRefGoogle Scholar
Foley, E. N., Economou, T. and Clayton, R. M. (2003). Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer. J. Geophys. Res., 108(E12), doi:10.1029/2002JE002019.Google Scholar
Folk, R. L. (1993). SEM imaging of bacteria and nanobacteria in carbonate sediments and rocks. J. Sed. Pet., 63, 990–9.Google Scholar
Folkner, W. N., Yoder, C. F., Yuan, D. N., Standish, E. M. and Preston, R. A. (1997). Internal structure and seasonal mass redistribution on Mars from radio tracking of Mars Pathfinder. Science, 278, 1749–52.CrossRefGoogle Scholar
Forget, F. and Pierrehumbert, R. T. (1997). Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science, 278, 1273–6.CrossRefGoogle ScholarPubMed
Formisano, V., Atreya, S., Encranaz, T., Ignatiev, N., and Guiranna, M.et al. (2004). Detection of methane in the atmosphere of Mars. Science, 306, 1758–61.CrossRefGoogle ScholarPubMed
Forsythe, R. D. and Blackwelder, C. R. (1998). Closed drainage basins of the martian highlands: constraints on the early martian hydrologic cycle. J. Geophys. Res., 103(E13), 31,421–32.CrossRefGoogle Scholar
Forsythe, R. D. and Zimbelman, J. R. (1995). A case for ancient evaporite basins on Mars. J. Geophys. Res., 100, 5553–63.CrossRefGoogle Scholar
Francis, P. W. and Wadge, G. (1983). The Olympus Mons aureole: formation by gravitational spreading. J. Geophys. Res., 88, 8333–44.CrossRefGoogle Scholar
French, H. M. (1976). The periglacial environment. New York: Longman.Google Scholar
Frey, H. V. (1979). Pseudocraters on Mars. J. Geophys. Res., 84, 8075–86.CrossRefGoogle Scholar
Frey, H. V. (2002). Age and origin of the crustal dichotomy in eastern Mars. LPSC XXXIII, Abstract 1727.
Frey, H. V., Roark, J. H., Shockey, K. M., Frey, E. L. and Sakimoto, S. E. (2002a). Ancient lowlands on Mars. Geophys. Res. Lett., 29, 1384, doi.10.1029/2001GL013832.CrossRefGoogle Scholar
Frey, H. V., Roark, J. H., Hohner, G. J., Wernecke, A. and Sakimoto, S. E. (2002b). Buried impact basins as constraints on the thickness of ridged plains and northern lowland plains on Mars. LPSC XXXIII, Abstract 1804.
Frey, H. V. and Schultz, R. A. (1988). Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophys. Res. Lett., 15, 229–32.CrossRefGoogle Scholar
Friedman, E. I. (1980). Endolithic microbial life in hot and cold deserts. Origins of Life, 10, 223–35.CrossRefGoogle Scholar
Friedman, G. M. and Sanders, J. E. (1978). Principles of Sedimentology. New York: WileyGoogle Scholar
Fuller, E. R. and Head, J. W. (2002a). Geologic history of the smoothest plains on Mars (Amazonis Planitia) and astrobiological implications. LPSC XXXIII, Abstract 1539.
Fuller, E. R. and Head, J. W. (2002b). Amazonis Planitia: the role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars. J. Geophys. Res., 107(E10), doi:10.1029/2002JE001842.CrossRefGoogle Scholar
Gaidos, E. and Marion, G. (2003). Geologic and geochemical legacy of a cold early Mars. J. Geophys. Res., 108(E6), doi:10.1029/2002JE002000.CrossRefGoogle Scholar
Gault, D. E. and Greeley, R. (1978). Exploratory experiments of impact craters formed in viscous-liquid targets: analogs for martian impact craters?Icarus, 34, 486–95.CrossRefGoogle Scholar
Gault, D. E., Quaide, W. L. and Oberbeck, V. R. (1968). Impact cratering mechanics and structures. In Shock Metamorphism of Natural Materials, ed. French, B. M. and Short, N. M.. Baltimore: Mono Book Corp., pp. 87–99.Google Scholar
Geissler, P. E. (2005). Three decades of martian surface changes. J. Geophys. Res., 110(E2), doi:10.1029/2004JE002345.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al. (16 authors) (2004). Chemistry of rocks and soils in Gusev crater from the alpha particle X-ray spectrometer. Science, 305, 829–32.CrossRefGoogle ScholarPubMed
Gendrin, A., Mangold, N., Bibring, J., et al. (11 authors) (2005). Sulfates in martian layered terrains: the OMEGA/Mars Express view. Science, 302, 1587–91.CrossRefGoogle Scholar
Ghatan, G. J. and Head, J. W. (2002). Candidate subglacial volcanoes in the south polar region of Mars: morphology, morphometry, and eruption conditions. J. Geophys. Res., 107(E7), doi:10.1029/2001JE001519.CrossRefGoogle Scholar
Ghatan, G. J. and Head, J. W. (2004). Regional drainage of meltwater beneath a Hesperian-age south circumpolar ice sheet on Mars. J. Geophys. Res., 109(E7), doi:10.1029/2003JE002196.CrossRefGoogle Scholar
Ghatan, G. J., Head, J. W. and Pratt, S. (2003). Cavi Angusti, Mars: characterization and assessment of possible formation mechanisms. J. Geophys. Res., 108(E5), doi:10.1029/2002JE001972.CrossRefGoogle Scholar
Gierasch, P. J. (1974). Martian dust storms. Rev. Geophys. Space Phys., 12, 730–4.CrossRefGoogle Scholar
Gladman, B., Burns, J. A., Duncan, M., Lee, P. and Levinson, H. G. (1996). The exchange of impact ejecta between terrestrial planets. Science, 271, 1387–90.CrossRefGoogle Scholar
Golden, D. C., Ming, D. W., Lauer, H. V., et al. (2002). Inorganic formation of “truncated hexa-octahedral” magnetite: implications for inorganic processes in martian meteorite ALH84001. LPSC XXXIII, Abstract 1839.
Golden, D. C., Ming, D. W., and Morris, R. V., et al. (2004). Evidence for exclusively inorganic formation of magnetite in martian meteorite ALH84001. Am. Mineral., 89, 681–95.CrossRefGoogle Scholar
Goldspiel, J. M. and Squyres, S. W. (1991). Ancient aqueous sedimentation on Mars. Icarus, 89, 393–410.CrossRefGoogle Scholar
Goldspiel, J. M. and Squyres, S. W. (2000). Groundwater sapping and valley formation on Mars. Icarus, 148, 176–92.CrossRefGoogle Scholar
Golombek, M. P. and Bridges, N. T. (2000). Erosion rates on Mars and implications for climate change: constraints from the Pathfinder landing site. J. Geophys. Res., 105(E1), 1841–53.CrossRefGoogle Scholar
Golombek, M. P., Tanaka, K. L. and Franklin, B. J. (1996). Extension across Tempe Terra, Mars from measurements of faults scarp widths and deformed craters. J. Geophys. Res., 101, 26,119–30.CrossRefGoogle Scholar
Golombek, M. P., Cook, R. A., Economou, T. E., et al. (14 authors) (1997). Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science, 278, 1743–52.CrossRefGoogle ScholarPubMed
Golombek, M. P., Anderson, R. C., Barnes, J. R., et al. (53 authors) (1999). Overview of the Mars Pathfinder mission: launch through landing. Surface operations, data sets and science results. J. Geophys. Res., 104, 8523–53.CrossRefGoogle Scholar
Golombek, M. P., Anderson, F. S. and Zuber, M. T. (2001). Martian wrinkle ridge topography: evidence for subsurface faults from MOLA. J. Geophys. Res., 106(E10), 23,811–21.CrossRefGoogle Scholar
Golombek, M. P., Anderson, R. C., Barnes, J. R, et al. (22 authors) (2003). Selection of the Mars Exploration Rover land sites. J. Geophys. Res., 108(E12), doi:10.1029/2003JE002074.CrossRefGoogle Scholar
Golombek, M. P., Crumpler, L. S., Grant, J. A., et al. (18 authors) (2006). Geology of the Gusev cratered plains from the Spirit rover traverse. J. Geophys. Res., 111(E2), doi:10.1029/2005JE002503.CrossRefGoogle Scholar
Gooding, J. G., Wentworth, S. J. and Zolensky, M. E. (1988). Calcium carbonate and sulfate of possible extraterrestrial origin in EETA79001 meteorite. Geochim. Cosmochim. Acta., 52, 909–15.CrossRefGoogle Scholar
Gough, D. O. (1981). Solar interior structure and luminosity variations. Solar Phys., 74, 21–34.CrossRefGoogle Scholar
Grant, J. A. and Parker, T. J.(2002). Drainage evolution in the Margaritifer Sinus region of Mars. J. Geophys. Res., 107(E9), doi:10.1029/2001JE001678.CrossRefGoogle Scholar
Greeley, R. and Crown, D. A. (1990). Volcanic geology of Tyrrhena Patera, Mars. J. Geophys. Res., 95(B5), 7133–49.CrossRefGoogle Scholar
Greeley, R. and Fagents, S. A. (2001). Icelandic pseudocraters as analogs to some volcanic cones on Mars. J. Geophys. Res., 106, 20,527–46.CrossRefGoogle Scholar
Greeley, R. and Guest, J. E. (1987). Geologic map of the eastern equatorial region of Mars. U. S. Geological Survey, Misc. Inv. Map I-1802-B.Google Scholar
Greeley, R. and Iverson, J. D. (1985). Wind as a Geological Process on Earth, Mars, Venus and Titan. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Greeley, R. and Schneid, B. D. (1991). Magma generation on Mars: amounts, rates and comparisons with Earth, Moon and Venus. Science, 254, 996–8.CrossRefGoogle ScholarPubMed
Greeley, R., Leach, R., White, B., Iverson, J. and Pollack, J. (1980). Threshold windspeeds for sands on Mars: wind tunnel simulations. Geophys. Res. Lett., 7, 121–4.CrossRefGoogle Scholar
Greeley, R., White, B. R., Pollack, J. B., Iverson, J. D. and Leach, R. N. (1981). Dust storms on Mars: considerations and simulations. Geol. Soc. Am. Sp. Paper, 186, 101–21.Google Scholar
Greeley, R., Lancaster, N., Lee, S. and Thomas, P. (1992). Martian eolian processes, sediments and features. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 730–66.Google Scholar
Greeley, R., Draft, M., Sullivan, R., Wilson, G., et al. (1999). Aeolian features and processes at the Mars Pathfinder landing site. J. Geophys. Res., 104, 8573–84.CrossRefGoogle Scholar
Greeley, R., Squyres, S. W., Arvidson, R. E., et al. (2004). Wind-related processes detected by the Spirit Rover at Gusev Crater, Mars. Science, 305, 810–21.CrossRefGoogle ScholarPubMed
Greeley, R., Arvidson, R. E., Barlett, P. W., et al. (2006). Wind-related features and processes observed by the Mars Exploration Rover, Spirit. J. Geophys. Res., 111(E2), doi10.1029/2005JE002491.CrossRefGoogle Scholar
Grieve, R. A. (2001). The terrestrial cratering record. In Accretion of Extraterrestrial Matter Through Earth's History, ed. Peuker-Ehrenbrink, B.et al. Dordrecht: Kluwer, pp. 379–402.CrossRefGoogle Scholar
Grieve, R. A. and Shoemaker, E. M. (1994). The record of past impacts on Earth. In Hazards due to Comets and Asteroids, ed. Gehrels, T.. Tucson: University of Arizona press, pp. 417–62.Google Scholar
Grotzinger, J. P., Arvidson, R. E., Bell, J. F., et al. (2005). Stratigraphy, sedimentology and depositional environment of the Burns Formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett., 240, 11–72.CrossRefGoogle Scholar
Grun, E. (1999). Interplanetary dust and the zodiacal cloud. In Encyclopedia of the Solar System, ed. Weissman, P. R., et al. San Diego: Academic Press, pp. 673–96.Google Scholar
Gulick, V. C. (1998). Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J. Geophys. Res., 103, 19,365–87.CrossRefGoogle Scholar
Gulick, V. C. (2001). Origin of the valley networks on Mars: a hydrologic perspective. Geomorphology, 37, 241–68.CrossRefGoogle Scholar
Gulick, V. C. and Baker, V. R. (1990). Origin and evolution of valleys on martian volcanoes. J. Geophys. Res., 95, 14,325–44.CrossRefGoogle Scholar
Gulick, V. C., Tyler, D., McKay, C. P. and Haberle, R. M. (1997). Episodic ocean-induced CO2 greenhouse on Mars: implications for fluvial valley formation. Icarus, 130, 68–86.CrossRefGoogle ScholarPubMed
Haberle, R. M. (1998). Early climate models. J. Geophys. Res., 103(E12), 28,467–79.CrossRefGoogle Scholar
Haberle, R. M. and Jakosky, B. M. (1990). Sublimation and transport of water from the north residual polar cap on Mars. Icarus, 90, 187–204.CrossRefGoogle Scholar
Haberle, R. M., Tyler, D., McKay, C. P., Davis, W. L., et al. (1994). A model for the evolution of CO2 on Mars. Icarus, 109, 102–20.CrossRefGoogle ScholarPubMed
Haberle, R. M., Monmessin, F., Forget, F., Levrard, B., Head, J. W. and Laskar, J. (2004). GCM simulations of tropical ice accumulations: implications for cold-based glaciers. LPSC XXXV, Abstract 1711.
