Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-06T20:13:44.542Z Has data issue: false hasContentIssue false

9 - The Interaction of Nature and Nurture in Antisocial Behavior

from Part II - Biosocial Foundations of Violence and Aggression

Published online by Cambridge University Press:  30 July 2018

Alexander T. Vazsonyi
Affiliation:
University of Kentucky
Daniel J. Flannery
Affiliation:
Case Western Reserve University, Ohio
Matt DeLisi
Affiliation:
Iowa State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barkley, R. A., Smith, K. M., Fischer, M., & Navia, B. (2006). An examination of the behavioral and neuropsychological correlates of three ADHD candidate gene polymorphisms (DRD4 7+, DBH Taq1 A2, and DAT1 40 bp VNTR) in hyperactive and normal children followed to adulthood. American Journal of Medical Genetics B Neuropsychiatric Genetics, 141, 487498.Google Scholar
Beaver, K. M., Connolly, E. J., Schwartz, J. A., Al-Ghamdi, M. S., & Kobeisy, A. N. (2013). Genetic and environmental contributions to stability and change in levels of self-control. Journal of Criminal Justice, 41(5), 300308.CrossRefGoogle Scholar
Beaver, K. M., DeLisi, M., & Vaughn, M. G. (2010). A biosocial interaction between prenatal exposure to cigarette smoke and family structure in the prediction of psychopathy in adolescence. Psychiatric Quarterly, 81(4), 325334.Google Scholar
Beaver, K. M., Vaughn, M. G., DeLisi, M., & Higgins, G. E. (2010). The biosocial correlates of neuropsychological deficits: Results from the National Longitudinal Study of Adolescent Health. International Journal of Offender Therapy and Comparative Criminology, 54(6), 878894.CrossRefGoogle ScholarPubMed
Beaver, K. M., Wright, J. P., & DeLisi, M. (2007). Self-control as an executive function: Reformulating Gottfredson and Hirschi’s parental socialization thesis. Criminal Justice and Behavior, 34(10), 13451361.Google Scholar
Beaver, K. M., Wright, J. P., & DeLisi, M. (2008). Delinquent peer group formation: Evidence of a gene X environment correlation. Journal of Genetic Psychology, 169(3), 227244.Google Scholar
Beaver, K. M., Wright, J. P., DeLisi, M., Daigle, L. E., Swatt, M. L., & Gibson, C. L. (2007). Evidence of a gene x environment interaction in the creation of victimization results from a longitudinal sample of adolescents. International Journal of Offender Therapy and Comparative Criminology, 51(6), 620645.Google Scholar
Behnken, M. P., DeLisi, M., Trulson, C. R., & Vaughn, M. G. (2015). The traumatic brain injury association with career criminality withstands powerful confounds. In DeLisi, M. & Vaughn, M. G. (Eds), The Routledge International Handbook of Biosocial Criminology (pp. 418424). New York: Routledge.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & Van IJzendoorn, M. H. (2007). For better and for worse differential susceptibility to environmental influences. Current Directions in Psychological Science, 16(6), 300304.Google Scholar
Belsky, J. & Pluess, M. (2009). Beyond diathesis stress: differential susceptibility to environmental influences. Psychological Bulletin, 135(6), 885908.CrossRefGoogle ScholarPubMed
Belsky, J. & Pluess, M. (2013). Beyond risk, resilience, and dysregulation: Phenotypic plasticity and human development. Development and Psychopathology, 25(4), 12431261.Google Scholar
Boisvert, D., Wright, J. P., Knopik, V., & Vaske, J. (2012). Genetic and environmental overlap between low self-control and delinquency. Journal of Quantitative Criminology, 28(3), 477507.Google Scholar
Botchkovar, E., Marshall, I. H., Rocque, M., & Posick, C. (2015). The importance of parenting in the development of self-control in boys and girls: Results from a multinational study of youth. Journal of Criminal Justice, 43(2), 133141.Google Scholar
Byrd, A. L. & Manuck, S. B. (2014). MAOA, childhood maltreatment, and antisocial behavior: Meta-analysis of a gene-environment interaction. Biological Psychiatry, 75(1), 917.CrossRefGoogle ScholarPubMed
