Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T03:45:02.970Z Has data issue: false hasContentIssue false

20 - Visible and Near-Infrared Spectral Analyses of Asteroids and Comets from Dawn and Rosetta

from Part IV - Applications to Planetary Surfaces

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

New visible and infrared data of minor bodies, including minor planet 1 Ceres, asteroids 4 Vesta, 21 Lutetia, 2867 Steins and comet 67P/Churyumov–Gerasimenko (hereafter 67P/CG) have been collected in the last years by remote sensing instruments aboard NASA-Dawn and ESA-Rosetta missions. These minor bodies are among the most primitive bodies in the Solar System, and the understanding of their composition, surface morphology and evolution history is a fundamental step to shed light on the processes that occurred during planetary formation.By merging spatial and spectral information retrieved from the surfaces of these objects it is possible to infer their composition and physical properties and to correlate them with local morphology and geological processes. A discussion about spectral indicators, modeling, and mapping is given for both asteroids and comet 67P/CG. Given that the remote sensing observation techniques are very similar between Dawn and Rosetta missions, a comparative approach is used for the entire chapter and methods and interpretation for the results of these different objects are given together.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 413 - 427
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A’Hearn, M.F., Schleicher, D.G., Feldman, P.D., Millis, R.C. & Thompson, D.T. (1984) Comet Bowell 1980b. The Astronomical Journal, 89, 579591.Google Scholar
Ammannito, E., De Sanctis, M.C., Capaccioni, F., et al. (2013a) Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteoritics and Planetary Science, 48, 21852198.Google Scholar
Ammannito, E., De Sanctis, M., Palomba, E., et al. (2013b) Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122125.Google Scholar
Ammannito, E., DeSanctis, M., Ciarniello, M., et al. (2016) Distribution of phyllosilicates on the surface of Ceres. Science, 353, aaf4279.Google Scholar
Barucci, M.A., Fulchignoni, M., & Rossi, A. (2007) Rosetta asteroid targets: 2867 Steins and 21 Lutetia. Space Science Reviews, 128, 6778.Google Scholar
Barucci, M.A., Filacchione, G., Fornasier, S., et al. (2016) Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko-as observed by Rosetta OSIRIS and VIRTIS instruments. Astronomy and Astrophysics, 595, A102.CrossRefGoogle Scholar
Binzel, R.P., Gaffey, M.J., Thomas, P.C., Zellner, B.H., Storrs, A.D., & Wells, E.N. (1997) Geologic mapping of Vesta from 1994 Hubble space telescope images. Icarus, 128, 95103.Google Scholar
Birlan, M., Vernazza, P., Fulchignoni, M., et al. (2006) Near infra-red spectroscopy of the asteroid 21 Lutetia-I. New results of long-term campaign. Astronomy and Astrophysics, 454, 677681.CrossRefGoogle Scholar
Burbine, T.H., McCoy, T.J., Nittler, L.R., Benedix, G.K., Cloutis, E.A., & Dickinson, T.L. (2002) Spectra of extremely reduced assemblages: Implications for Mercury. Meteoritics and Planetary Science, 37, 12331244.Google Scholar
Capaccioni, F., Coradini, A., Filacchione, G., et al. (2015) The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 347, aaa0628.CrossRefGoogle ScholarPubMed
Ciarniello, M., Capaccioni, F., Filacchione, G., et al. (2011) Hapke modeling of Rhea surface properties through Cassini-VIMS spectra. Icarus, 214, 541555.Google Scholar
Ciarniello, M., Capaccioni, F., Filacchione, G., et al. (2015) Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta. Astronomy and Astrophysics, 583, A31.Google Scholar
Ciarniello, M., Raponi, A., Capaccioni, F., et al. (2016) The global surface composition of 67P/Churyumov-Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability. Monthly Notices of the Royal Astronomical Society, 462, S443S458.Google Scholar
Ciarniello, M., De Sanctis, M.C., Ammannito, E., et al. (2017) Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astronomy and Astrophysics, 598, A130.Google Scholar
Clark, R.N. (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual of Remote Sensing, 3, 22.Google Scholar
Cochran, A.L. & Vilas, F. (1998) The changing spectrum of Vesta: Rotationally resolved spectroscopy of pyroxene on the surface. Icarus, 134, 207212.CrossRefGoogle Scholar
Combe, J.-P., McCord, T.B., Tosi, F., et al. (2016) Detection of local H2O exposed at the surface of Ceres. Science, 353, aaf3010.CrossRefGoogle ScholarPubMed