Halliday, A. N., Wänke, H., Birck, J.-L. and Clayton, R. N. (2001). The accretion, composition and early differentiation of Mars. In Chronology and Evolution of Mars, ed. Kallenbach, R.et al. Dordrecht: Kluwer, pp. 197–230.CrossRefGoogle Scholar
Hamlin, S. E., Kargel, J. S., Tanaka, K. L., Lewis, K. J. and MacAyeal, D. R. (2000). Preminiary studies of icy debris flows in the martian fretted terrain. LPSC XXXI, Abstract 1785.
Hanna, J. C. and Phillips, R. J. (2005). Tectonic pressurization of aquifers in the formation of Mangala and Athabasca Valles on Mars. LPSC XXXVI, Abstract 2261.
Harder, H. and Christensen, U. R. (1996). A one plume model of martian mantle convection. Nature, 380, 507.CrossRefGoogle Scholar
Harris, S. A. (1977). The aureole of Olympus Mons, Mars. J. Geophys. Res., 82, 3099–107.CrossRefGoogle Scholar
Harrison, K. P. and Grimm, R. E. (2003). Rheological constraints on martian landslides. Icarus, 163, 347–62.CrossRefGoogle Scholar
Hartmann, W. K. (1977). Relative crater production rates on planets. Icarus, 31, 260–76.CrossRefGoogle Scholar
Hartmann, W. K. (1999). Martian cratering. IV: Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor. Meteoritics Planet. Sci., 34, 167–77.CrossRefGoogle Scholar
Hartmann, W. K. and Neukum, G. (2001). Cratering chronology and the evolution of Mars. In Chronology and Evolution of Mars, ed. Kallenbach, R.et al. Dordrecht: Kluwer, pp. 165–94.CrossRefGoogle Scholar
Haskins, L. A., Wang, A., Jolliff, B., et al. (34 authors) (2005). Water alteration of rocks and soils on Mars and the Spirit rover site in Gusev crater. Nature, 436, 66–9.CrossRefGoogle Scholar
Hauber, E., Gwinner, K., Reiss, D., et al. (2005a). Delta-like deposits in Xanthe Terra, Mars as seen with the high resolution stereo camera (HRSC). LPSC XXXVI, Abstract 1661.Google Scholar
Hauber, E., Gasselt, S., Ivanov, B., et al. (2005b). Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars. Nature, 434, 356–61.CrossRefGoogle Scholar
Hauber, G., Gwinner, K., Gendrin, A., et al. (2006). An integrated study of interior layered deposits in Hebes Chasma, Valles Marineris, Mars, using MGS, MO and MEX data. LPSC XXXVII, Abstract 2022.
Head, J. W. (1974). Orientale multi-ring basin interior and implications for the petrogenesis of lunar highland samples. The Moon, 11, 327–56.CrossRefGoogle Scholar
Head, J. W. (2001). Evidence for geologically recent advance of the south polar cap. J. Geophys. Res., 106(E5), 10,075–85.CrossRefGoogle Scholar
Head, J. W. and Marchant, D. R. (2003). Cold based mountain glaciers on Mars: western Arsia Mons. Geology, 31, 641–4.2.0.CO;2>CrossRefGoogle Scholar
Head, J. W. and Pratt, S. (2001) Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. J. Geophys. Res., 106, 12,275–99.CrossRefGoogle Scholar
Head, J. W. and Wilson, L. (2002). Mars: a review and synthesis of general environments and geologic settings of magma-H2O interactions. In Volcano-Ice Interactions on Earth and Mars, ed. Smellie, J. L. and Chapman, M. G.. Geol. Soc., London, Sp. Publ.,202, pp. 27–57.Google Scholar
Head, J. W., Heisinger, H., Ivanov, M. A., Kreslavsky, M. A., Pratt, S. and Thomson, B. J. (1999). Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science, 286, 2134–7.CrossRefGoogle ScholarPubMed
Head, J. W., Kreslavsky, M. A. and Pratt, S. (2002). Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. J. Geophys. Res., 107(E1), doi:10.1029/2000JE001445.CrossRefGoogle Scholar
Head, J. W., Wilson, L. and Mitchel, K. L. (2003b). Generation of recent water floods at Cerberus Fossae, Mars by dike emplacement, cryosphere cracking and confined aquifer groundwater release. Geophys. Res. Lett., 30(11), 1577, doi:10.1029/2003GL017135.CrossRefGoogle Scholar
Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E. and Marchant, D. R. (2003a). Recent ice ages on Mars. Nature, 426, 797–802.CrossRefGoogle Scholar
Head, J. W., Neukum, G., Jaumann, R., et al. (2005a). Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434, 346–51.CrossRefGoogle Scholar
Head, J. W., Marchant, D. R., Agnew, M. C., Fassett, C. I. and Kreslavsky, M. A. (2005b). Extensive valley glacier deposits in the northern mid-latitudes of Mars: evidence for late Amazonian obliquity-driven climate change. Earth Planet. Sci. Lett., 241, 663–71.CrossRefGoogle Scholar
Hecht, M. H. (2002). Metastability of liquid water on Mars. Icarus, 156, 373–86.CrossRefGoogle Scholar
Heisinger, H. and Head, J. W. (2001). Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. J. Geophys. Res., 105, 11,999–2,022.CrossRefGoogle Scholar
Heisinger, H. and Head, J. W. (2002). Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history. Planet. Space Sci., 50, 939–81.CrossRefGoogle Scholar
Herkenhoff, K. E. and Plaut, J. J. (2000). Surface ages and the resurface rates of the polar deposits on Mars. Icarus, 144, 243–53.CrossRefGoogle Scholar
Herkenhoff, K. E., et al. (23 authors) (2004a). Textures of the soils and rocks at Gusev crater from Spirit's microscopic imager. Science, 305, 824–6.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R. E., et al. (2004b). Evidence from Opportunity's microscopic imager for water on Meridiani Planum. Science, 306, 1727–30.CrossRefGoogle Scholar
Hess, S. L., Ryan, J. W., Tillman, J. E., Henry, R. M. and Leovy, C. N. (1980). The annual cycle of pressure on Mars measured by Viking 1 and 2. Geophys. Res. Lett., 7, 197–200.CrossRefGoogle Scholar
Hodges, C. A. and Moore, H. J. (1979). The sub-glacial birth of Olympus Mons and its aureoles. J. Geophys. Res., 84, 8061–74.CrossRefGoogle Scholar
Hodges, C. A. and Moore, H. J. (1994). Atlas of volcanic landforms on Mars, U.S. Geol. Survey Prof. Paper 1534.
