Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T03:29:11.062Z Has data issue: false hasContentIssue false

3 - Reconstruction methods

Published online by Cambridge University Press:  07 August 2009

Benjamin J. Whitaker
Affiliation:
University of Leeds
Get access

Summary

Introduction

Charged particle imaging provides us with very beautiful pictures that offer graphic insight into chemical dynamics. Although it is often the case that general dynamical information can be deduced by simple inspection of the primary data, the images obtained in the typical imaging experiment are, in fact, projections of a three-dimensional (3-D) object onto a two-dimensional (2-D) screen. In order to extract all the information potentially available to us we need to consider what data recovery techniques are available to reconstruct the 3-D velocity distribution of the charged particles created in the experiment from the image we actually record.

There are two fundamentally different approaches; inversion methods and forward convolution methods. Inversion methods make use of the fact that if the original (3-D) distribution has an axis of cylindrical symmetry its (2-D) projection parallel to this axis contains enough information to unambiguously reconstruct the full (3-D) distribution. As we have seen in the previous two chapters, such an axis of symmetry in laboratory space can be found in many photodissociation or bimolecular scattering experiments. However, if there is no cylindrical symmetry in the experiment, a forward convolution method is generally necessary. Here, the experiment is simulated in a computer model that produces (2-D) data that are then compared with the experimental data. By iteratively optimizing parameters in the computer model the best reconstruction of the experimental data is sought.

Type
Chapter
Information
Imaging in Molecular Dynamics
Technology and Applications
, pp. 65 - 112
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×