Coradini, A., Capaccioni, F., Drossart, P., et al. (2007) VIRTIS: An imaging spectrometer for the Rosetta mission. Space Science Reviews, 128, 529559.CrossRefGoogle Scholar
Coradini, A., Capaccioni, F., Erard, S., et al. (2011) The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS. Science, 334, 492494.Google Scholar
De Sanctis, M.C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
De Sanctis, M.C. (2011) The VIR spectrometer. Space Science Reviews, 163, 329369.Google Scholar
De Sanctis, M.C., Ammannito, E., Capria, M., et al. (2012a) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.Google Scholar
De Sanctis, M.C., Combe, J.-P., Ammannito, E., et al. (2012b) Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission. The Astrophysical Journal Letters, 758, L36.Google Scholar
De Sanctis, M.C., Ammannito, E., Capria, M.T., et al. (2013) Vesta’s mineralogical composition as revealed by the visible and infrared spectrometer on Dawn. Meteoritics and Planetary Science, 48, 21662184.Google Scholar
De Sanctis, M.C., Capaccioni, F., Ciarniello, M., et al. (2015a) The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature, 525, 500503.Google Scholar
De Sanctis, M.C., Ammannito, E., Raponi, A., et al. (2015b) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.CrossRefGoogle ScholarPubMed
El-Maarry, M.R., Thomas, N., Gracia-Berná, A., et al. (2016) Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere. Astronomy and Astrophysics, 593, A110.Google Scholar
Feierberg, M.A., Larson, H.P., Fink, U., & Smith, H.A. (1980) Spectroscopic evidence for two achondrite parent bodies: Asteroids 349 Dembowska and 4 Vesta. Geochimica et Cosmochimica Acta, 44, 513524.Google Scholar
Filacchione, G., Capaccioni, F., Clark, R., et al. (2010) Saturn’s icy satellites investigated by Cassini–VIMS: II. Results at the end of nominal mission. Icarus, 206, 507523.Google Scholar
Filacchione, G., Capaccioni, F., Ciarniello, M., et al. (2012) Saturn’s icy satellites and rings investigated by Cassini–VIMS: III–Radial compositional variability. Icarus, 220, 10641096.Google Scholar
Filacchione, G., Capaccioni, F., Ciarniello, M., et al. (2016a) The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase. Icarus, 274, 334349.CrossRefGoogle Scholar
Filacchione, G., De Sanctis, M., Capaccioni, F., et al. (2016b) Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 529, 368372.CrossRefGoogle ScholarPubMed
Filacchione, G., Raponi, A., Capaccioni, F., et al. (2016c) Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 354, aag3161.Google Scholar
Fornasier, S., Marzari, F., Dotto, E., Barucci, M., & Migliorini, A. (2007) Are the E-type asteroids (2867) Steins, a target of the Rosetta mission, and NEA (3103) Eger remnants of an old asteroid family? Astronomy and Astrophysics, 474, L29L32.Google Scholar
Fornasier, S., Hasselmann, P., Barucci, M., et al. (2015) Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astronomy and Astrophysics, 583, A30.CrossRefGoogle Scholar
Fornasier, S., Mottola, S., Keller, H.U., et al. (2016) Rosetta’s comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science, aag2671.CrossRefGoogle Scholar
Gaffey, M. & McCord, T. (1979) Mineralogical and petrological characterizations of asteroid surface materials. Asteroids, 688723.Google Scholar
Hapke, B. (2005) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge.Google Scholar
Keihm, S., Tosi, F., Kamp, L., et al. (2012) Interpretation of combined infrared, submillimeter, and millimeter thermal flux data obtained during the Rosetta fly-by of Asteroid (21) Lutetia. Icarus, 221, 395404.Google Scholar
Keller, H.U., Barbieri, C., Lamy, P., et al. (2007) OSIRIS: The scientific camera system onboard Rosetta. Space Science Reviews, 128, 433506.Google Scholar
Keller, H., Barbieri, C., Koschny, D., et al. (2010) E-type asteroid (2867) Steins as imaged by OSIRIS on board Rosetta. Science, 327, 190193.Google Scholar
King, T.V., Clark, R., Calvin, W., Sherman, D.M., & Brown, R. (1992) Evidence for ammonium-bearing minerals on Ceres. Science, 255, 15511553.CrossRefGoogle ScholarPubMed
Li, J.-Y., Reddy, V., Nathues, A., et al. (2016) Surface albedo and spectral variability of Ceres. The Astrophysical Journal Letters, 817, L22.Google Scholar
Lowry, S., Duddy, S., Rozitis, B., et al. (2012) The nucleus of Comet 67P/Churyumov-Gerasimenko. A new shape model and thermophysical analysis. Astronomy and Astrophysics, 548, A12.Google Scholar
Magrin, S., La Forgia, F., Pajola, M., et al. (2012) (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations. Planetary and Space Science, 66, 4353.Google Scholar