Caspi, A., Langley, K., Milne, B., Moffitt, T. E., O’Donovan, M., Owen, M. J., … & Williams, B. (2008). A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 65(2), 203210.Google Scholar
Caspi, A., McCray, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W. … & Poulton, R. (2002) Role of genotype in the cycle of violence in maltreated children. Science, 297(5582), 851854.CrossRefGoogle ScholarPubMed
Castellanos-Ryan, N., Séguin, J. R., Vitaro, , Parent, F., , S., & Tremblay, R. E. (2013). Impact of a 2-year multimodal intervention for disruptive 6-year-olds on substance use in adolescence: Randomised controlled trial. The British Journal of Psychiatry, 203(3), 188195.Google Scholar
Chabris, C. F., Lee, J. J., Cesarini, D., Benjamin, D. J., & Laibson, D. I. (2015). The fourth law of behavior genetics. Current Directions in Psychological Science, 24(4), 304312.Google Scholar
Chen, C., Liu, C., Chen, C., Moyzis, R., Chen, W., & Dong, Q. (2015). Genetic variations in the serotoninergic system and environmental factors contribute to aggressive behavior in Chinese adolescents. Physiology & Behavior, 138, 6268.Google Scholar
Chester, D. S., DeWall, C. N., Derefinko, K. J., Estus, S., Peters, J. R., Lynam, D. R., & Jiang, Y. (2015). Monoamine oxidase A (MAOA) genotype predicts greater aggression through impulsive reactivity to negative affect. Behavioural Brain Research, 283, 97101.CrossRefGoogle ScholarPubMed
Choe, D. E., Shaw, D. S., Hyde, L. W., & Forbes, E. E. (2014). Interactions between monoamine oxidase A and punitive discipline in African American and Caucasian men’s antisocial behavior. Clinical Psychological Science, 2(5), 591601.Google Scholar
Cleveland, H. H., Wiebe, R., & Rowe, D. C. (2005). Genetic influences on associations with substance using peers. Journal of Genetic Psychology, 166, 153169.Google Scholar
Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 11021105.CrossRefGoogle ScholarPubMed
DeLisi, M. & Vaughn, M. G. (2014). Foundation for a temperament-based theory of antisocial behavior and criminal justice system involvement. Journal of Criminal Justice, 42(1), 1025.Google Scholar
DeLisi, M., & Vaughn, M. G. (Eds) (2015). The Routledge international handbook of biosocial criminology. New York: Routledge.Google Scholar
Derringer, J., Krueger, R. F., Irons, D. E., & Iacono, W. G. (2010). Harsh discipline, childhood sexual assault, and MAOA genotype: an investigation of main and interactive effects on diverse clinical externalizing outcomes. Behavior Genetics, 40(5), 639–648.CrossRefGoogle Scholar
Dmitrieva, J., Chen, C., Greenberger, E., Ogunseitan, O., & Ding, Y. C. (2011). Gender-specific expression of the DRD4 gene on adolescent delinquency, anger and thrill seeking. Social Cognitive and Affective Neuroscience, 6(1), 8289.Google Scholar
Farrer, T. J., Frost, R. B., & Hedges, D. W. (2012). Prevalence of traumatic brain injury in intimate partner violence offenders compared to the general population: A meta-analysis. Trauma, Violence, & Abuse, 13(2), 7782.Google Scholar
Farrer, T. J., Frost, R. B., & Hedges, D. W. (2013). Prevalence of traumatic brain injury in juvenile offenders: A meta-analysis. Child Neuropsychology, 19(3), 225234.Google Scholar
Farrer, T. J. & Hedges, D. W. (2011). Prevalence of traumatic brain injury in incarcerated groups compared to the general population: A meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(2), 390394.Google Scholar
Fergusson, D. M., Boden, J. M., Horwood, L. J., Miller, A. L., & Kennedy, M. A. (2011). MAOA, abuse exposure and antisocial behaviour: 30-year longitudinal study. The British Journal of Psychiatry, 198(6), 457463.Google Scholar
Fergusson, D. M., Boden, J. M., Horwood, L. J., Miller, A., & Kennedy, M. A. (2012). Moderating role of the MAOA genotype in antisocial behaviour. The British Journal of Psychiatry, 200(2), 116123.Google Scholar
Fernàndez-Castillo, N. & Cormand, B. (2016). Aggressive behavior in humans: Genes and pathways identified through association studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171B, 676696.Google Scholar