Hodges, R. R. (2002). The rate of loss of water from Mars. Geophys. Res. Lett., 29, 1038, doi:10.1029/2001GL013853.CrossRefGoogle Scholar
Hoefen, R. M., Clark, R. N., Bandfield, J. L., Smith, M. D., Pearl, J. C. and Christensen, P. R. (2003). Discovery of olivine in the Nili Fossae region of Mars. Science, 302, 627–30.CrossRefGoogle ScholarPubMed
Hoffman, N. (2000). White Mars. Icarus, 146, 326–42.CrossRefGoogle Scholar
Hoffman, N. (2002). Active polar gullies on Mars and the role of carbon dioxide. Astrobiology, 2, 313–23.CrossRefGoogle ScholarPubMed
Horowitz, N. H. (1986). To Utopia and Back: The Search for Life in the Solar System. New York: W. H. Freeman.Google Scholar
Howard, A. D. (1978). Origin of the stepped topography of the martian poles. Icarus, 34, 581–9.CrossRefGoogle Scholar
Howard, A. D. (1981). Etched plains and braided ridges of the south polar region of Mars: features produced by basal melting and ground ice. NASA Tech. Memo 84211, pp. 286–8.Google Scholar
Howard, A. D. (2000). The role of eolian processes in forming surface features of the martian polar layered deposits. Icarus, 144, 267–88.CrossRefGoogle Scholar
Howard, A. D. and Moore, J. M. (2006). A geomorphic transect across the martian highlands-lowlands boundary near the prime meridian: evidence for a sedimentary platform graded to a deep ocean. J. Geophys. Res.Google Scholar
Howard, A. D., Cutts, J. A. and Blasius, K. R. (1982). Stratigraphic relationships within the martian polar cap deposits. Icarus, 50, 161–215.CrossRefGoogle Scholar
Howard, A. D., Moore, J. M. and Irwin, R. P. (2005). An intense terminal epoch of widespread fluvial activity on early Mars. I. Valley network incision and associated deposits. J. Geophys. Res., 110(E12), S14, doi:10.1029/2005JE002459.CrossRefGoogle Scholar
Hungr, O. (1995). A model for runout analysis of rapid flow slides, debris flows and avalanches. Can. Geotech., 32, 610–23.CrossRefGoogle Scholar
Hunten, D. M. (1979). Possible oxidant sources in the atmosphere and surface of Mars. J. Mol. Evol., 14, 71–8.CrossRefGoogle ScholarPubMed
Hynek, B. M. and Phillips, R. J. (2001). Evidence of extensive denudation of the martian highlands. Geology, 29, 407–10.2.0.CO;2>CrossRefGoogle Scholar
Hynek, B. M., Arvidson, R. E. and Phillips, R. J. (2002). Geologic setting and origin of Terra Meridiani hematite deposits. J. Geophys. Res., 107(E10), doi:10.1029/2002JE001891.CrossRefGoogle Scholar
Hynek, B. M., Philips, R. J. and Arvidson, R. E. (2003). Explosive volcanism in the Tharsis region: global evidence in the martian geologic record. J. Geophys. Res., 108(E9), doi:10.1029/2003JE002062.CrossRefGoogle Scholar
Ingersoll, A. P. (1970). Mars: occurrence of liquid water. Icarus, 79, 3404–10.Google Scholar
Irwin, R. P., Maxwell, T. A., Craddock, R. A. and Leverington, D. W. (2002). A large paleolake basin at the head of Ma'adim Vallis, Mars. Science, 296, 2209–12.CrossRefGoogle ScholarPubMed
Irwin, R. P., Howard, A. D. and Maxwell, T. A. (2002). Geomorphology of Ma'adim Vallis, Mars and associated paleolake basins. J. Geophys. Res., 109(E12), doi:10.1029/2004JE002287.Google Scholar
Ivanov, A. B. (2001). Mars/Moon cratering rate ratio estimates. In Chronology and Evolution of Mars, ed. Kallenbach, R.. Dordrecht: Kluwer, pp. 97–104.CrossRefGoogle Scholar
Ivanov, M. A. and Head, J. W. (2001). Chryse Planitia, Mars: topographic configuration, outflow channel continuity and sequence and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res., 106(E2), doi:10.1029/20000JE001257.CrossRefGoogle Scholar
Ivanov, M. A. and Head, J. W. (2003). Syrtis Major and Isidis basin contact: morphological and topographic characteristics of Syrtis Major lava flows and material of the Vastitas Borealis Formation. J. Geophys. Res., 108(E6), doi:10.1029/2002JE001944.CrossRefGoogle Scholar
Ivanov, A. B. and Muhleman, D. O. (2000). The role of sublimation for the formation of the northern ice cap: results from the Mars Orbiter Laser Altimeter. Icarus, 144, 436–48.CrossRef
Ivanov, M. A. and Head, J. W. (2006). Alba Patera, Mars: Topography, structure and evolution of a unique late Hesperian-Early Amazonian shield volcano. J. Geophys. Res., in press.CrossRefGoogle Scholar
Jakosky, B. M. and Carr, M. H. (1985). Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature, 315, 559–61.CrossRefGoogle Scholar
Jakosky, B. M. and Haberle, R. M. (1990). Year-to-year instability of the south polar cap. J. Geophys. Res., 95, 359–365.CrossRefGoogle Scholar
Jakosky, B. M. and Haberle R. M. (1992). The seasonal behavior of water on Mars. In Mars., ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University Arizona Press, pp. 969–1019.Google Scholar
Jakosky, B. M. and Jones, J. (1997). The history of martian volatiles. Rev. Geophys., 35, 1–16.CrossRefGoogle Scholar
Jakosky, B. M., Mellon, M. T., Varnes, E. S., Feldman, W. C., Boynton, W. V. and Haberle, R. M. (2005). Mars low-latitude neutron distribution: possible remnant near-surface water ice and a mechanism for its recent emplacement. Icarus, 175, 58–67.CrossRefGoogle Scholar
Jaumann, R. (2005). Martian valley networks and associated fluvial features as seen by the Mars Express High Resolution Camera (HRSC). LPSC XXXVI, Abstract 1815.
Johnston, C. G. and Vestal, J. R. (1989). Distribution of inorganic species in two cryptoendolithic communities. Geomicrobiol. J., 7, 137–53.CrossRefGoogle Scholar
Jons, H.-P. (1985). Late sedimentation and late sediments in the northern lowlands on Mars. LPSC XVI, pp. 414–15.Google Scholar
Jons, H.-P. (1986). Arcuate ground undulations, gelifluxion-like features and “front tori” in the northern lowlands of Mars – what do they indicate? LPSC XVII, pp. 404–5.Google Scholar
Kahn, R. A., Martin, T. Z., Zurek, R. W. and Lee, S. W. (1992). The martian dust cycle. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 1017–53.Google Scholar
Kargel, J. S. (1993) Geomorphic processes in the Argyre-Dorsa Argentea region of Mars. LPSC XXIV, pp. 753–4.Google Scholar
Kargel, J. S. (2004). Mars – A Warmer, Wetter Planet. New York: Springer Praxis.Google Scholar
Kargel, J. S. and Strom, R. G. (1991). Terrestrial glacial eskers: analogs for martian sinuous ridges., LPSC XXII, 683–4.Google Scholar
Kargel, J. S. and Strom, R. G. (1992). Ancient glaciation on Mars. Geology, 20, 3–7.2.3.CO;2>CrossRefGoogle Scholar
Kargel, J. S., Baker, V. R., Beget, J. E., et al. (7 authors) (1995). Evidence for ancient continental glaciation in the martian northern plains. J. Geophys. Res., 100, 5351–68.CrossRefGoogle Scholar
Kass, D. M. (2001). Loss of water to space from Mars: processes and implications. Eos Trans. AGU, 82, (Fall Meeting Suppl.), Abstract P12E-02.
Kasting, J. F. (1991). CO2 condensation and the climate of early Mars. Icarus, 94, 1–13.CrossRefGoogle ScholarPubMed
Keszthelyi, L., McEwen, A. S. and Thordarson, Th. (2000). Terrestrial analogs and thermal models for martian flood lavas. J. Geophys. Res., 105, 15,027–49.CrossRefGoogle Scholar
Kieffer, H. H., Chase, S. C., Martin, T. Z., Miner, E. D. and Palluconi, F. D. (1976). Martian north pole summer temperatures: dirty water ice. Science, 194, 1341–4.CrossRefGoogle ScholarPubMed
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R. and Jakosky, B. M.et al. (1977). Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res., 82, 4249–91.CrossRefGoogle Scholar
Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S. (1992). Mars, Tucson:University of Arizona Press.Google Scholar
Klein, H. P. (1979). The Viking mission and the search for life on Mars. Rev. Geophy., 17, 1655–1662.CrossRefGoogle Scholar
Kleine, T., Munker, C., Metzger, K. and Palme, H. (2002). Rapid accretion and early core formation in asteroids and the terrestrial planets from Hf-W chronometry. Nature, 418, 952–5.CrossRefGoogle ScholarPubMed
Kleine, T., Palme, , H., Mezger, K. and Halliday, A. N. (2005). Hf-W chronometry of lunar metals and the age and early differentiation of the Moon. Science, 310, 1671–4.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al. (2004). Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer. Science, 306, 1741–5.CrossRefGoogle ScholarPubMed
Kochel, R. C., Howard, A. D. and McLane, C. (1985). Channel networks developed by groundwater sapping in fine-grained sediments: analogs to some martian valleys. In Models in Geomorphology, ed. Woldenberg, M. J.. Boston: Allen and Unwin, pp. 313–41.Google Scholar
Kolb, E. J. and Tanaka, K. L. (2001). Geologic history of the polar regions of Mars based on Mars Global Surveyor data. II. Amazonian period. Icarus, 154, 22–39.CrossRefGoogle Scholar
Komar, P. D. (1979). Comparisons of the hydraulics of water flows in martian outflow channels with flows of similar scale on Earth. Icarus, 42, 317–29.CrossRefGoogle Scholar
Komatsu, G., Geissler, P. E., Strom, R. G. and Singer, R. B. (1993). Stratigraphy and erosional landforms of layered deposits in Valles Marineris. J. Geophys. Res., 98, 11,105–21.CrossRefGoogle Scholar
Koutnik, M., Byrne, S. and Murray, B. (2002). South polar layered deposits of Mars: the cratering record. J. Geophys. Res., 107(E11), doi:10.1029/2001JE001805.CrossRefGoogle Scholar
Krasnapolsky, V. A., Mailliard, J. P. and Owen, T. (2004). Detection of methane in the martian atmosphere: evidence for life?Icarus, 172, 537–47.CrossRefGoogle Scholar
Kreslavsky, M. A. and Head, J. W. (2002). Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis Formation as a sublimation residue from frozen, ponded bodies of water. J. Geophys. Res., 107(E12), doi:10.1029/2001JE001831.CrossRefGoogle Scholar
Kuhn, W. R. and Atreya, S. W. (1979). Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth. Icarus, 37, 207–13.CrossRefGoogle Scholar
Kuzmin, R. O., Greeley, R., Landheim, R., Cabrol, N. A. and Farmer, J. D. (2000). Geologic map of the MTM-15,182 and MTM-15,187 quadrangles, Gusev Crater-Ma'adim Vallis region, Mars. U.S. Geol. Survey, Misc. Inv. Map I-2666.
Lachenbruch, A. H. (1962). Mechanics of thermal contraction cracks and ice wedge polygons in permafrost. Geol. Soc. Am. Sp. Paper 70.CrossRef
Laity, J. E. and Malin, M. C. (1985). Sapping processes and the development of theater-headed valley networks in the Colorado Plateau. Geol. Soc. Am. Bull., 96, 203–17.2.0.CO;2>CrossRefGoogle Scholar
Lancaster, N. and Greeley, R. (1990). Sediment volume in the north polar sand seas of Mars. J. Geophys. Res., 95, 10,921–7.CrossRefGoogle Scholar
Lane, M. D. and Christensen, P. R. (2000). Convection in a catastrophic flood deposit as the mechanism for the giant polygons on Mars. J. Geophys. Res., 105, 17,617–27.CrossRefGoogle Scholar
Lane, M. D., Christensen, P. R. and Hartmann, W. K. (2003). Utilization of the THEMIS visible and infrared imaging for crater population studies of the Meridiani Planum landing site and southwest Arabi Terra. Geophys. Res. Lett., 29, doi10.1029/2002GLO16515.Google Scholar
Langevin, Y., Poulet, F., Bibring, J. and Gondet, B. (2005). Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science, 307, 1584–6.CrossRefGoogle ScholarPubMed
Laskar, J. and Robutel, P. (1993). The chaotic obliquity of the planets. Nature, 362, 608–12.CrossRefGoogle Scholar
Laskar, J., Levrard, B. and Mustard, J. F. (2002). Orbital forcing of the martian polar layered deposits. Nature, 419, 375–7.CrossRefGoogle ScholarPubMed
Laskar, J., Correia, A., Gastineau, F., Joutel, F., Levrard, B. and Robutel, P., et al. (2004). Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus, 170, 343–64.CrossRefGoogle Scholar
Laul, J. C., Smith, M. R., Wänke, H., et al. (1986). Chemical systematics of the Shergotty meteorite and the composition of its parent body (Mars). Geochim. Cosmochim. Acta, 28, 3035–8.Google Scholar
Lazcano, A. and Miller, S. L. (1996). The origin and early evolution of life: prebiotic chemistry, the pre-RNA world and time. Cell, 85, 793–8.CrossRefGoogle Scholar
Lee, P., Cockell, C. S., Marinova, M. M., McKay, C. P. and Rice, J. W. (2001). Snow and ice melt flow features on Devon Island, Nunavut, arctic Canada as possible analogs for recent slope flow features on Mars. LPSC XXXII, Abstract 1809.
