Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-04T12:30:30.654Z Has data issue: false hasContentIssue false

12 - Phagocyte biology and function

Published online by Cambridge University Press:  06 January 2010

Marion G. Macey
Affiliation:
St Bartholomew's and Royal London School of Medicine and Dentistry, Queen Mary and Westfield College, London
Desmond A. McCarthy
Affiliation:
Queen Mary University of London
Marion G. Macey
Affiliation:
The Royal London Hospital
Get access

Summary

Introduction to phagocyte biology

Neutrophils, monocytes and macrophages are important in the immune surveillance of microorganisms and malignant cells. All three cell types are capable of secreting a variety of chemical mediators and of phagocytosing particulate matter. Neutrophil and monocyte recruitment to sites of infection is guided by complex phenomena that involve microbial emanations, cytokines, interleukins and microenvironment modifications of the vascular endothelium. The interaction between molecules on the surface of the phagocyte (CD11b and CD62L) with those on the endothelium (intercellular adhesion molecule 1, CD62P and CD62E) is critical for the recruitment and attachment. Following adherence to endothelium and prior to vascular emigration, the phagocytes undergo a rapid cytoskeleton rearrangement, which is necessary for chemotaxis and for exertion of their phagocytic properties against microorganisms. This latter step depends on the expression of specific receptors (FcRs, CD11b, CD14, CD35) that recognise opsonised (immunoglobulin-and/or complement-coated) microorganisms and particles.

Micoorganisms are phagocytosed into phagolysosomal vacuoles, where they are subjected to strong oxygen-dependent microbicidal systems that are characterisd by the so-called NADPH-dependent respiratory burst and oxygen-independent systems including degrading enzymes, defensins (peptide antibiotics) and cathepsin G.

In addition to their beneficial role, phagocytes may also be involved in the pathogenesis of several noninfectious diseases such as acute and chronic myocardial ischaemia, idiopathic pulmonary fibrosis, emphysema, rheumatoid arthritis and certain forms of glomerulonephritis. The tissuedamaging properties arise when phagocytes are activated; this results in the upregulation of certain membrane molecules, degranulation, with release of myeloperoxidase, elastase and other proteases, and the production of reactive oxygen species, including intermediate oxygen radicals.

The evaluation of phagocyte function is important in the diagnosis of patients who present with recurrent infections, suspected chronic granulomatous disease, suspected leukocyte adhesion deficiency (LAD) 1 and 2 or immunodeficiency states.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×