Finkenauer, C., Engels, R. C., & Baumeister, R. F. (2005). Parenting behaviour and adolescent behavioural and emotional problems: The role of self-control. International Journal of Behavioral Development, 29(1), 5869.Google Scholar
Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., & Riley, B. (2004). Childhood adversity, monoamine oxidase a genotype, and risk for conduct disorder. Archives of General Psychiatry, 61(7), 738744.Google Scholar
Gajos, J. M., Fagan, A. A., & Beaver, K. M. (2016). Use of genetically informed evidence-based prevention science to understand and prevent crime and related behavioral disorders. Criminology & Public Policy, 15(3), 683–701.CrossRefGoogle Scholar
Gibson, C. L., Piquero, A. R., & Tibbetts, S. G. (2000). Assessing the relationship between maternal cigarette smoking during pregnancy and age at first police contact. Justice Quarterly, 17(3), 519542.CrossRefGoogle Scholar
Gottfredson, M. R. & Hirschi, T. (1990). A general theory of crime. Stanford, CA: Stanford University Press.Google Scholar
Graham, D. M., Glass, L., & Mattson, S. N. (2016). Teratogen exposure and externalizing behavior. In Beauchaine, T. P. & Hinshaw, S. P. (Eds), The Oxford handbook of externalizing spectrum disorders (pp. 416439). New York: Oxford University Press.Google Scholar
Greenberg, M. T., Kusche, C., & Mihalic, S. F. (2006). Promoting alternative thin strategies (PATHS): Blueprints for violence prevention, Book Ten. Boulder, CO: Center for the Study and Prevention of Violence.Google Scholar
Hay, C. & Meldrum, R. (2015). Self-control and crime over the life course. Thousand Oaks, CA: SAGE.Google Scholar
Holland, N. R. & DeLisi, M. (2015). The warrior gene: MAOA genotype and antisocial behavior in males. In DeLisi, M. & Vaughn, M. G. (Eds), The Routledge international handbook of biosocial criminology (pp. 179189). New York: Routledge.Google Scholar
Israel, S., Caspi, A., Belsky, D. W., Harrington, H., Hogan, S., Houts, R., Ramrakha, S., Sanders, S., Poulton, R., & Moffitt, T. E. (2014). Credit scores, cardiovascular disease risk, and human capital. Proceedings of the National Academy of Sciences, 111(48), 1708717092.Google Scholar
Jackson, D. B. & Beaver, K. M. (2015). The influence of nutritional factors on verbal deficits and psychopathic personality traits: Evidence of the moderating role of the MAOA genotype. International Journal of Environmental Research and Public Health, 12(12), 1573915755.Google Scholar
Jackson, D. B. & Newsome, J. (2016). The link between infant neuropsychological risk and childhood antisocial behavior among males: The moderating role of neonatal health risk. Journal of Criminal Justice, 47, 3240.Google Scholar
Kochanska, G., Philibert, R. A., & Barry, R. A. (2009). Interplay of genes and early mother-child relationship in the development of self-regulation from toddler to preschool age. Journal of Child Psychology and Psychiatry, 50, 13311338.Google Scholar
Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., & Moffitt, T. E. (2006). MAOA, maltreatment, and gene–environment interaction predicting children’s mental health: new evidence and a meta-analysis. Molecular Psychiatry, 11(10), 903913.CrossRefGoogle ScholarPubMed
Kretschmer, T., Dijkstra, J. K., Ormel, J., Verhulst, F. C., & Veenstra, R. (2013). Dopamine receptor D4 gene moderates the effect of positive and negative peer experiences on later delinquency: The Tracking Adolescents’ Individual Lives Survey study. Development and Psychopathology, 25(4), 11071117.Google Scholar
Kretschmer, T., Vitaro, F., & Barker, E. D. (2014). The association between peer and own aggression is moderated by the BDNF Val-Met polymorphism. Journal of Research on Adolescence, 24(1), 177185.Google Scholar
Luppino, D., Moul, C., Hawes, D. J., Brennan, J., & Dadds, M. R. (2014). Association between a polymorphism of the vasopressin 1B receptor gene and aggression in children. Psychiatric Genetics, 24(5), 185190.Google Scholar
Meldrum, R. C. & Barnes, J. C. (2016). Prenatal exposure to secondhand smoke and the development of self-control. Journal of Developmental and Life Course Criminology, doi: 10.1007/s40865-016-0038-1.Google Scholar