Leighton, R. B. and Murray, B. C. (1966). Behavior of carbon dioxide and other volatiles on Mars. Science, 153, 136–44.CrossRefGoogle ScholarPubMed
Lemoine, F. G., Smith, D. E., Rowlands, D. D., et al. (2001). An improved solution of the gravity field of Mars (GMM-2B, from Mars Global Surveyor. J. Geophys. Res., 106(E10), 23,359–76.CrossRefGoogle Scholar
Lepland, A., Zuilen, M. A., Arrhenius, G., Whitehouse, M. J. and Fedo, C. M. (2005). Questioning the evidence for Earth's earliest life – Akilia revisited. Geology, 33, 77–9.CrossRefGoogle Scholar
Leverington, D. W. (2004). Volcanic rilles, streamlined islands, and the origin of outflow channels on Mars. J. Geophys. Res., 109(E11), doi:10.1020/2004JE002311.CrossRefGoogle Scholar
Leverington, D. W. and Maxwell, T. A. (2004). An igneous origin for features of a candidate crater-lake system in western Memnonia, Mars. J. Geophys. Res., 109(E6), doi:10.1029/2004JE002237.CrossRefGoogle Scholar
Levin, G. V. (1988). A reappraisal of life on Mars. Adv. In Aeronautice, 71, 187–297.Google Scholar
Lipschutz, M. E. and Schultz, L. (1990). Meteorites. In Encyclopedia of the Solar System, ed. Weissman, P. R.et al. San Diego: Academic Press, pp. 629–71.Google Scholar
Lopes, R., Guest, J. E. and Wilson, L. (1980). Origin of the Olympus Mons aureole and the perimeter scarp. Moon and Planets, 22, 221–34.CrossRefGoogle Scholar
Lopes, R., Guest, J. E., Hiller, K. and Neukum, G. (1982). Further evidence for a mass movement origin of the Olympus Mons aureole. J. Geophys. Res., 87, 9917–28.CrossRefGoogle Scholar
Lowe, D. R. (1994). Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22, 387–90.2.3.CO;2>CrossRefGoogle ScholarPubMed
Lucchitta, B. K. (1979). Landslides in Valles Marineris, Mars. J. Geophys. Res., 84, 8097–113.CrossRefGoogle Scholar
Lucchitta, B. K. (1981). Mars and Earth: comparison of cold climate features. Icarus, 45, 264–303.CrossRefGoogle Scholar
Lucchitta, B. K. (1982). Ice sculpture in the martian outflow channels. J. Geophys. Res., 87, 9951–73.CrossRefGoogle Scholar
Lucchitta, B. K. (1984). Ice and debris in the fretted terrain, Mars. J. Geophys. Res., 89, B409–B418.CrossRefGoogle Scholar
Lucchitta, B. K. (1987). Valles Marineris, Mars: wet debris flows and ground ice. Icarus, 72, 411–29.CrossRefGoogle Scholar
Lucchitta, B. K. (1989). Young volcanic deposits in the Valles Marineris, Mars. Icarus, 86, 476–509.CrossRefGoogle Scholar
Lucchitta, B. K. (1993). Ice in the northern plains: relic of a frozen ocean? LPI Tech. Rept. 93–04, 9–10.Google Scholar
Lucchitta, B. K. (2001). Antarctic ice streams and outflow channels on Mars. Geophys. Res. Lett., 28, 403–6.CrossRefGoogle Scholar
Lucchitta, B. K., Ferguson, H. M. and Summers, C. (1986). Sedimentary deposits in the northern lowland plains, Mars Proc. 17th Lunar Planet. Sci. Conf. J. Geophys. Res., 91, E166–174.CrossRefGoogle Scholar
Lucchitta, B. K., McEwen, A. S., Clow, G. D., et al. (7 authors) (1992). The canyon system on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. I.. TUCSON: University of Arizona Press, pp. 453–92.Google Scholar
Lucchitta, B. K., Isbell, N. K. and Howington-Kraus, A. (1994). Topography of Valles Marineris: implications for erosional and structural history. J. Geophys. Res., 99, 3783–98.CrossRefGoogle Scholar
Luhmann, J. G. and Kozyra, I. U. (1991). Dayside pick-up oxygen ion precipitation at Venus and Mars: spatial distributions, energy deposition and consequences. J. Geophys. Res., 96, 5457–67.CrossRefGoogle Scholar
Magalhaes, J. A. and Gierasch, P. (1982). A model of martian slope winds: implications for eolian transport. J. Geophys. Res., 87, 9975–84.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2000a). Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330–5.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2000b). Sedimentary rocks of early Mars. Science, 290, 1927–37.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2000c). Observations of aprons in martian frettted terrain. LPSC XXXI, Abstract 1053.
Malin, M. C. and Edgett, K. S. (2001). Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res., 106, 23,429–570.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2002). Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett., 29(24), 2179 doi:10.1029/2002GL016515.Google Scholar
Malin, M. C. and Edgett, K. S. (2003). Evidence for persistent flow and aqueous sedimentation on early Mars. Science, 302, 1931–4.CrossRefGoogle ScholarPubMed
Malin, M. C., Caplinger, M. A. and Davis, S. D. (2001). Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. Science, 294, 2146–8.CrossRefGoogle ScholarPubMed
Manga, N. (2004). Martian floods at Cerberus Fossae can be produced by groundwater discharge. Geophys. Res. Lett., 31, L02702 doi:10.1029/2003GL018958.CrossRefGoogle Scholar
Mandl, G. (1988). Mechanics of Tectonic Faulting. New York: Elsevier.Google Scholar
Mangold, N. (2003). Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale. Evidence of ice sublimation initiated by fractures. J. Geophys. Res., 108(E4), doi:10.1029/2002JE001885.CrossRefGoogle Scholar
Mangold, N., Allemand, P., Thomas, P., Duval, P. and Geraud, Y. (2002 ). Experimental and theoretical deformation of ice-rock mixtures: implications on rheology and ice content of Martian permafrost. Planet. Space Sci., 50, 385–401.CrossRefGoogle Scholar
Mangold, N., Costard, F. and Forget, F. (2003). Debris flows over sand dunes on Mars: evidence for liquid water. J. Geophys. Res., 108(E4), doi:10.1029/2003JE001958.CrossRefGoogle Scholar
Mangold, N., Quantin, C., Anson, V., Delacourt, C. and Allemand, P. (2004). Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area. Science, 305, 78–81.CrossRefGoogle ScholarPubMed
Martin, L. J., James, P. B., Dollifus, A., Iwasaki, K. 8 Beish, J. D. (1992). Telescopic observations. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 34–70.Google Scholar
Masson, P. (1985). Origin and evolution of the Valles Marineris region of Mars. Adv. Space Sci., 5, 83–92.CrossRefGoogle Scholar
Mastin, L. G. and Pollard, D. D. (1988). Surface deformation and shallow dike intrusion processes at Inyo Crater, Long Valley, California. J. Geophys. Res., 93, 13,221–35.CrossRefGoogle Scholar
Masursky, H. (1973). An overview of geological results from Mariner 9. J. Geophys. Res., 78, 4009–30.CrossRefGoogle Scholar
McCauley, J. F. (1978). Geologic map of the Coprates quadrangle of Mars. U.S. Geol. Surv. Misc. Inv. Map I-897.
McCauley, J. F., Carr, M. H., Cutts, J. A., et al. (8 authors) (1972). Preliminary Mariner 9 report on the geology of Mars. Icarus, 17, 289–327.CrossRefGoogle Scholar
McEwen, A. S. (1989). Mobility of large rock avalanches: evidence from Valles Marineris, Mars. Geology, 17, 1111–14.2.3.CO;2>CrossRefGoogle Scholar
McEwen, A. S., Malin, M. C., Carr, M. H. and Hartmann, W. K. (1999). Voluminous volcanism on early Mars revealed in Valles Marineris. Nature, 397, 584–6.CrossRefGoogle Scholar
McEwen, A. S., Preblich, B. S., Turtle, E. P., et al. (9 authors) (2005). The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus, 176, 331–50.CrossRefGoogle Scholar
McGill, G. E. (1986). The giant polygons of Utopia, northern martian plains. Geophys. Res. Lett., 13, 705–8.CrossRefGoogle Scholar
McGill, G. E. (1989). Buried topography of Utopia, Mars: persistence of a giant impact depression. J. Geophys. Res., 94, 2853–759.CrossRefGoogle Scholar
McGill, G. E. (2000). Crustal history of north Arabia Terra, Mars. J. Geophys. Res., 105, 6945–59.CrossRefGoogle Scholar
McGill, G. E. (2001). The Utopia Basin revisited: regional slope and shorelines from MOLA profiles. Geophys. Res. Lett., 28, 411–14.CrossRefGoogle Scholar
McGill, G. E. and Squyres, S. W. (1991). Origin of martian crustal dichotomy: evaluating hypotheses. Icarus, 93, 386–93.CrossRefGoogle Scholar
McGovern, P. J., Solomon, S. C., Head, J. W., Smith, D. E., Zuber, M. T. and Neumann, G. A. (2001). Extension and uplift at Alba Patera, Mars: insights from MOLA observations and loading models. J. Geophys. Res., 106(E4), 23,769–809.CrossRefGoogle Scholar
McGovern, P. J., Solomon, S. C., Smith, D. E., et al. (10 authors) (2002). Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution. J. Geophys. Res., 107(E12), doi:10.1029/2002JE001854.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., Vali, H., Romanek, C. S. and Clemett, X. D., et al. (1996). Search for past life on Mars. Possible relic biogenic activity in martian meteorite ALH84001. Science, 273, 924–30.CrossRefGoogle ScholarPubMed
McKee, E. D. (1979). A study of global sand seas. U.S. Geol. Surv. Prof. Paper 1052.
