Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-28T18:32:37.204Z Has data issue: false hasContentIssue false

7 - Construction of symmetry-adapted linear combinations based on the correspondence theorem

Published online by Cambridge University Press:  12 November 2009

Shoon K. Kim
Affiliation:
Temple University, Philadelphia
Get access

Summary

Introduction

In the eigenvalue problem of a Hamiltonian in quantum mechanics, the eigenfunctions of the Hamiltonian are classified in terms of the unitary irreducible representations (unirreps) of the symmetry group G of the Hamiltonian. In constructing approximate eigenfunctions by LCAO-MOs of a molecule belonging to a certain symmetry group G, the corresponding problem is to find the irreducible basis sets of G constructed by the linear combinations of the atomic orbitals belonging to the equivalent atoms of the molecule. Such a set is called a set of symmetry-adapted linear combinations (SALC) of the equivalent basis functions or equivalent orbitals. A standard method for such a problem is the generating operator method introduced in Section 6.9: it generates the desired basis set from an appropriate basis function. This method is very general and powerful but it is often extremely laborious to use; Cotton (1990). It is so very formal that one has little feeling until one arrives at the final result, which often could simply be obtained by inspection.

For point groups and their extensions, there exists a simple direct method of constructing the SALC belonging to a unirrep of a symmetry group G. The method requires knowledge of the basis functions of a space vector r = (x, y, z) in three dimensions belonging to the unirrep. The basis sets are well known for all point groups; e.g., those for the point groups Tp and D3p are reproduced in Tables 7.1 and 7.2, respectively, from the Appendix.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×