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100(4), 674701.Google Scholar
Moffitt, T. E. (2005). The new look of behavioral genetics in developmental psychopathology: gene-environment interplay in antisocial behaviors. Psychological Bulletin, 131(4), 533554.Google Scholar
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., … & Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108(7), 26932698.Google Scholar
Musci, R. J., Bradshaw, C. P., Maher, B., Uhl, G. R., Kellam, S. G., & Ialongo, N. S. (2014). Reducing aggression and impulsivity through school-based prevention programs: A gene by intervention interaction. Prevention Science, 15(6), 831840.Google Scholar
Pappa, I., Mileva-Seitz, V. R., Bakermans-Kranenburg, M. J., Tiemeier, H., & van IJzendoorn, M. H. (2015). The magnificent seven: A quantitative review of dopamine receptor d4 and its association with child behavior. Neuroscience & Biobehavioral Reviews, 57, 175186.CrossRefGoogle Scholar
Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84(2), 309322.Google Scholar
Pluess, M. & Belsky, J. (2011). Prenatal programming of postnatal plasticity? Development and Psychopathology, 23(1), 2938.Google Scholar
Raine, A., Moffitt, T. E., Caspi, A., Loeber, R., Stouthamer-Loeber, M., & Lynam, D. (2005). Neurocognitive impairments in boys on the life-course persistent antisocial path. Journal of Abnormal Psychology, 114, 3849.Google Scholar
Rehan, W., Antfolk, J., Johansson, A., Aminoff, M., Sandnabba, N. K., Westberg, L., & Santtila, P. (2016). Gene–environment correlation between the dopamine transporter gene (DAT1) polymorphism and childhood experiences of abuse. Journal of Interpersonal Violence. doi: 10.1177/0886260515622299.Google ScholarPubMed
Roettger, M. E., Boardman, J. D., Harris, K. M., & Guo, G. (2016). The association between the MAOA 2R genotype and delinquency over time among men: The interactive role of parental closeness and parental incarceration. Criminal Justice and Behavior, 43(8), 10761094.Google Scholar
Rutter, M. L. (1997). Nature–nurture integration: the example of antisocial behavior. American Psychologist, 52(4), 390398.Google Scholar
Rutter, M., Dunn, J., Plomin, R., Simonoff, E., Pickles, A., Maughan, B., Ormel, J., Meyer, J., & Eaves, L. (1997). Integrating nature and nurture: Implications of person–environment correlations and interactions for developmental psychopathology. Development and Psychopathology, 9(2), 335364.Google Scholar
Samek, D. R., Bailey, J., Hill, K. G., Wilson, S., Lee, S., Keyes, M. A., … & McGue, M. (2016). A test-replicate approach to candidate gene research on addiction and externalizing disorders: A collaboration across five longitudinal studies. Behavior Genetics, 46(5), 608626.Google Scholar
Scarr, S. & McCartney, K. (1983). How people make their own environments: A theory of genotype→environment effects. Child Development, 54, 424435.Google Scholar
Shiroma, E. J., Ferguson, P. L., & Pickelsimer, E. E. (2010). Prevalence of traumatic brain injury in an offender population: a meta-analysis. Journal of Correctional Health Care, 16(2), 147159.Google Scholar
Stetler, D. A., Davis, C., Leavitt, K., Schriger, I., Benson, K., Bhakta, S., … & Bortolato, M. (2014). Association of low-activity MAOA allelic variants with violent crime in incarcerated offenders. Journal of Psychiatric Research, 58, 6975.Google Scholar
Taylor, A. & Kim-Cohen, J. (2007). Meta-analysis of gene–environment interactions in developmental psychopathology. Development and Psychopathology, 19(4), 10291037.Google Scholar
Thibodeau, E. L., Cicchetti, D., & Rogosch, F. A. (2015). Child maltreatment, impulsivity, and antisocial behavior in African American children: Moderation effects from a cumulative dopaminergic gene index. Development and Psychopathology, 27(4), 16211636.Google Scholar