McKenzie, D. and Nimmo, F. (1999). The generation of martian floods by the melting of ground ice above dikes. Nature, 397, 231–3.CrossRefGoogle Scholar
McLennan, S. M., Bell, J. F., Calvin, W. M., et al. (2005). Evidence for groundwater involvement in the provenence and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum. Earth Planet. Sci. Lett., 240, 95–121.CrossRefGoogle Scholar
McSween, H. Y. (1994). What have we learned about Mars from SNC meteorites. Meteoritics, 29, 757–79.CrossRefGoogle Scholar
McSween, H. Y. (1999). SNC meteorites: clues to martian petrologic evolution. Rev. Geophys., 23, 391–416.CrossRefGoogle Scholar
McSween, H. Y. (2001). The rocks of Mars, from far and near. Metoritics and Planet. Sci., 37, 7–25.CrossRefGoogle Scholar
McSween, H. Y. and Treiman, A. H. (1998). Martian meteorites. In Planetary Materials, ed. Papike, J. J.. America Washington, D. C.: Mineralogical Society.Google Scholar
McSween, H. Y., Murchie, S. L., Crisp, J. A., et al. (20 authors) (1999). Chemical, multispectral and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. J. Geophys. Res., 104(E4), 8679–715.CrossRefGoogle Scholar
McSween, H. Y., et al. (2001). Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature, 409, 487–90.CrossRefGoogle ScholarPubMed
McSween, H. Y., Grove, T. L. and Wyatt, M. B. (2003). Constraints on the composition and petrogenesis of the martian crust. J. Geophys. Res., 108(E12), doi:10.1029/2003JE002175.CrossRefGoogle Scholar
McSween, H. Y., Arvidson, R. E., Bell, J. F., et al. (34 authors) (2004). Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science, 305, 842–5.CrossRefGoogle ScholarPubMed
Mège, D. and Masson, P. (1996). Amounts of crustal stretching in Valles Marineris, Mars. Planet. Space Sci., 44, 749–82.CrossRefGoogle Scholar
Mellon, M. T. and Jakosky, B. M. (1995). The distribution and behavior of martian ground ice during past and present epochs. J. Geophys. Res., 100, 11,781–99.CrossRefGoogle Scholar
Mellon, M. T. and Phillips, R. J. (2001). Recent gullies on Mars and the source of liquid water. J. Geophys. Res., 106(E10), 23,165–79.CrossRefGoogle Scholar
Melosh, H. J. (1983). Acoustic fluidization. Am. Sci., 71, 158–65.Google ScholarPubMed
Melosh, H. J. (1984). Impact ejection, spallation and the origin of meteorites. Icarus, 59, 234–60.CrossRefGoogle Scholar
Melosh, H. J. (1989). Impact Cratering. Oxford: OUP.Google Scholar
Melosh, H. J. and Vickery, A. M. (1989). Impact erosion of the primordial martian atmosphere. Nature, 338, 487–9.CrossRefGoogle Scholar
Metzger, S. M. (1991). A survey of esker morphometries, the connection to New York state glaciation and criteria for subglacial melt-water channels. LPSC XXII, pp. 891–2.Google Scholar
Michaux, C. M. and Newburn, R. L. (1972). Mars Scientific Model. Jet Propulsion Lab., Doc. 606–1.
Milam, K. A., Stockstill, K. R., Moersch, J. E., et al. (9 authors) (2003). THEMIS characterization of the MER Gusev crater landing site. J. Geophys. Res., 108(E12), doi:10.1029/2002JE002023.CrossRefGoogle Scholar
Milkovich, S. M. and Head, J. W. (2005). North polar cap of Mars: polar layered deposit characterization and identification of a fundamental climate signal. J. Geophys. Res., 110(E5), doi:10.1029?2004JE002349.CrossRefGoogle Scholar
Milkovich, S. M., Head, J. W. and Pratt, S. (2002). Meltback of Hesperian-aged ice-rich deposits near the south pole. Evidence for drainage channels and lakes. J. Geophys. Res., 107(E6), doi:10.1029/2001JE0018–02.CrossRefGoogle Scholar
Milton, D. J. (1973). Water and processes of degradation in the Martian landscape. J. Geophys. Res., 78, 4037–48.CrossRefGoogle Scholar
Milton, D. J., Barlow, B. C., Breett, R., et al. (10 authors) (1972). Gosses Bluff impact structure, Australia. Science, 175, 1119–207.CrossRefGoogle ScholarPubMed
Mischna, M. A., Richardson, M. I., Wilson, R. J. and McCleese, D. J. (2003). On the orbital forcing of martian water and CO2 cycles: a general circulation model study with simplified volatile schemes. J. Geophys. Res., 108(E6), doi:10.1029/2003JE002051.CrossRefGoogle Scholar
Mitrofanov, L., Anfimov, D., Kozyrev, M., et al. (2002). Maps of subsurface hydrogen from the High Energy Neutron Detector, Mars Odyssey. Science, 297, 78–81.CrossRefGoogle ScholarPubMed
Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P. and Friend, C. R. (1996). Evidence of life on Earth before 3,800 million years ago. Nature, 384, 55–9.CrossRefGoogle ScholarPubMed
Mojzsis, S. J. and Mark, T. (2000). Vestiges of a beginning: clues to the emergent biosphere recorded in the oldest known sedimentary rocks. GSA Today, 10(4), 1–6.Google Scholar
Montesi, L. and Zuber, M. T. (2003). Clues to the lithospheric structure of Mars from wrinkle ridge set and localization instability. J. Geophys. Res., 108(E6), doi: 10.1029/2002 JE001974.CrossRefGoogle Scholar
Moore, J. M. and Wilhelms, D. E. (2001). Hellas as a possible site of ancient ice-covered lakes on Mars. Icarus, 154, 258–76.CrossRefGoogle Scholar
Moore, J. M., Clow, G. D., Davis, W. L., et al. (8 authors) (1995). The circum-Chryse region as a possible example of a hydrologic cycle on Mars: geologic observations and theoretical evaluation. J. Geophys. Res., 100(E3), 5433–47.CrossRefGoogle ScholarPubMed
Morris, R. V., Klingelhofer, G., Bernhardt, B., et al. (17 authors) (2004). Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit rover. Science, 305, 833–6.CrossRefGoogle ScholarPubMed
Mouginis-Mark, P. J. (1990). Recent water release in the Tharsis region of Mars. Icarus, 84, 363–73.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Wilson, L. and Head, J. W. (1982). Explosive volcanism on Hecates Tholus, Mars: investigation of eruption conditions. J. Geophys. Res., 87, 411–14.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Wilson, L. and Zimbelman, J. R. (1988). Polygenetic eruptions on Alba Patera, Mars. Bull. Volc., 50, 361–79.CrossRefGoogle Scholar
Murray, J. B., Muller, J-P, Neukum, G., et al. (12 authors) (2005). Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to the equator. Nature, 434, 352–6.CrossRefGoogle ScholarPubMed
Musselwhite, D. S., Swindle, T. D. and Lunine, J. I. (2001). Liquid CO2 breakout and formation of recent small gullies on Mars. Geophys. Res. Lett., 28, 1283–5.CrossRefGoogle Scholar
Mustard, J. F., Cooper, C. D. and Rifkin, M. K. (2001). Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature, 412, 4211–414.CrossRefGoogle ScholarPubMed
Mustard, J. F., Poulet, F., Gendrin, A., et al. (2005). Olivine and pyroxene diversity in the crust of Mars. Science, 307, 1594–7.CrossRefGoogle ScholarPubMed
Mutch, T. A., Arvidson, R. A., Binder, A. B., Guiness, E. A. and Morris, E. C. (1977). The geology of the Viking lander 2 site. J. Geophys. Res., 82, 4452–67.CrossRefGoogle Scholar
National Research Council (1990). The Search for Life's Origins. Washington, D.C.: National Academy Press.
National Research Council (1992). Biological Contamination of Mars: Issues and Recommendations. Washington, D.C.: National Academy Press.
National Research Council (1999). Size Limits of Very Small Microorganisms. Washington, D.C.: National Academy Press.
Nedell, S. S., Squyres, S. W. and Anderson, D. W. (1987). Origin and evolution of the layered deposits in the Valles Marineris, Mars. Icarus, 70, 409–41.CrossRefGoogle Scholar
Neukum, G. (1983). Meteoritenbombardement und Datierung planetarer Oberflächen. Habilitation Dissertation for Faculty Membership, Ludwig-Maximilians University, Munich, Germany.
Neukum, G. and Hiller, K. (1981). Martian ages. J. Geophys. Res., 86(B4), 3097–121.CrossRefGoogle Scholar
Neukum, G. and Ivanov, B. A. (1994). Crater size distributions and impact probabilities. In Hazards due to Comets and Asteroids, ed. Gehrels, T.. Tucson: University of Arizona Press, pp. 359–416.Google Scholar
Neukum, G., Konig, B. and Arkani-Hamad, J. (1975). A study of lunar impact crater size distributions. The Moon, 12, 201–29.CrossRefGoogle Scholar
Neukum, G., Ivanov, B. A. and Hartmann, W. K. (2001). Cratering record in the inner solar system in relation to the lunar reference system. In Chronology and Evolution of Mars, ed. Kallenbach, R.et al. Dordrecht: Kluwer, pp. 55–86.CrossRefGoogle Scholar
Neukum, G., Jaumannn, R., Hoffmann, H., et al. (2004). Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature, 432, 971–9.CrossRefGoogle ScholarPubMed
Neumann, G. A., Zuber, M. T., Wieczorek, M. A., McGovern, P. J., Lemoine, F. G. and Smith, D. E. (2004). Crustal structure of Mars from gravity and topography. J. Geophys. Res., 109(E8), doi:10.1029/2004JE002262.CrossRefGoogle Scholar
Newman, M. J. and Rood, R. T. (1977). Implications of solar evolution for Earth's early atmosphere. Science, 198, 1035–7.CrossRefGoogle ScholarPubMed
Newsome, H. E. (1980). Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus, 44, 207–16.CrossRefGoogle Scholar
Newsome, H. E., Britell, G. E., Hibbets, C. A., Crossey, L. J. and Kudo, A. M. (1996). Impact cratering and the formation of crater lakes on Mars. J. Geophys. Res., 101, 14,951–5.CrossRefGoogle Scholar
Newsome, H. E., Barber, C. A., Hare, T. M., Schelbe, R. T., Sutherland, V. A. and Feldman, W. C. (2003). Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: implications for formation of hematite deposits on Mars. J. Geophys. Res., 108(E12), doi:10.1029/2002JE01993.Google Scholar
Nimmo, F. (2000). Dike intrusion as a possible cause of linear martian magnetic anomalies. Geology, 28, 391–4.2.0.CO;2>CrossRefGoogle Scholar
Nimmo, F. and Tanaka, K. (2005). Early crustal evolution of Mars. Ann. Rev. Earth Planet. Sci., 33, 533–6.CrossRefGoogle Scholar
Nisbet, E. G. and Sleep, N. H. (2001). The habitat and nature of early life. Nature, 409, 1083–91.CrossRefGoogle ScholarPubMed
Nummedal, D. and Prior, D. B. (1981). Generation of martian chaos and channels by debris flows. Icarus, 45, 77–86.CrossRefGoogle Scholar
Nyquist, L. E., Bogard, D. D., Shih, C.-Y., Greshake, A., Stoffler, D. and Eugster, O. (2001). Ages and geologic histories of martian meteorites. In Chronology and Evolution of Mars, ed. Kallenbach, R.et al. Dordrecht: Kluwer, pp. 105–64.CrossRefGoogle Scholar
Oberbeck, V. R. (1975). The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys. Space Phys., 13, 337–62.CrossRefGoogle Scholar
Pace, N. R. (1991). Origin of life – facing up to the physical setting. Cell, 65, 531–3.CrossRefGoogle ScholarPubMed
Paige, D. A. (1992). The thermal stability of near-surface ground ice on Mars. Nature, 356, 43–5.CrossRefGoogle Scholar
Palluconi, F. D. and Kieffer, H. H. (1981). Thermal inertia mapping of Mars from 60°S to 60°N. Icarus, 45, 415–26.CrossRefGoogle Scholar
Parker, T. J., Saunders, R. S. and Schneeberger, D. M. (1989). Transitional morphology in the west Deuteronilus Mensae region of Mars: implications for modification of the lowland/upland boundary. Icarus, 82, 111–45.CrossRefGoogle Scholar
Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. and Schneeberger, D. M. (1993). Coastal geomorphology of the martian northern plains. J. Geophys. Res., 98, 11,061–78.CrossRefGoogle Scholar
Parker, T. J., Clifford, S. M. and Banerdt, W. B. (2000). Argyre Planitia and the Mars global hydrologic cycle. LPSC XXXI, Abstract 2033.
