Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T19:33:26.031Z Has data issue: false hasContentIssue false

13 - Example of a general-purpose detector: Belle

Published online by Cambridge University Press:  19 October 2009

Claus Grupen
Affiliation:
Universität-Gesamthochschule Siegen, Germany
Boris Shwartz
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Get access

Summary

Our job in physics is to see things simply, to understand a great many complicated phenomena, in terms of a few simple principles.

Steven Weinberg

A present-day experiment in high energy physics usually requires a multipurpose experimental setup consisting of at least several (or many) subsystems. This setup (called commonly ‘detector’) contains a multitude of sensitive channels which are necessary to measure the characteristics of particles produced in collisions or decays of the initial particles. A typical set of detector properties includes abilities of tracking, i.e. measurement of vertex coordinates and charged-particle angles, measurements of charged-particle momenta, particle energy determination and particle identification. A very important system is the trigger which detects the occurrence of an event of interest and produces a signal to start the readout of the information from the relevant channels. Since high energy physics experiments are running for months or years, the important task is to monitor and control the parameters of the detector and to keep them as stable as possible. To fulfil this task the detector is usually equipped with a so-called slow control system, which continuously records hundreds of experimental parameters and warns experimentalists if some of them are beyond certain boundaries.

To control the process of accumulating statistics and calculating the cross sections and decay rates, a luminosity measurement system is mandatory (for the term definition, see Chap. 4).

Type
Chapter
Information
Particle Detectors , pp. 360 - 389
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×