Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-16T16:56:46.804Z Has data issue: false hasContentIssue false

A mathematical approach to numerical relativity

Published online by Cambridge University Press:  15 December 2009

J. W. Barrett
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
Ray d'Inverno
Affiliation:
University of Southampton
Get access

Summary

Abstract. This article contains some proposals for the construction of an algorithm for the evolution of initial data in general relativity which will apply to generic initial values. One of the main issues is to allow a dynamic refinement of the discretisation which will be local and vary according to local values of the initial data. I outline some of the main problems which will have to be addressed in any implementation of the general scheme. There are also some suggestions for a construction of a smooth solution of the Einstein equations which is near to the discrete evolution.

INTRODUCTION

At the present time, computer codes for general relativity are written specifically for particular problems such as stellar collapse or coalescing binary systems. In the longer run relativists are interested in using the computer as a mathematical tool to investigate the properties of solutions which seem inaccessible by analytic means, or to formulate hypotheses which may then be attacked analytically. This requires the construction of an algorithm which applies to generic initial data and which also has a sufficiently solid framework which allows analytic investigation of the error of the approximation.

The approach I would like to suggest is based on triangulations. One of the problems of numerical relativity is that the degree of discretisation that is required to approximate given data well is dependent on that data. However one cannot predict — in advance — how this will evolve as the data evolves with time.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×