Pathare, A. V. and Paige, D. A. (2005). The effects of martian orbital variations upon the sublimation and relaxation of north polar troughs and scarps. Icarus, 174, 419–43.CrossRefGoogle Scholar
Pathare, A. V., Paige, D. A. and Tutttle, E. (2005). Viscous relaxation of craters within the martian south polar layered deposits. Icarus, 174, 396–418.CrossRefGoogle Scholar
Pechman, J. C. (1980). The origin of polygonal troughs on the northern plains of Mars. Icarus, 42, 185–210.CrossRefGoogle Scholar
Pepin, R. O. (1991). On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus, 92, 2–79.CrossRefGoogle Scholar
Pepin, R. O. (1994). Evolution of the martian atmosphere. Icarus, 111, 289–304.CrossRefGoogle Scholar
Phillips, R. J., Saunders, R. S. and Conel, J. E. (1973). Mars: crustal structure inferred from gravity anomalies. J. Geophys. Res., 78, 4815–20.CrossRefGoogle Scholar
Phillips, R. J., Zuber, M. T., Solomon, S. C., et al. (2001). Ancient geodynamics and global-scale hydrology on Mars. Science, 291, 2587–91.CrossRefGoogle ScholarPubMed
Picardi, G., Plaut, J. J., Biccari, D., et al. (2005). Radar soundings of the subsurface of Mars. Science, 310. 1925–8.CrossRefGoogle ScholarPubMed
Pieri, D. C. (1980). Martian valleys: morphology, distribution, age and origin. Science, 210, 895–7.CrossRefGoogle ScholarPubMed
Pike, R. J. (1980a). Control of crater morphology by gravity and target type: Mars, Earth, Moon. LPSC XI, pp. 2159–89.Google Scholar
Pike, R. J. (1980b). Formation of complex impact craters: evidence from Mars and other planets. Icarus, 43, 1–19.CrossRefGoogle Scholar
Plescia, J. B. (2000). Geology of the Uranius group volcanic constructs: Uranius Patera, Ceraunius Tholus and Uranius Tholus. Icarus, 143, 376–96.CrossRefGoogle Scholar
Plescia, J. B. (2003a). Cerberus Fossae, Elysium, Mars: a source for lava and water. Icarus, 164, 79–95.CrossRefGoogle Scholar
Plescia, J. B. (2003b). Tharsis Tholus: an unusual martian volcano. Icarus, 165, 223–41.CrossRefGoogle Scholar
Plescia, J. B. (2004). Morphometric properties of martian volcanoes. J. Geophys. Res., 109, E03003, doi:10.1029.202JE002031.CrossRefGoogle Scholar
Plescia, J. B. and Golombek, M. P. (1986). Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol. Soc. Am. Bull., 97, 1289–99.2.0.CO;2>CrossRefGoogle Scholar
Plescia, J. B. and Saunders, R. S. (1979). The chronology of martian volcanoes, LPSC XIX, 2841–59.Google Scholar
Plescia, J. B. and Saunders, R. S. (1982). Tectonic history of the Tharsis region of Mars. J. Geophys. Res., 87, 9775–91.CrossRefGoogle Scholar
Pollack, J. B., Colkburn, D. S., Flaser, M., Kahn, R., Carlston, C. E., Pidek, D. (1979). Properties and effects of dust particles suspended in the martian atmosphere. J. Geophys. Res., 84, 2929–45.CrossRefGoogle Scholar
Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K. (1987). The case for a warm, wet climate on early Mars. Icarus, 71, 203–24.CrossRefGoogle ScholarPubMed
Pollack, J. B., Roush, T., Witteborn, F., et al. (1990). Thermal emission spectra of Mars (5.4–10.5 μm): Evidence for sulfates, carbonates and hydrates. J. Geophys. Res., 95, 14,595–627.CrossRefGoogle Scholar
Postawko, S. E. and Kuhn, W. R. (1986). Effect of greenhouse gases on (CO2, H2O, SO2) on martian paleoclimates. J. Geophys. Res., 91, D431–8.CrossRefGoogle Scholar
Prettyman, T. H., Feldman, W. C., Mellon, M. T., et al. (13 authors) (2004). Composition and structure of the martian surface at high southern latitudes from neutron spectroscopy. J. Geophys. Res., 109(E5), doi:10.1029/2003JE002139.CrossRefGoogle Scholar
Rabinowitz, D. L., Bowell, E., Shoemaker, E. M. and Muinonem, K. (1994). The population of Earth-crossing asteroids. In Hazards due to Comets and Asteroids, ed. Gehrels, T.. Tucson: University of Arizona Press, pp. 285–312.Google Scholar
Reese, C. C., Solomatov, V. S. and Baumgardner, J. R. (2002). Survival of impact-induced thermal anomalies in the martian mantle. J. Geophys. Res., 107(E10), doi:10.1029/2000JE001474.CrossRefGoogle Scholar
Reider, R., Gellert, R., Anderson, R. C., et al. (2004). Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science, 306, 1746–9.CrossRefGoogle Scholar
Reimers, C. E. and Komar, P. D. (1979). Evidence for explosive volcanic density currents on certain martian volcanoes. Icarus, 39, 88–110.CrossRefGoogle Scholar
Rice, J. W., Christensen, P. R., Ruff, S. W. and Harris, J. C. (2003). Martian fluvial landforms: a THEMIS perspective after one year at Mars. LPSC XXXIV, Abstract 2091.
Ringwood, A. E. (1979). Origin of the Earth and the Moon. New York: Springer Verlag.CrossRefGoogle Scholar
Robers, M. J. (2005). Jökulhlaups: A reassessment of floodwater flow through glaciers. Rev. Geophys., 43, RG1002.Google Scholar
Robinson, M. S. and Tanaka, K. L. (1990). Magnitude of a catastrophic flood event at Kasei Vallis, Mars. Geology, 18, 902–5.2.3.CO;2>CrossRefGoogle Scholar
Roddy, D. J. (1977). Large scale impact and explosion craters: comparison of morphological and structural analogs. In Impact and Explosion Cratering, ed. Roddy, D. J.. New York: Pergamon, pp. 185–246.Google Scholar
Roddy, D. J. (1979). Structural deformation at the Flynn Creek impact structure, Tennessee: a preliminary report on deep drilling. LPSC XI, pp. 2519–34.Google Scholar
Rossbacher, L. A. and Judson, S. (1981). Ground ice on Mars: inventory, distribution and resulting landforms. Icarus, 45, 35–59.CrossRefGoogle Scholar
Rothschild, L. J. and Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409, 1092–101.CrossRefGoogle ScholarPubMed
Rotto, S. and Tanaka, K. L. (1995). Geologic/geomorphic map of the Chryse Planitia region of Mars. U.S. Geol. Survey Misc. Inv. Map I-2441.
Russell, P. S. and Head, J. W. (2003). Elysium-Utopia flows as mega-lahars: a model of dike intrusion, cryosphere cracking and water-sediment release. J. Geophys. Res., 108(E6), doi:10.1029/2002JE001995.CrossRefGoogle Scholar
Ryan, M. P. (1987). Elasticity and contractancy of Hawaiian olivine tholeiite and its role in the stability and structural evolution of subcaldera magma reservoirs and rift systems. In Volcanism in Hawaii, ed. Decker, R. W.et al. U.S. Geolo. Survey Prof. Paper 1350, pp. 1395–447.Google Scholar
Ryder, G. (2002). Mass flux in the ancient Earth-Moon system and benign implications for origin of life on Earth. J. Geophys. Res., 107(E4), doi:10.1029/2001JE001583.CrossRefGoogle Scholar
Sagan, C. (1977). Reducing greenhouses and the temperature history of Earth and Mars. Nature, 269, 224–6.CrossRefGoogle Scholar
Sagan, C. and Chyba, C. (1997). The early faint sun paradox: organic shielding of the ultraviolet-labile greenhouse gases. Science, 276, 1217–21.CrossRefGoogle ScholarPubMed
Schaeffer, M. W. (1993). Aqueous geochemistry on early Mars. Geochim. Cosmochim. Acta, 57, 4619–25.CrossRefGoogle Scholar
Schidlowski, M., Hayes, J. M. and Kaplan, I. R. (1983). Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen. In Earth's Earliest Biosphere, ed. Schopf, J. W.. Princeton: Princeton University Press, pp. 149–86.Google Scholar
Schmidt, R. M. and Housen, K. R. (1987). Some recent advances in the scaling of impact and explosion cratering. Int. J. Impact Eng., 5, 543–60.CrossRefGoogle Scholar
Schopf, J. W. (1999). Cradle of Life: The Discovery of Earth's Earliest Fossils. Princeton: Princeton University Press.Google Scholar
Schopf, J. W. and Walter, M. R. (1983). Archean microfossils: evidence of ancient microbes. In Earth's Earliest Biosphere, ed. Schopf, J. W.. Princeton: Princeton University Press, pp. 214–39.Google Scholar
Schopf, J. W., Kudtrysvtsev, A. B., Agresti, D. G., et al. (2002). Laser-Raman imagery of Earth's earliest fossils. Nature, 416, 73–6.CrossRefGoogle ScholarPubMed
Schorghofer, N. and Aharonson, O. (2004). Stability and exchange of subsurface ice on Mars. LPSC XXXV, Abstract 1463.
Schubert, G., Solomon, S. C., Turcotte, D. L., Drake, M. J. and Sleep, N. H. (1992). Origin and thermal evolution of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 147–83.Google Scholar
Schultz, P. H. (1992). Atmospheric effects on ejecta emplacement and crater formation from Magellan. J. Geophys. Res., 97, 16,183–248.Google Scholar
Schultz, P. H. and Gault, D. E. (1979). Atmospheric effects on martian ejecta emplacement. J. Geophys. Res., 84, 7669–87.CrossRefGoogle Scholar
Schultz, P. H. and Gault, D. E. (1984). On the formation of contiguous ramparts around martian impact craters. LPSC XV, pp. 732–3.Google Scholar
Schultz, P. H. and Lutz, A. B. (1988). Polar wandering on Mars. Icarus, 73, 91–141.CrossRefGoogle Scholar
Schultz, P. H., Schultz, R. A. and Rogers, J. (1982). The structure and evolution of ancient impact basins on Mars. J. Geophys. Res., 87, 9803–20.CrossRefGoogle Scholar
Schultz, R. A. (1991). Structural development of Coprates Chasma and western Ophir Planum, central Marineris rift, Mars. J. Geophys. Res., 96, 22,777–92.CrossRefGoogle Scholar
Schultz, R. A. and Frey, H. V. (1990). A new survey of multiring impact basins on Mars. J. Geophys. Res., 95, 14,175–289.CrossRefGoogle Scholar
Schultz, R. A. and Lin, J. (2001). Three-dimensional normal faulting models of Valles Marineris, Mars, and geodynamical implications. J. Geophys. Res., 106, 16,549–66.CrossRefGoogle Scholar
Sclater, J. G., Jaupart, C. and Galson, D. (1980). The heat flow through oceanic and continental crust and the heat loss of the earth. Rev. Geophys. Space Phys., 18, 269–311.CrossRefGoogle Scholar
Scott, D. H. and Dohm, J. M. (1992). Mars highland channels: an age reassessment. LPSC XXIII, pp. 1251–2.Google Scholar
Scott, D. H. and Tanaka, K. L. (1986). Geologic map of the western equatorial region of Mars. U.S. Geol. Survey Misc. Map I-1802-A.