Tielbeek, J. J., Karlsson Linnér, R., Beers, , Posthuma, K., Popma, D., , A., & Polderman, T. J. (2016). Meta-analysis of the serotonin transporter promoter variant (5-HTTLPR) in relation to adverse environment and antisocial behavior. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(5), 748760.Google Scholar
Tiihonen, J., Rautiainen, M. R., Ollila, H. M., Repo-Tiihonen, E., Virkkunen, M., Palotie, A., … & Paunio, T. (2015). Genetic background of extreme violent behavior. Molecular Psychiatry, 20(6), 786792.Google Scholar
Tuvblad, C., Narusyte, J., Comasco, E., Andershed, H., Andershed, A. K., Colins, O. F., Fanti, K. A., & Nilsson, K. W. (2016). Physical and verbal aggressive behavior and COMT genotype: Sensitivity to the Environment. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171B, 708718.Google Scholar
Van Horn, J. D., Irimia, A., Torgerson, C. M., Chambers, M. C., Kikinis, R., & Toga, A. W. (2012). Mapping connectivity damage in the case of Phineas Gage. PLoS ONE, 7(5), e37454.CrossRefGoogle ScholarPubMed
Vaske, J., Galyean, K., & Cullen, F. T. (2011). Toward a biosocial theory of offender rehabilitation: Why does cognitive-behavioral therapy work? Journal of Criminal Justice, 39(1), 90102.Google Scholar
Vaughn, M. G., DeLisi, M., Beaver, K. M., & Wright, J. P. (2009). Identifying latent classes of behavioral risk based on early childhood manifestations of self-control. Youth Violence and Juvenile Justice, 7, 1631.Google Scholar
Vazsonyi, A. T. & Huang, L. (2010). Where self-control comes from: on the development of self-control and its relationship to deviance over time. Developmental Psychology, 46(1), 245257.Google Scholar
Vazsonyi, A. T., Jiskrova, G. K., Ksinan, A. J., & Blatný, M. (2016). An empirical test of self- control theory in Roma adolescents. Journal of Criminal Justice, 44, 6676.Google Scholar
Vazsonyi, A. T., Mikuška, J., & Kelley, E. L. (2017). It's time: A meta-analysis on the self-control-deviance link. Journal of Criminal Justice, 48, 48-63.Google Scholar
Vazsonyi, A. T., Roberts, J. W., & Huang, L. (2015). Why focusing on nurture made and still makes sense: The biosocial development of self-control. In DeLisi, M. & Vaughn, M. G. (Eds), The Routledge international handbook of biosocial criminology (pp. 263279). New York: Routledge.Google Scholar
Veroude, K., Zhang-James, Y., Fernàndez-Castillo, N., Bakker, , Cormand, M. J., , B., & Faraone, S. V. (2016). Genetics of aggressive behavior: An overview. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(1), 343.Google Scholar
Wakschlag, L. S., Leventhal, B. L., Pine, D. S., Pickett, K. E., & Carter, A. S. (2006). Elucidating early mechanisms of developmental psychopathology: The case of prenatal smoking and disruptive behavior. Child Development, 77(4), 893906.Google Scholar
Wakschlag, L. S., Pickett, K. E., Cook, E., Jr., Benowitz, N. L., & Leventhal, B. L. (2002). Maternal smoking during pregnancy and severe antisocial behavior in offspring: A review. American Journal of Public Health, 92(6), 966974.Google Scholar
Weeland, J., Overbeek, G., de Castro, B. O., & Matthys, W. (2015). Underlying mechanisms of gene–environment interactions in externalizing behavior: A systematic review and search for theoretical mechanisms. Clinical Child and Family Psychology Review, 18(4), 413–442.Google Scholar
Wright, J. P. & Beaver, K. M. (2005). Do parents matter in creating self-control in their children? A genetically informed test of Gottfredson and Hirschi’s theory of low self-control. Criminology, 43, 11691198.Google Scholar
Wright, J. P., Beaver, K. M., DeLisi, M., & Vaughn, M. G. (2008). Evidence of negligible parenting influences on self-control, delinquent peers, and delinquency in a sample of twins. Justice Quarterly, 25, 544569.Google Scholar
Wright, J. P., Boisvert, D., & Vaske, J. (2009). Blood lead levels in early childhood predict adulthood psychopathy. Youth Violence and Juvenile Justice, 7(3), 208222.Google Scholar
Wright, J. P., Dietrich, K. N., Ris, M. D., Hornung, R. W., Wessel, S. D., Lanphear, B. P., … & Rae, M. N. (2008). Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Medicine, 5(5), e101.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×