Mandler, B.E. & Elkins‐Tanton, L.T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics and Planetary Science, 48, 23332349.Google Scholar
Marchi, S., Ermakov, A., Raymond, C., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, 12257.Google Scholar
McCord, T.B., Adams, J.B., & Johnson, T.V. (1970) Asteroid vesta: Spectral reflectivity and compositional implications. Science, 168(3938), 14451447.Google Scholar
McFadden, L.A., McCord, T.B., & Pieters, C. (1977) Vesta: The first pyroxene band from new spectroscopic measurements. Icarus, 31, 439446.Google Scholar
Nathues, A., Hoffmann, M., Schaefer, M., et al. (2015) Sublimation in bright spots on (1) Ceres. Nature, 528, 237240.Google Scholar
Ockert-Bell, M., Clark, B.E., Isaacs, M.E., Cloutis, R., Fornasier, E.A., & Bus, S. (2010) The composition of M-type asteroids: Synthesis of spectroscopic and radar observations. Icarus, 210, 674692.CrossRefGoogle Scholar
Palomba, E., Longobardo, A., De Sanctis, M.C., et al. (2015) Detection of new olivine-rich locations on Vesta. Icarus, 258, 120134.Google Scholar
Park, R.S., Konopliv, A.S., Bills, B.G., et al. (2016) A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature, 537, 515517.Google Scholar
Pieters, C.M., McFadden, L.A., Prettyman, T., et al. (2011) Surface composition of Vesta: Issues and integrated approach. Space Science Reviews, 163, 117139.Google Scholar
Pieters, C., Ammannito, E., Blewett, D., et al. (2012) Distinctive space weathering on Vesta from regolith mixing processes. Nature, 491, 7982.Google Scholar
Pommerol, A., Thomas, N., El-Maarry, M.R., et al. (2015) OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astronomy and Astrophysics, 583, A25.Google Scholar
Quirico, E., Moroz, L., Schmitt, B., et al. (2016) Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer. Icarus, 272, 3247.Google Scholar
Raponi, A., Ciarniello, M., Capaccioni, F., et al. (2016) The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov–Gerasimenko: Spectral analysis. Monthly Notices of the Royal Astronomical Society, 462, S476S490.Google Scholar
Rivkin, A.S., Li, J.-Y., Milliken, R.E., et al. (2011a) The surface composition of Ceres. Space Science Reviews, 163, 95116.Google Scholar
Rivkin, A.S., Clark, B.E., Ockert-Bell, M., et al. (2011b) Asteroid 21 Lutetia at 3 μm: Observations with IRTF SpeX. Icarus, 216, 6268.Google Scholar
Ruesch, O., Hiesinger, H., De Sanctis, M.C., et al. (2014) Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research, 119, 20782108.Google Scholar
Russell, C.T., Capaccioni, F., Coradini, A., et al. (2007) Dawn mission to Vesta and Ceres: Symbiosis between terrestrial observations and robotic exploration. Earth, Moon, and Planets, 101, 6591.Google Scholar
Russell, C., Raymond, C., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Russell, C., Raymond, C., Ammannito, E., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 10081010.Google Scholar
Sierks, H., Keller, H.U., Jaumann, R., et al. (2011a) The Dawn Framing Camera. Space Science Reviews, 163, 263327.Google Scholar
Sierks, H., Lamy, P., Barbieri, C., et al. (2011b) Images of asteroid 21 Lutetia: A remnant planetesimal from the early Solar System. Science, 334, 487490.Google Scholar
Sierks, H., Barbieri, C., Lamy, P.L., et al. (2015) On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 347, aaa1044.Google Scholar
Snodgrass, C., Tubiana, C., Bramich, D., Meech, K., Boehnhardt, H., & Barrera, L. (2013) Beginning of activity in 67P/Churyumov-Gerasimenko and predictions for 2014–2015. Astronomy and Astrophysics, 557, A33.CrossRefGoogle Scholar
Sunshine, J.M., Groussin, O., Schultz, P.H., et al. (2007) The distribution of water ice in the interior of Comet Tempel 1. Icarus, 190, 284294.Google Scholar
Tholen, D.J. & Barucci, M.A. (1989) Asteroid taxonomy. In: Asteroids II (Binzel, R., Gehrels, T., & Matthews, M.S., eds.). University of Arizona Press, Tucson, 298315.Google Scholar
Thomas, P.C., Binzel, R.P., Gaffey, M.J., Zellner, B.H., Storrs, A.D., & Wells, E. (1997) Vesta: Spin pole, size, and shape from HST images. Icarus, 128, 8894.Google Scholar
Thomas, N., Sierks, H., Barbieri, C., et al. (2015) The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 347, aaa0440.Google Scholar
Vilas, F. (1994) A cheaper, faster, better way to detect water of hydration on Solar System bodies. Icarus, 111, 456467.Google Scholar
Vilas, F. & Gaffey, M.J. (1989) Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra. Science, 246, 790792.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×