Scott, E. D. and Wilson, L. (2002). Plinian eruptions and passive collapse events as mechanisms of formation for martian pit chain craters. J. Geophys. Res., 107(E4), 10.1029/2000JE001432.CrossRefGoogle Scholar
Segura, T. L., Toon, O. B., Colaprete, A. and Zahnle, K. (2002). Environmental effects of large impacts. Science, 298, 1977–80.CrossRefGoogle ScholarPubMed
Seibert, N. M. and Kargel, J. S. (2001). Small-scale martian polygonal terrain: implications for liquid surface water. Geophys. Res. Lett., 28, 899–902.CrossRefGoogle Scholar
Shaller, P. J., Murray, B. C. and Albee, A. L. (1989). Subaqueous landslides on Mars? LPSC XX, pp. 990–1.Google Scholar
Sharp, R. P. (1963). Wind ripples. J. Geol., 71, 617–36.CrossRefGoogle Scholar
Sharp, R. P. (1973a). Mars: troughed terrains. J. Geophys. Res., 78, 4063–72.CrossRefGoogle Scholar
Sharp, R. P. (1973b). Mars: fretted and chaotic terrains. J. Geophys. Res., 78, 4222–30.CrossRefGoogle Scholar
Sharp, R. P. and Malin, M. C. (1975). Channels on Mars. Geol. Soc. Am. Bull., 86, 593–609.2.0.CO;2>CrossRefGoogle Scholar
Shean, D. E., Head, J. W. and Marchant, D. R. (2005). Origin and evolution of cold-based tropical mountain glacier on Mars: the Pavonis Mons fan-shaped deposit. J. Geophys. Res., 110(E5), 10.1029/2004JR002360.CrossRefGoogle Scholar
Shoemaker, E. M. (1966). Preliminary analysis of the fine structure of the lunar surface in Mare Cognitum. In The Nature of the Lunar Surface, ed. Hess, W. N.et al. Baltimore: Johns Hopkins University Press, pp. 23–121.Google Scholar
Shoemaker, E. M. and Wolfe, R. F. (1982). Cratering time scales for the Galilean satellites. In Satellites of Jupiter, ed. Morrison, D.. Tucson: University of Arizona Press, pp. 277–339.Google Scholar
Shreve, R. L. (1966a). Statistical law of stream numbers. J. Geol., 74, 17–37.CrossRefGoogle Scholar
Shreve, R. L. (1966b). Sherman landslide, Alaska. Science, 154, 1639–43.CrossRefGoogle Scholar
Sleep, N. H. (1994). Martian plate tectonics. J. Geophys. Res., 99, 5639–55.CrossRefGoogle Scholar
Sleep, N. H. and Zahnle, K. (1998). Refugia from asteroid impact on early Mars and the early Earth. J. Geophys. Res., 103(E12), 28,529–44.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., et al. (12 authors) (1998). Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter. Science, 279, 1686–92.CrossRefGoogle ScholarPubMed
Smith, D. E., Sjogren, W. L., Tyler, G. L., Balmino, G., Lemoine, F. G. and Konopliv, A. S. (1999). The gravity field of Mars: results from Mars Global Surveyor. Science, 286, 94–7.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., Solomon, S. C., et al. (19 authors) (1999). The global topography of Mars and implications for surface evolution, Science, 284, 1495–1503.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., Frey, H. V., et al. (2001). Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping. J. Geophys. Res., 106(E10), 23,689–722.CrossRefGoogle Scholar
Smith, P. H., Zuber, M. T., Frey, H. V., et al. (19 authors) (1997). The imager for Mars Pathfinder experiment. J. Geophys. Res., 102, 4003–25.CrossRefGoogle Scholar
Smrekar, S. E., McGill, G. E., Raymond, C. A. and Dimitriou, A. M. (2004). Geologic evolution of the martian dichotomy in the Ismenius area of Mars and implications for plains magnetization. J. Geophys. Res., 109(E11), doi:10.1029/2004JE002260CrossRefGoogle Scholar
Soderblom, L. A., Kriedler, T. J. and Masursky, H. (1973). Latitudinal distribution of debris mantles on the martian surface. J. Geophys. Res., 78, 4117–22.CrossRefGoogle Scholar
Soderblom, L. A., et al. (2004). Soils of Eagle crater and Meridiani Planum at the Opportunity rover landing site. Science, 306, 1723–6.CrossRefGoogle ScholarPubMed
Solomon, S. C. and Head, J. W. (1982). Evolution of the Tharsis province of Mars: the importance of heterogeneous lithospheric thickness and volcanic construction. J. Geophys. Res., 87, 9755–74.CrossRefGoogle Scholar
Solomon, S. C., et al. (17 authors) (2005). New perspectives on ancient Mars. Science, 307, 1214–20.CrossRefGoogle ScholarPubMed
Spencer, J. R. and Croft, S. K. (1986). Valles Marineris as karst. NASA Tech. Memo 88383, 193–5.
Spencer, J. R. and Fanale, F. P. (1990). New models for the origin of Valles Marineris closed depressions. J. Geophys. Res., 95, 14,301–13.CrossRefGoogle Scholar
Spohn, T., Acuna, M. H., Breuer, D., et al. (2001). Geophysical constraints on the evolution of Mars. In Chronology and Evolution of Mars, ed. Kallenback, R.et al. Dordrecht: Kluwer, pp. 231–62.CrossRefGoogle Scholar
Squyres, S. W. (1979). The distribution of lobate debris aprons and similar flows on Mars. J. Geophys. Res., 84, 8087–96.CrossRefGoogle Scholar
Squyres, S. W. and Carr, M. H. (1986). Geomorphic evidence for the distribution of ground ice on Mars. Science, 231, 249–52.CrossRefGoogle ScholarPubMed
Squyres, S. W. and Kasting, J. F. (1994). Early Mars: how warm and how wet?Science, 265, 744–8.CrossRefGoogle ScholarPubMed
Squyres, S. W. and Knoll, A. H. (2005). Sedimentary rock at Meridiani Planum: origin, diagenesis and implications for life. Earth Planet. Sci. Lett., 240, 1–10.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Baumgartner, E. T., et al. (12 authors) (2003). Athena Mars rover science investigation. J. Geophys. Res., 108(E12), doi:10.1029/2003JE002121CrossRefGoogle Scholar
Squyres, S. W., et al. (50 authors) (2004a). The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars. Science, 306, 1698–1714.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F., et al. (2004b). The Spirit rover's Athena science investigation at Gusev crater, Mars. Science, 305, 794–9.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al. (2004c). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 1709–14.CrossRefGoogle Scholar
Squyres, S. W., Arvidon, R. E., Blaney, D. W., et al. (14 authors) (2006). The rocks of the Columbia Hills. J. Geophys. Res., 111, E02S11, doi:10.1029/2005JR002562CrossRefGoogle Scholar
Stepinski, T. F. and Coradetti, S., (2004). Systematic differences in topography of martian and terrestrial drainage basins. LPSC XXXV, Abstract 166.
Stepinski, T. F. and O'Hara, W. J. (2003). Vertical analysis of martian drainage basins. LPSC, XXXIV, Abstract 1659.
Stetter, K. O. (1996). Hyperthermophiles in the history of life. In Evolution of Hydrothermal Ecosystems on Earth (and Mars?), ed. Walter, M.. Ciba Foundation Symposium 202. New York: Wiley, pp. 1–18.Google Scholar
Stevens, T. O. and McKinley, J. P. (1995). Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science, 270, 450–4.CrossRefGoogle Scholar
Stevenson, D. J. (2001). Mars' core and magnetism. Nature, 412, 214–19.CrossRefGoogle ScholarPubMed
Stevenson, D. J., Spohn, T. and Schubert, G. (1983). Magnetism and thermal evolution of the terrestrial planets. Icarus, 54, 466–89.CrossRefGoogle Scholar
Stewart, E. M. and Head, J. W. (2001). Ancient martian volcanoes in the Aeolis region: new evidence from MOLA data. J. Geophys. Res., 106, 17,505–13.CrossRefGoogle Scholar
Stewart, S. T. and Nimmo, F. (2002). Surface runoff features on Mars: testing of the carbon dioxide hypothesis. J. Geophys. Res., 107(E9), doi:10.1029/2000JE001465CrossRefGoogle Scholar
Stöffler, D. and Ryder, G. (2001). Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System. In Chronology and Evolution of Mars, ed. Kallenbach, R.et al. Dordrecht: Kluwer, pp. 9–54.CrossRefGoogle Scholar
Strahler, A. N. (1958). Dimensional analysis applied to fluvially eroded landforms. Geol. Soc. Am. Bull., 69, 279–300.CrossRefGoogle Scholar
Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In Handbook of Applied Hydrology, ed. Chow, V. T.. New York: McGraw Hill.Google Scholar
Tanaka, K. L. (1985). Ice-lubricated gravity spreading of the Olympus Mons aureole deposits. Icarus, 62, 191–206.CrossRefGoogle Scholar
Tanaka, K. L. (1986). The stratigraphy of Mars. Proc. 17th Lunar and Planet. Sci. Conf., J. Geophys. Res., 91, E139–58.CrossRefGoogle Scholar
Tanaka, K. L. (1999). Debris-flow origin for the Simud/Tiu deposit on Mars. J. Geophys. Res., 104, 8637–52.CrossRefGoogle Scholar
Tanaka, K. L. and Golombek, M. P. (1989). Martian tension fractures and formation of grabens and collapse features in Valles Marineris. LPSC XIX, pp. 383–96.Google Scholar
Tanaka, K. L. and Leonard, G. J. (1995). Geology and landscape evolution of the Hellas region of Mars. J. Geophys. Res., 100(E3), 5407–32.CrossRefGoogle Scholar
Tanaka, K. L. and Scott, D. H. (1987). Geologic map of the polar regions of Mars. U.S. Geol. Survey, Misc. Inv. Map I-1802C.
