Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-29T11:03:44.370Z Has data issue: false hasContentIssue false

9 - Soil micro-organisms as controllers of trace gas emissions over southern Africa

Published online by Cambridge University Press:  10 December 2009

Luanne B. Otter
Affiliation:
Climate Research Group, University of the Witwatersrand, South Africa
Mary C. Scholes
Affiliation:
School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, South Africa
Get access

Summary

Keywords

Southern Africa; methane; nitric oxide; nitrous oxide; savannas; soil micro-organisms

Abstarct

Soils contribute to the budgets of many atmospheric trace gases by acting as sources or sinks. The most important trace gases include methane (CH4), nitrous oxide (N2O) and nitric oxide (NO), which are both consumed and produced by soils. In principle, one has to distinguish between the processes known to produce or consume these gases that are probably irrelevant at the low concentrations typical of atmospheric trace gases, and the processes that really play some role in the gas exchange between soil and atmosphere. The absolute values of total budgets and percentage contributions by soils should not be taken for granted, because the individual source and sink strengths are highly uncertain. There are a number of reasons for this uncertainty. The fluxes of trace gases between soil and atmosphere can be measured with some reliability by using various approaches, but it is not trivial to estimate atmospheric budgets from field fluxes. The problem is that fluxes generally show a high variability with respect to site and time. Integration of fluxes over larger areas and extended periods does not necessarily solve the problem, since each individual flux event is caused by deterministic processes that change in a non-linear way when conditions change even slightly. In addition, soils are presently looked upon as a macroscopic system, although the function is controlled predominantly on a microscopic level, i.e. the level of the micro-organisms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×