Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-26T04:30:54.191Z Has data issue: false hasContentIssue false

2 - THE ELASTODYNAMIC EQUATION AND ITS SIMPLE SOLUTIONS

Published online by Cambridge University Press:  03 February 2010

V. Cerveny
Affiliation:
Charles University, Prague
Get access

Summary

The seismic ray method is based on asymptotic high-frequency solutions of the elastodynamic equation. We assume that the reader is acquainted with linear elastodynamics and with the simple solutions of the elastodynamic equation in a homogeneous medium. For the reader's convenience, we shall briefly discuss all these topics in this chapter, particularly the plane-wave and point-source solutions of the elastodynamic equation. We shall introduce the terminology, notations, and all equations we shall need in the following chapters. In certain cases, we shall only summarize the equations without deriving them, mainly if such equations are known from generally available textbooks. This applies, for example, to the basic concepts of linear elastodynamics. In other cases, we shall present the main ideas of the solution, or even the complete derivation. This applies, for example, to the Green functions for acoustic, elastic isotropic and elastic anisotropic homogeneous media.

In addition to elastic waves in solid isotropic and anisotropic models, we shall also study pressure waves in fluid models. In this case, we shall speak of the acoustic case. There are two main reasons for studying the acoustic case. The first reason is tutorial. All the derivations for the acoustic case are very simple, clear, and comprehensible. In elastic media, the derivations are also simple in principle, but they are usually more cumbersome. Consequently, we shall mostly start the derivations with the acoustic case, and only then shall we discuss the elastic case. The second reason is more practical. Pressure waves in fluid models are often used as a simple approximation of P elastic waves in solid models. For example, this approximation is very common in seismic exploration for oil.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×