Tanaka, K. L., Golombek, N. P. and Banerdt, W. B. (1991). Reconciliation of stress and structural histories of the Tharsis region of Mars. J. Geophys. Res., 96, 15,617–33.CrossRefGoogle Scholar
Tanaka, K. L., Banerdt, W. B., Kargel, J. S. and Hoffman, N. (2001). Huge CO2 charged debris flow deposit and tectonic sagging in the northern plains of Mars. Geology, 29, 427–30.2.0.CO;2>CrossRefGoogle Scholar
Thomas, P. C. and Gierasch, P. J. (1985). Dust devils on Mars. Science, 230, 175–7.CrossRefGoogle ScholarPubMed
Thomas, P. C. and Veverka, J. (1979). Seasonal and secular variations of wind streaks on Mars: an analysis of Mariner 9 and Viking data. J. Geophys. Res., 84, 8131–46.CrossRefGoogle Scholar
Thomas, P. C., Squyres, S. W. and Carr, M. H. (1990). Flank tectonics of martian volcanoes. J. Geophys. Res., 95, 14,345–55.CrossRefGoogle Scholar
Thomas, P. C., et al. (1992). Polar deposits of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 767–95.Google Scholar
Thomas, P. C., Malin, M. C., Edgett, K. S., et al. (2000). North-south geological differences between the residual polar caps of Mars. Nature, 404, 161–5.CrossRefGoogle ScholarPubMed
Thomas, P. C., Malin, M. C., James, P. B., Cantor, B. A., Williams, R. M., and Gierasch, P., et al. (2005). South polar residual cap of Mars: Features, stratigraphy and changes. Icarus, 174, 535–59.CrossRefGoogle Scholar
Thorarinsson, S. (1957). The jökulhlaup from the Katla area in 1955 compared with other jökulhlaups in Iceland. Reykjavik Mus. Nat. Hist., Misc. Paper 18, 21–5.Google Scholar
Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A. and Bilski, K. (1980). The astronomical theory of climate change on Mars. Icarus, 44, 552–607.CrossRefGoogle Scholar
Tosca, N. J., McLennan, S. M., Clark, B. C., et al. (2005). Geochemical modeling of evaporative processes on Mars: insight from the sedimentary record at Meridiani Planum. Earth Planet. Sci. Lett., 240, 122–48.CrossRefGoogle Scholar
Touma, J. and Wisdom, J. (1993). The chaotic obliquity of Mars. Science, 259, 1294–6.CrossRefGoogle ScholarPubMed
Treiman, A. H. and Louge, M. Y. (2004). Martian slope streaks and gullies: origins as dry granular flows. LPSC XXXV, Abstract 1323.
Treiman, A. H., Drake, M. J., Janssens, N. J., Wolff, R. and Enihara, M. (1986). Core formation in the Earth and the shergottite parent body. Geochim. Cosmochim. Acta, 50, 1061–70.CrossRefGoogle Scholar
Turcotte, D. L., Willeman, R. J., Haxby, W. F. and Norberry, J. (1981). Role of membrane stresses in support of planetary topography. J. Geophys. Res., 86, 3951–9.CrossRefGoogle Scholar
Engelhardt, W., Bertsch, W., Stoffler, D., Groschopf, P. and Reiff, W. (1967). Anzeichen für den meteoritischen Ursprung des Beckens von Steinheim. Naturwissenschaften, 54, 198–9.CrossRefGoogle Scholar
Wahrhaftig, C. and Cox, A. (1959). Rock glaciers in the Alaska Range. Geol. Soc. Am. Bull., 70, 383–426.CrossRefGoogle Scholar
Wallace, D. and Sagan, C. (1979). Evaporation of ice in planetary atmospheres: ice-covered rivers on Mars. Icarus, 39, 385–400.CrossRefGoogle Scholar
Walter, M. R. (1983). Archean stromatolites: evidence of the Earth's earliest Benthos. In Earth's Earliest Biosphere, ed. Schopf, J. W.. Princeton: Princeton University Press, pp. 187–213.Google Scholar
Wänke, H. (1981). Constitution of terrestrial planets. Phil. Trans. Roy. Soc. London Ser. A, 303, 287–303.CrossRefGoogle Scholar
Wänke, H. and Dreibus, G. (1988). Chemical composition and accretion history of terrestrial planets. Phil. Trans. Roy. Soc. London Ser. A, 325, 545–57.CrossRefGoogle Scholar
Ward, W. R. (1992). Long term orbital and spin dynamics of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 298–320.Google Scholar
Washburn, A. L. (1980). Geocryology. New York: Wiley.Google Scholar
Watters, T. R. (1991). Origin of periodically spaced wrinkle ridges on the Tharsis plateau of Mars. J. Geophys. Res., 96, 15,599–616.CrossRefGoogle Scholar
Watters, T. R. (1993). Compressional tectonism on Mars. J. Geophys. Res., 98(E5), 17,049–60.CrossRefGoogle Scholar
Weiss, B. P., Vali, H., Baundenbacher, F. J., et al. (2002). Records of an ancient magnetic field in ALH84001. Earth Planet. Sci. Lett., 201, 449–64.CrossRefGoogle Scholar
Weitz, C. M. and Parker, T. J. (2000). New evidence that the Valles Marineris interior deposits formed in standing bodies of water. LPSC XXXI, Abstract 1693.
Weitz, C. M., Parker, T. J., Mulmer, M. H., Anderson, F. S. and Grant, J. A. (2003). Geology of the Melas Chasma landing site for the Mars Exploration Rover mission. J. Geophys. Res., 108(E12), doi:10,1029/2002JE002014CrossRefGoogle Scholar
Wenrich, M. L. and Christensen, P. R. (1996). A formational model for the martian polygonal terrains. LSPC XXVII, pp. 1419–20.Google Scholar
Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. J. Geol., 30, 377–92.CrossRefGoogle Scholar
Whalley, W. B. and Azizi, F. (2003). Rheological models of active rock glaciers: evaluation, critique and possible test. Permafrost and Periglacial Processes, 5, 37–51.CrossRefGoogle Scholar
Wilhelms, D. E. (1987). The geologic history of the Moon. U.S. Geol. Survey, Prof. Paper 1348.
Wilhelms, D. E. and Squyres, S. W. (1984). The martian hemisphere dichotomy may be due to a large impact. Nature, 309, 138–40.CrossRefGoogle Scholar
Williams, P. J. and Smith, M. W. (1989). The frozen Earth. Cambridge: CUP.CrossRefGoogle Scholar
Williams, R. M. and Phillips, R. J. (2001). Morphometric measurements of martian valley networks from Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res., 106, 23,737–51.CrossRefGoogle Scholar
Williams, R. M., Phillips, R. J. and Malin, M. C. (2000). Flow rates and duration within Kasei Vallis, Mars: implications for the formation of a martian ocean. Geophys. Res. Lett., 27, 1073–6.CrossRefGoogle Scholar
Wilshire, H. G., Offield, T. W., Howard, K. A. and Cummings, D. (1972). Geology of the Sierra Madera cryptovolcanic structure, Pecos County, Texas. U.S. Geol. Survey, Prof. Paper 599-H.
Wilson, L. and Head, J. W. (1994). Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys., 32, 221–63.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (2001). Evidence for episodicity in the magma supply to the large Tharsis volcanoes. J. Geophys. Res., 106, 1423–33.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (2002). Tharsis-radial graben systems as the surface manifestations of plume related dike intrusion complexes: models and implications. J. Geophys. Res., 107(E8), 10.1029/2001JE001593CrossRefGoogle Scholar
Wilson, L. and Mouginis-Mark, P. J. (2003). Phreatomagmatic explosive origin of Hrad Vallis, Mars. J. Geophys. Res., 108(E8), doi 10.1029/2002JE001927CrossRefGoogle Scholar
Wilson, L., Ghatan, G. J., Head, J. W. and Mitchell, K. L. (2004). Mars outflow channels: a reappraisal of the estimation of water flow velocities from water depths, regional slopes and channel floor properties. J. Geophys. Res., 109(E9), doi:10.1029/2004JE002281CrossRefGoogle Scholar
Wilson, M. (1995). Igneous Petrogenesis. London: Chapman 8 Hall.Google Scholar
Wise, D. U., Golombek, M. P. and McGill, G. E. (1979). Tectonic evolution of Mars. J. Geophys. Res., 84, 7934–9.CrossRefGoogle Scholar
Withers, P. and Neumann, G. A. (2001). Enigmatic northern plains of Mars. Nature, 410, 651.CrossRefGoogle ScholarPubMed
Woese, C. R. (1987). Bacterial evolution. Microbiol. Rev., 51, 221–71.Google ScholarPubMed
Woese, C. R. (1990). Toward a natural system of organisms. Proc Natl. Acad. Sci. U.S.A., 87, 4576–9.CrossRefGoogle Scholar
Wood, C. A. and Ashwal, L. D. (1981). SNC meteorites: igneous rocks from Mars? LPSC XII, pp. 1359–75.Google Scholar
Wood, J. A. (1979). The Solar System. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
Wu, S. S. C. (1978). Mars synthetic topographic mapping. Icarus, 33, 417–40.CrossRefGoogle Scholar
Wyatt, M. B. and McSween, H. Y. (2002). Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature, 417, 263–6.CrossRefGoogle ScholarPubMed
Wyatt, M. B., McSween, H. Y., Tanaka, K. L. and Head, J. W. (2004). Global geologic context for rock types and surface alteration on Mars. Geology, 32, 645–8.CrossRef
Yin, G., Jacobsen, S. B., Yamashita, K., Blichert-Toft, J., Tetork, P. and Abarede, F. (2000). A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature, 418, 949–52.CrossRefGoogle Scholar
Yung, Y. L., Nair, H. and Gerstell, M. F. (1997). CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation. Icarus, 130, 222–4.CrossRefGoogle ScholarPubMed
Zahnle, K. (1998). Origins of atmospheres. In Origins, ed. Woodward, C. E.et al. Astron. Soc. Pacific Conf. Series, 148, 364–91.Google Scholar
Zhong, S. and Zuber, M. T. (2001). Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett., 189, 75–84.CrossRefGoogle Scholar
Zimbelman, J. R. and Greeley, R. (1982). Surface properties of ancient cratered terrain in the northern hemisphere of Mars. J. Geophys. Res., 87, 10,181–9.CrossRefGoogle Scholar
Zuber, M. T., Smith, D. E., Solomon, S. C., et al. (1998). Observations of the north pole region of Mars from the Mars Orbiter laser altimeter. Science, 282, 2053–60.CrossRefGoogle Scholar
Zuber, M. T., Solomon, S. C., Phillips, R. J., et al. (15 authors) (2000). Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287, 1788–92.CrossRefGoogle ScholarPubMed
Zurek, R. W., Barnes, J. R., Haberle, R. M., Pollack, J. B., Tillman, J. E. 8 Leovy, C. B. (1992). Introduction to the Mars atmosphere. In Mars ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 799–817.Google Scholar
Zurek, R. W., et al. (1992). Dynamics of the atmosphere of Mars. In Mars, ed. Jakosky, H. H. Kieffer, B. M., Snyder, C. W. and Matthews, M. S.. Tucson: University of Arizona Press, pp. 835–933.Google Scholar
http://www.msss.com
http://photojournal.jpl.nasa.gov
http://themis-data.asu.edu/
http://astrogeology.usgs.gov/mdim-bin/dataListPage.pl?lat=15N&lon=113E
http://valles.wr.usgs.gov/mcmolashaded/
http://marsrovers.jpl.nasa.gov/home/index.html
http://marswatch.astro.cornell.edu/pancam_instrument/links.html
http://pds.jpl.nasa.gov/

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Reference
  • Michael H. Carr
  • Book: The Surface of Mars
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536007.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Reference
  • Michael H. Carr
  • Book: The Surface of Mars
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536007.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Reference
  • Michael H. Carr
  • Book: The Surface of Mars
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536007.017
Available formats
×